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Abstract—The widespread adoption of mobile devices and
positioning technology has resulted in the generation of massive
urban data, offering great opportunities to improve analytical
abilities for urban infrastructure components. In this study,
we introduce a novel framework called Toast for learning
general-purpose representations of road networks, along with
its advanced counterpart DyToast, designed to enhance the
integration of temporal dynamics to boost the performance of
various time-sensitive downstream tasks. Specifically, we propose
to encode two pivotal semantic characteristics intrinsic to road
networks: traffic patterns and traveling semantics. To achieve
this, we refine the skip-gram module by incorporating auxiliary
objectives aimed at predicting the traffic context associated with
a target road segment. Moreover, we leverage mobile trajectory
data and design pre-training strategies based on Transformer
to distill traveling semantics on road networks. DyToast further
augments this framework by employing unified trigonometric
functions characterized by their beneficial properties, enabling
the capture of temporal evolution and dynamic nature of road
networks more effectively. With these proposed techniques, we
can obtain representations that encode multi-faceted aspects of
knowledge within road networks, applicable across both road
segment-based applications and trajectory-based applications.
Extensive experiments on two real-world datasets across three
tasks demonstrate that our proposed framework consistently
outperforms the state-of-the-art baselines by a significant margin.

Index Terms—Road network representation learning, spatio-
temporal data mining, self-supervised learning.

I. INTRODUCTION

W ITH the advancement and penetration of mobile de-
vices and positioning technology, a large amount of

urban data has been collected to enhance the insights for urban
sensing [1]–[4]. Associated with collected vehicle trajecto-
ries, road networks serve as fundamental yet indispensable
infrastructure in urban spaces, and have been extensively
utilized in various downstream analytical tasks, such as traffic
forecasting [5], [6] and route inference [7]–[9]. Recent studies
have increasingly focused on deriving effective representations
that can capture the intrinsic characteristics of road networks.
Such general-purpose representations have the potential to
significantly enhance the effectiveness of these varied tasks.
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Fig. 1. Road network example. Blue line denotes primary roads and green
lines denote secondary roads.

Given that road networks are essentially a graph, a natural
question to ask is whether we can apply graph representation
learning models to achieve this goal. Unfortunately, the appli-
cation of such models is non-trivial due to two issues.

The first is the discrepancies with regard to the assumptions
applied to common graphs and road networks. Most previous
graph representation learning methods predominantly target ci-
tation graphs [10], [11] or social networks [12], [13], devising
techniques grounded in certain well-established assumptions
specific to these types of graphs. These assumptions, however,
may not be applicable or valid for road networks. For example,
a citation graph often exhibits network homophily, where
interconnected nodes are more similar than distant nodes.
However, this principle does not necessarily translate to road
networks, where spatially adjacent road segments might not
necessarily exhibit similar traffic patterns. In Fig. 1, road
segments dh, gh, hi, hk are connected to each other, but
primary roads typically have different traffic patterns (e.g.,
volume) compared to secondary roads since primary roads are
travelled more frequently.

The second is the feature uniformity issue inherent in road
networks. Features such as road type and lane number are
often shared across spatially adjacent road segments. This
characteristic is more evident in urban sub-regions, such as
commercial areas and residential areas, where a large fraction
of road networks have the same features within these areas.
Such uniformity in road networks can dampen the performance
of standard graph representation learning methods, especially
graph neural networks (GNN) [14]. An example of this,
illustrated in Fig. 1, shows that all road segments connected
to the target road segment de possess the same features (road
type). In such instances, GNN aggregation process renders
these road segments indistinguishable when they present the
same feature input [15].

While recent studies have adapted graph representation

0000–0000/00$00.00 © 2021 IEEE



IEEE TRANSACTIONS ON MOBILE COMPUTING 2

learning to road network setting, they still have limitations
in addressing the two issues. Methods in [16]–[18] aim to
produce representations for road segments and intersections
through multi-task learning. They propose to integrate addi-
tional classification objectives, such as identifying common
attributes between two segments or intersections (e.g., same-
way road or stop sign presence). However, these methods
heavily rely on the homophily assumption, and thus cannot
fully address the first issue. On the other hand, methods in
[19]–[21] adapt GNN to road networks for learning road
segment representations. However, they particularly suffer
from the second issue in areas with uniform road features.
Furthermore, these models focus on capturing certain aspects
of road network characteristics (refer to Table I for details),
and thus fall short in learning effective representations that
contain multifaceted knowledge about road networks.

We argue that deriving effective road network representa-
tions requires capturing two types of semantic characteristics:
namely traffic patterns and traveling semantics, in order to
address the identified issues. Traffic patterns, encompassing
factors like traffic volumes, serve as important indicators
to enrich the knowledge beyond topological structure, thus
overcoming the limitations posed by assumptions for common
graphs. Meanwhile, traveling semantics, such as transition
patterns, assist in distinguishing road segments that exhibit
similar features. As illustrated in Fig. 1, transition patterns
can reveal that the path [c, d, e, f ] is more frequently traveled
compared to the detour path [c, d, a, b, e, f ] between segments
c and f , thus highlighting the dependencies among road
segments. These two types of characteristics represent the most
fundamental aspects of road networks. Therefore, their proper
encoding and integration are crucial for enriching multi-faced
knowledge desired in downstream applications.

To this end, we propose a framework called Toast to learn
general-purpose representations of road networks that can
capture both traffic patterns and traveling semantics with ded-
icated modules. Apart from encoding the topological structure
based on skip-gram training objective [18], [19], our method
further enables this module to capture traffic patterns by in-
corporating an auxiliary traffic context prediction objective. By
doing this, the module not only encodes the graph structure of
road networks, but also distinguishes connected road segments
in terms of traffic patterns, thereby addressing the discrepan-
cies issue. To tackle the feature uniformity issue, we propose
to leverage trajectory data to extract traveling semantics for in-
distinguishable road network fractions caused by uniform fea-
tures. Inspired by the success of Transformer-based pre-trained
models [22], we employ this architecture to capture transition
patterns from trajectory data into representations. Considering
the inadequacy of conventional training tasks for text model-
ing in road network contexts, we design two novel training
tasks, route recovery and trajectory discrimination, tailored
to effectively encode the traveling semantics. Both modules
are based on self-supervised training paradigms where traffic
patterns and traveling semantics are directly treated as training
objectives without the need for additional task-specific labels.
This ensures that the derived representations are versatile and
effective in a range of downstream applications. Moreover,

Toast offers additional advantage of obtaining trajectory repre-
sentations from the trajectory-enhanced Transformer module.
Such capability further enhances the utility for trajectory-based
tasks, such as travel time estimation and destination prediction.

The introduction of Toast [23] has triggered the develop-
ment of several subsequent methods [24]–[27] to overcome the
previously outlined issues. Specifically, some methods propose
to incorporate contrastive learning techniques tailored for road
networks, such as spatial-aware sampling [24] and multi-
view contrasts between road segments and trajectories [25].
Others adapt GNN to tackle feature uniformity weakness by
hypergraph construction [26] or transition pattern integration
[27]. These methods have achieved encouraging results. How-
ever, they, along with other existing studies, are designed
to learn static representations for road networks. In practice,
numerous road network tasks are inherently dynamic: traffic
speed on road segments varies over time, and travel times for
the same route can differ significantly across different time
frames. Therefore, there is a growing need to develop time-
sensitive road network representations that not only embody
better effectiveness but are also more readily applicable to
these dynamic tasks.

To achieve this goal, we propose DyToast, an improved
version of Toast, equipped with a unified temporal encoding
technique that requires minimum model modifications to the
original method. DyToast is designed to fuse temporal dynam-
ics into representations by employing learnable trigonometric
functions, which exhibit beneficial theoretical properties in
road network contexts, into each module. First, apart from
refining the original skip-gram objective with traffic patterns
in Toast, we augment this module by supplementing the
road network graph with transition frequencies for each time
frame. This enhancement is complemented by the adoption
of parameterization for temporal variations to adeptly capture
the evolving patterns for a target road segment in relation
to its surrounding road segments. Second, we address the
challenge of modeling complex temporal correlations in tra-
jectories with irregular time gaps between consecutive road
segments. Traditional absolute or relative positional embed-
dings in Transformer are insufficient for modeling such irreg-
ularities. To resolve this, DyToast integrates the trigonometric
function seamlessly into the self-attention mechanism, thereby
effectively capturing such irregular and continuous properties.
Through the proposed temporal encoding technique, DyToast
stands out as a solution for capturing not only the dynamic
evolution of road segments in relation to their surrounding
environment but also the nuanced, higher-order dependencies
inherent in trajectories with irregular time intervals.

To summarize, our contributions are as follows:
• We propose a method named Toast, which features with

two modules: a traffic context-aware skip-gram module
and a trajectory-enhanced Transformer module, to capture
traffic patterns and traveling semantics within road net-
works. Toast can derive general-purpose representations
for road networks, which are beneficial for both road
segment-based and trajectory-based applications.

• Building upon Toast, we develop an enhanced version,
DyToast, which incorporates the ability to capture tem-
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TABLE I
COMPARISON OF ROAD NETWORK REPRESENTATION LEARNING METHODS IN TERMS OF MODEL ARCHITECTURE AND THEIR ABILITY TO CAPTURE FOUR

TYPES OF ROAD NETWORK CHARACTERISTICS

Methods Encoder Topological structure Traffic patterns Traveling semantics Temporal dynamics
node2vec [16] Skip-gram ✔ ✗ ✗ ✗
SRN2Vec [18] MLP ✗ ✔ ✗ ✗
HNRN [20] GNN ✔ ✗ ✗ ✗
RFN [21] GNN+MLP ✔ ✗ ✗ ✗
SARN [24] GNN ✔ ✗ ✗ ✗
JCLRNT [25] Transformer ✔ ✗ ✔ ✗
TrajRNE [27] GNN+MLP ✔ ✔ G ✗
HyperRoad [26] GNN ✔ T T ✗
Toast [23] Skip-gram+Transformer ✔ ✔ ✔ ✗
DyToast Skip-gram+Transformer ✔ ✔ ✔ ✔

poral dynamics. This is achieved through an innovative
integration of learnable trigonometric functions, which
align seamlessly with Toast. DyToast excels at encoding
temporally nuanced knowledge in both road network and
trajectory contexts, offering a more dynamic understand-
ing of road network patterns.

• We conduct extensive experiments on three time-sensitive
applications on road networks. The results show that
Toast performs comparable to existing methods. Fur-
thermore, with the integration of the proposed temporal
encoding technique, DyToast demonstrates a significant
performance improvement, consistently outperforming
baseline methods by a substantial margin.

II. RELATED WORK

A. Representation Learning for Road Networks

Road networks serve as critical components in various
intelligent transportation applications, such as traffic inference
and forecasting [5], [6], road attribute prediction [28], and
travel time estimation [29]. In these applications, road network
representations are implicitly learned with supervision signals
specific to the task at hand. To achieve more generic appli-
cability, recent efforts have also focused on adapting graph
representation learning techniques to road networks, aiming
to derive general-purpose representations that can benefit a
range of tasks.

Specifically, some studies employ random walk strategies
based on the principles of classical Deepwalk [12] and
node2vec [13]. They directly apply the method [16], or
modify them to include geo-locality and geo-shape informa-
tion through multi-task learning [18], [19]. Another line of
research adapts GNN [14] to road networks. For example,
RFN [17], [21] perform extends GNN to perform multi-
view relational fusion by aggregating information at both
road segment and intersection levels. HRNR [20] adopts a
hierarchical GNN approach to model the bottom-up structure
of road networks. To address the issues of these methods
discussed in Section I, Toast proposes to further capture
the knowledge of traffic patterns and traveling semantics by
integrating a traffic context prediction objective and pioneering
trajectory pre-training strategies. Following Toast, subsequent
studies introduce various methods to model such essential
knowledge. HyperRoad [26] implements GNN with hyper-
edge and hypergraph-based training objectives on hypergraphs

constructed from road networks. TrajRNE [27] leverages tra-
jectory data to generate random walks and derive adjacency
matrix for GNN, thus combing the studies from two technical
branches. JCLRNT [25] and SARN [24] further augment
Toast with contrastive learning techniques. However, existing
methods do not adequately address the dynamic aspect of
road network representations, thus resulting in sub-optimal
performance for time-sensitive downstream applications. This
gap underscores the need for further development in dynamic
road network representations, as achieved in DyToast.

B. Trajectory Analysis and Modeling

Trajectories, representing the movement of vehicles within
a city, are a crucial data source to provide supplementary
insights for tasks related to road networks [30]. In particular,
road networks explicitly impose structural constraints that
govern the traversal of trajectories, forming the foundations
for applications such as route planning [8], [31], anomaly
detection [32] and destination prediction [33]. Conversely,
trajectories provide rich knowledge of traveling semantics
for road networks [34], which can effectively enhance tasks
that may not necessarily involve trajectory data. For instance,
in traffic flow prediction [35] and speed prediction [36],
trajectories are employed to guide GNN aggregation pro-
cesses. They are also utilized to extract transition features
for region functionality modeling [37], [38]. In the topic
of road network representation learning, Toast pioneers the
integration of trajectories through pre-training strategies, and
therefore produce representations for both road segments and
trajectories that are applicable across diverse downstream ap-
plications. Following the path of Toast, JCLRNT [25] adopts
a similar model architecture and applies contrastive learning
techniques to also obtain both road segment and trajectory
representations. In addition, TrajRNE [27] utilizes trajectories
to derive the adjacency matrix for GNN for modeling higher-
order road segment correlations. However, these methods only
exploit the sequential aspect in trajectories while neglecting
the temporal dimension. This leads to the limitations of not
encoding detailed temporal dependencies in the routes, which
are important in time-sensitive applications.

Table I presents a comprehensive comparison of existing
studies in terms of their model architectures and their ability
to capture four distinct characteristics of road networks. In
the table, ‘G’ denotes that the method captures the traveling
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semantics by constructing a global transition graph from tra-
jectories rather than modeling individual trajectories, while ‘T’
indicates the use of techniques directly from Toast as a plug-
in module. Compared to other studies, Toast demonstrates
the capability to simultaneously capture the network struc-
ture, traffic patterns and traveling semantics in a fine-grained
manner with advanced pre-training strategies. Furthermore,
DyToast addresses the limitations of all the previous methods
by incorporating temporal dynamics for road segments and
routes, thereby offering superior capabilities for time-sensitive
applications in road networks.

III. PROBLEM FORMULATION AND OVERVIEW

In this section, we present required definitions in this paper,
followed by articulating the problem statement. Next, we
describe an overview of our proposed framework.

A. Problem Definitions

Definition 1. (Road Networks). Road networks are repre-
sented as a directed graph G = (V, E , CV). V is a set of
vertices, with each vertex v representing a road segment. E
is a set of edges, where each edge euv ∈ E represents a link
connecting road segments u and v. CV is a set of features
associated with road networks.

Definition 2. (Trajectory). A trajectory T is a sequence of
sampled points [pi]

|T |
i=1 from the underlying route of a moving

object, and each point pi corresponds to a coordinate of
latitude and longitude.

Definition 3. (Route). A route r = [(ri, ti)]
n
i=1 is time-

ordered sequence consisting of n adjacent road segments
within road networks G, where ri ∈ V represents the i-th road
segment in the route, and ti represents the visit timestamp for
ri.

In our study, given road networks G, a trajectory T is first
mapped to the road networks to get its underlying route r by
a map matching algorithm [39].

Problem Statement. Given road networks G = (V, E , CV)
and a trajectory dataset D = {T (i)}|D|

i=1, we aim to 1) learn
vector representations {ut

v}v∈V for road segments within the
network, where t is the index of specific time frame (e.g., 8am-
9am), and 2) derive the representation ur for any specified
route r on the road networks.

It is worth noting that our target is to learn generic repre-
sentations for both road segments and trajectories rather than
task-specific models. The obtained representations are versatile
and can be easily applied to road various segment-based and
trajectory-based downstream tasks.

B. Framework Overview

To obtain general-purpose representations for road net-
works, we propose Toast to tackle the two issues outlined in
Section I (i.e., discrepancies and feature uniformity). Building
upon this approach, we further introduce DyToast, which
incorporates the modeling of temporal dynamics prevalent in

both road networks and trajectories. An overview of DyToast
is presented in Fig. 2.

To tackle the first issue, we move beyond the conventional
graph assumptions typically employed in existing studies [18],
focusing on mitigating the discrepancies observed in road seg-
ments. To achieve this, we extend the skip-gram model [40],
which is flexible in producing node representations based
on a variety of structural assumptions for graphs, to capture
traffic patterns (e.g., traffic volume). In addition to the original
skip-gram objective of predicting the context neighbors of a
target road segment, we introduce auxiliary tasks that predict
traffic-related context features (e.g., road category) in a self-
supervised manner. Such a multi-task learning paradigm al-
lows the obtained representations to not only encode the graph
structure but also differentiate among various traffic patterns
that are indicated by these context features.

To tackle the second issue posed by the uniformity of
features in various sub-regions, we learn from trajectories to
extract traveling semantics on road networks. This includes
identifying transition patterns and high-order dependencies be-
tween distant regions. To achieve this, we employ Transformer
model [41] with two novel pre-training tasks for trajectory
data tailored for road network contexts: route recovery and
trajectory discrimination. Specifically, the route recovery task
involves randomly masking a subsequence of road segments
in a given route, and subsequently recovering the masked part
based on the remaining segments of the route. The trajectory
discrimination task aims to discriminate actual routes from the
actual trajectories and those generated through random walks
on road networks. These proposed techniques within DyToast
enable encoding multi-faceted yet mutually enhanced charac-
teristics of road networks into the representations. Moreover,
our framework possesses the capability to produce represen-
tations for both individual road segments and trajectories.

Apart from the foundational capabilities conforming to the
static characteristics of road networks, we have further aug-
mented it by integrating temporal dynamics into its modules by
using unified trigonometric functions. Specifically, we propose
to construct a dynamic graph based on transition frequencies
at each time frame, and then incorporate trigonometric-based,
time-aware functions into skip-gram objective, thus enabling
the capture of evolving patterns inherent in these graphs
over time. Furthermore, apart from modeling only sequential
information in trajectories, we also integrate the function into
the self-attention mechanism in trajectory pre-training tasks,
allowing the modeling of fine-grained temporal correlations.
The modified architecture is adept at handling continuous
timestamps with irregular intervals. These innovations can
substantially improve the effectiveness of produced represen-
tations in time-dependent applications.

IV. METHODOLOGY

We elaborate our DyToast framework in this section. We
start with preliminaries of the skip-gram model, and then
discuss the extended skip-gram model augmented with an
auxiliary traffic context prediction objective. Next, we describe
the Transformer module and the two trajectory-enhanced pre-
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Fig. 2. The framework overview of our proposed DyToast. Components marked in red are designed to integrate temporal dynamics.

training tasks. Finally, we present the temporal encoding
techniques integrated into these two modules.

A. Preliminaries: Skip-gram Model

The skip-gram model was originally introduced in
word2vec [40] to learn embeddings for words. It has been
widely adopted in graph representation learning methods later
by viewing nodes in a graph as words in a document. This
approach involves generating a set of random walks S on a
graph, with each random walk being treated as a sentence. The
core objective of the model is to maximize the likelihood of
observing the neighborhood nodes within a context window
given a target node, which equals to minimizing the following
loss function:

LSG = −
∑
vi∈s

∑
vj∈N (vi)

log p (vj |vi)

log p (vj |vi) = log
exp

(
f(vi)

⊤h(vj)
)∑

v′
j∈V exp

(
f(vi)⊤h(v′j)

) (1)

where f, g : N → Rd are the embedding functions for target
nodes and context nodes respectively, N (vi) is the context
neighbors of node vi, and s is a random walk sequence from
the set S. For computational efficiency, we adopt negative
sampling [40] to optimize the objective in practice, then the
objective in Eq. 1 can be reformulated as follows:

log
(
σ
(
f(vi)

⊤h(vj)
))

+
∑
v̂j∈V

log
(
σ
(
−f(vi)⊤h (v̂j)

))
(2)

where σ() is the sigmoid activation function, and V is the
distribution of the vocabulary for negative sampling. By model
training, the final node representations could capture various
structural properties (e.g., homophily) via various random
walk sampling strategies [13], [42].

B. Auxiliary Traffic Context Prediction Objective

Toast is designed to not only encode the structural as-
sumptions of common graphs, but also to incorporate traffic
patterns into representations. To achieve this, we propose to
extend the skip-gram model by introducing auxiliary traffic
context prediction tasks. For instance, road segments often
have associated traffic context features, such as speed limits
and road types, which we treat as auxiliary context information
that indicates the traffic patterns of their respective road
segments. Based on this, given a target road segment and
its context neighbors, our key idea is to first determine the
traffic context of the target node, and then to further predict
the context neighbors. To perform traffic context prediction
for a target road segment, we begin by applying binarization
to the selected features that are indicative of traffic patterns.
For example, if we select road type cn from the set of traffic
context features {cn}Nn=1 ∈ CV , where cn has |cn| possible
categories, this feature is transformed into a |cn|-dimensional
label vector where each dimension is 0 or 1, representing the
presence of a specific category within the context of the target
road segment. Formally, given a target road segment vi and
its corresponding N types of binarized traffic context features
{cin}Nn=1, our goal is to minimize the binary cross entropy loss
for any given context feature cn:

Lcn =−
∑
vi∈s

|cn|∑
j=1

cinj log σ(f(vi)
⊤g(cnj))+

(1− cinj) · log(1− σ(f(vi)
⊤g(cnj)))

(3)

where cinj is the j-th entry of the n-th binarized feature cn
for node vi, f(vi) is the target embedding for node vi, g(cnj)
is the feature embedding for cnj that is shared across road
segments, and σ() denotes the sigmoid function.

Then, road segment representations are optimized to pro-
duce accurate predictions on both traffic context and context
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neighbors. This strategy is more appropriate for road network
settings than only predicting context neighbors. Moreover,
the prediction tasks are structured hierarchically, such that
the traffic context is utilized to enhance the prediction of
context neighbors. In other words, when predicting the context
neighbors, instead of only conditioning on the target road
segment vi as in Eq. 1, we refine this objective to incorporate
traffic context as an additional conditioning factor:

LSG′ = −
∑
vi∈s

∑
vj∈N (vi)

log p (vj |vi, ξ(vi))

= −
∑
vi∈s

∑
vj∈N (vi)

log
exp

(
f̃(vi)

⊤h̃(vj)
)

∑
v′
j∈V exp

(
f̃(vi)⊤h̃(v′j)

) (4)

where ξ(vi)
def.
= [σ(f(ui)

⊤g(cnj)]
|cn|,N
j=1,n=1 is the n-th pre-

dicted traffic context of road segment vi. f̃(vi) is the traffic-
enhanced target embedding for vi, namely, the concatenation
of f(ui) and all the predicted traffic context ξ(vi), and h̃(vj)
is the corresponding context embedding for node vj . Similarly,
we apply the negative sampling strategy as in Eq. 2 in practice.

The final objective function is a weighted sum of the
modified skip-gram loss and the loss of all auxiliary traffic
context prediction tasks. Formally, it is defined as

L = LSG′ +

N∑
n=1

δnLcn (5)

where δn is the weight of the n-th auxiliary task. Compared to
the original objective in Eq. 1, we incorporate a broader spec-
trum of semantic information, particularly traffic patterns, into
the representations through our meticulously designed auxil-
iary tasks. Furthermore, the prediction of context neighbors is
also refined with the inclusion of traffic context knowledge.
As a result, this multi-task learning paradigm would produce
more robust and effective road network representations.

C. Transformer and Pre-training Tasks

To tackle the feature uniformity issue suffered by existing
methods, we employ a Transformer model with two novel
pre-training tasks specifically designed to extract transition
patterns and high-order dependencies on road networks. The
effectiveness of Transformer pre-training in modeling text
sequences has been extensively validated, particularly in
learning semantically rich word representations for numerous
downstream tasks [22], [43]. Given the sequential nature of
trajectory data, we propose to leverage this model to learn
representations for road networks. Now we proceed to describe
the model details in a bottom-up manner.

1) Model Architecture: Input Embedding Layer. The road
segment representations obtained from the first module serve
as the input embeddings in Transformer. To preserve the order
information in trajectories, learnable positional embeddings
are integrated into the input representations as follows:

xi = ui + pi (6)

where ui and pi are road segment representation and posi-
tional embedding for the i-th road segment, respectively.

Multi-head Self-attention. Self-attention mechanism allows
the model to selectively focus on correlated parts of the input
sequence. We follow the scaled inner-product form of self-
attention, which can be described as mapping the represen-
tations of the input sequence to output representations [41].
Formally, it is defined as

Attention(Q,K,V) = softmax

(
QK⊤
√
dk

)
V (7)

where Q, K and V are the query, key, and value matrix respec-
tively derived from a linear projection on the representations
of the input trajectory, and dk is the vector dimension, which
is set to be the same for all the three matrices.

In our work, we adopt multi-head self-attention to model
trajectory sequences. Specifically, the representations of input
trajectory are projected into h sets of different queries, keys,
and values to perform the self-attention mechanism, which has
been shown to achieve better performance. Given the input
representations X = [x1, ...,xN ] ∈ RN×din with length N
where xi is the representation of the i-th road segment in
the trajectory after the embedding encoding layer, the output
representations Z = [zi, z2, ..., zN ] ∈ RM×dout are produced
as follows:

Z = MH-Attn(X) = [head1, . . . ,headh] ·WO

headi = Attention
(
XWQ

i ,XWK
i ,XWV

i

) (8)

where WQ
i , WK

i , WV
i ∈ Rdin×din/h, WO∈ Rdin×dout are

self-attention parameters.

Position-wise Feed-forward Network. After multi-head self-
attention component, the output representations Z are sent to
a fully connected feed-forward network as follows:

FFN(Z) = Φ (ZW1 + b1)W2 + b2 (9)

where Φ() is the ReLU activation function, W1, W2, b1 and
b2 are parameters of the feed-forward network.

Model Stacking. It is usually beneficial to learn more complex
transition patterns in trajectory data by stacking multiple
layers. In particular, each layer is composed of two sub-
layers, namely multi-head self-attention and position-wise feed
forward network, connected by residual connection and layer
normalization as follows:

Z′ = LayerNorm(X+MH-Attn(X))

X′ = LayerNorm(Z′ + FFN(Z′))
(10)

where LayerNorm denotes layer normalization and Z′ denotes
the final output representations which are passed as the input
to the subsequent layer of Transformer.

2) Model Pre-Training: Despite the capabilities of Trans-
former model, a critical concern is how to ensure that the
derived representations adequately encode traveling seman-
tics within road networks. The model’s effectiveness largely
depends on the design of loss functions that are adequately
tailored to the specific domain (e.g., language [22], image [44],
video [45]). To this end, it is important to devise appropriate
pre-training tasks that demand the comprehension of traveling
semantics on road networks.
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Common pre-training tasks employed in Transformer mod-
els include masked language modeling [22], next token predic-
tion [43], and other tasks such as next sentence prediction [22]
and sentence order prediction [46]. While these tasks can
generate effective text representations, they cannot achieve
our target under road network settings. For example, consider
the masked language modeling task, where each word in a
sequence is randomly masked at a certain probability (e.g.,
15%), and the model is then tasked with predicting these
masked words. However, this task is less effective when
applied to trajectories within road network contexts. This is
because two consecutive road segments in a trajectory must be
connected in road networks. When a road segment is masked
within such a sequence, it can often be trivially inferred from
the knowledge of the graph structure and its given adjacent
road segments, as t represents the only segment that makes
the sequence a valid route. Since the graph structure is well
captured by the skip-gram objective, this task may not con-
tribute additional valuable information for the representations.
Moreover, in the next token prediction task, the focus is
primarily on forward prediction within a sequence, which does
not contribute to a comprehensive understanding of the entire
trajectory. In addition, sentence-level pre-training tasks do not
naturally align with the goals of road network road network
representation learning.

To this end, we propose two novel pre-training tasks for
trajectory data within road networks: route recovery and tra-
jectory discrimination. These tasks are tailored to effectively
encode the traveling semantics into representations.

Route Recovery. Different from the masked language model
task where every independent word is randomly masked,
we mask a continuous sequence of road segments within
a trajectory to make it into a partially observed route. In
particular, given a route, we randomly mask 40% of the
consecutive road segments in the sequence. This task prevents
the trivial recovery of the masked road segments based solely
on the awareness of the graph structure. Instead, it requires
the representations to capture more complex transition patterns
and accurately identify the most likely options for the masked
segments. The model is trained by the cross entropy loss
between masked road segments and the predicted ones.

Trajectory Discrimination. This task is designed to enhance
the model’s ability to distinguish real trips from generated
ones. Real trips are sampled from our trajectory databases,
while fake trips are generated through random walks on road
networks. We train the model to minimize the prediction error
for these two types of trips. The purpose of this task is two-
fold. First, it provides an alternative way for the model to
capture transition patterns. After training, the model is able
to identify fake trips by recognizing sub-sequences that do
not follow the normal transition patterns. Second, this task
offers a holistic perspective on traveling semantics across
road networks. Trajectories naturally span various regions
of the network, and by accurately identifying actual trips,
especially those that occur frequently between distant regions,
the model can effectively capture high-order dependencies and
correlations between distant road segments.

D. Encoding Temporal Dynamics

1) Dynamic Extension for Traffic-enhanced Skip-gram:
Time-dependent Transportation Graph Construction. To
fuse the enhanced skip-gram model with dynamicity, we
propose to construct time-dependent transportation graphs.
These graphs are designed to characterize not only the static
structural information of road networks, as captured in the
previous module, but also the dynamic transition information.
Specifically, time is split into discrete time frames, each
representing a specific period (e.g., 8am-9am). For each time
frame t, we augment the road network graph G to form
Gti = (V, Et, CV), which reflects the holistic transportation
condition at each time frame t. Here, V and CV remain as the
road segments and their corresponding features, respectively,
while each edge etij = (vi, vj , w

t
ij) ∈ Et denotes an adjacent

link between road segments i and j with an associated weight
wt

ij , defined as:

wt
ij = γ × eij + countt(vi → vj) (11)

where eij ∈ {0, 1} indicates the presence of a structural edge
on road networks, count(vi → vj) denotes the frequencies of
transitions between road segment i and j within time frame
t, and γ is the hyperparameter to balance the influence of
these two terms. By constructing a collection of transportation
graphs, we gain a holistic view of vehicle movements for
each time frame, thus supplementing the static traffic context,
typically indicated by features such as speed limits and road
types, with dynamic traffic patterns.

Trigonometric Parameterization. Equipped with the time-
dependent transportation graphs, we perform the strategy as in
Eq. 2 while integrating a novel temporal encoding technique,
which modifies the target embedding function f to additionally
condition on the time variable t:

log
(
σ
(
f(vi, t)

⊤h(vj)
))

+
∑
v̂j∈V̂

log
(
σ
(
−f(vi, t)⊤h (v̂j)

))
(12)

Here, the proximity degree calculated by f(vi, t)
⊤h(vj)

is essential to capture the evolving patterns inherent in the
transportation graphs over time. To achieve this, we employ
sinusoidal function: ψ(t) : R → Rd to model road segment
representations specific to time frame t, defined as:

ψ(t) = [cos(wt ⊙ t)|| sin(wt ⊙ t)] ∈ Rd, (13)

where wt ∈ Rd/2 is a learnable parameter to control the
frequencies, ⊙ indicates the broadcast multiplication between
vector and scalar, and || denotes vector concatenation. Then
the proximity degree is expressed as:

f(vi, t)
⊤h(vj) = ut⊤

i vj = (ui + ψ(t))⊤vj

= u⊤
i vj +

d/2∑
k=1

vj,k cos(wt,kt) + vj,k+ d
2
sin(wt,kt),

(14)
This formulation belongs to the trigonometric polyno-
mial a0 +

∑K
k=1 ak cos(kx) + bk sin(kx) where a0, . . . , aK ,
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b1, . . . , bK ∈ R. Such a function, with suitably selected
coefficients, can approximate any periodic continuous func-
tions defined over an arbitrarily closed interval [47], [48].
This capacity aligns well with the typical characteristics of
road networks, which often exhibit fluctuating and periodic
patterns across days that can be learned by the proposed
technique. Consequently, this approach significantly enhances
the effectiveness of the representations in capturing temporal
aspects.

2) Temporal Feature Integration in Transformer: The orig-
inal Transformer applied in our previous study is limited to
only encoding sequence ordering information through pre-
defined or learned positional embeddings [41], [49]. To further
effectively model temporal correlations encoded in road seg-
ments within trajectories, an intuition approach is to employ
discrete embeddings to represent specific time intervals, with
each embedding associated with a particular time bin (e.g., 30
seconds). However, this approach has significant drawbacks. It
becomes challenging to select appropriate intervals to obtain
discrete embeddings, particularly when dealing with irregular
time intervals between consecutive road segments. In addition,
the method also fails to model the fine-grained correlations for
two different intervals that fall in the same time bin.

In light of this, we adopt the sinusoidal function as in Eq. 13
to model continuous visit timestamp ti at road segment ri
within Transformer. Specifically, the self-attention mechanism
computes dot-product between two encoded temporal features
ψ(ti) and ψ(tj) as:

ψ(ti) · ψ(tj) = K(ti, tj) = 1⊤ cos(wt ⊙ (ti − tj)) (15)

This means that such a temporal encoding function can
be viewed as a translation-invariant kernel (i.e., K(x, y) =
K(x + c, y + c)), which offers several advantages. First, the
translation invariant property allows the model to focus on the
interval gaps between timestamps, which are more informative
for denoting travel time on road segments than the absolute
values of timestamps. Second, it enables direct modeling of
correlations on continuous timestamps without manually se-
lecting the intervals for discrete embeddings and thus reducing
the information loss. Then the input representations into the
Transformer are modified as follows:

x̂i = xi + ψ(ti) + et (16)

where xi is the representation for road segment i within a
trajectory as in Eq. 6, and et is the time frame representation
which encodes coarse-grained temporal information corre-
sponding to the start time of the trajectory. To facilitate the
modeling of temporal correlations, we initialize the parameter
from a normal distribution wt ∼ N (0, σ−2). By doing this,
Eq. 15 approximates the Gaussian kernel (i.e., ψ(x) · ψ(y) ≈
exp(−∥x− y∥2/σ2)) over its temporal differences [50]. This
introduces a useful inductive bias of L2 distances as the
starting point in the model, enhancing its ability to capture
temporal dynamics within trajectories.

3) Computational Complexity: The computational cost of
DyToast can be decomposed into two parts: the traffic context-
aware skip-gram module and the Transformer encoder module.

During the entire training phase, the complexity of the traffic
context aware skip-gram module is O(N · |S| · |V| · (k +
|cn| + 1)), where N is the size of context neighbors, |S|
is the length of random walks, |V| is the number of road
segments, k is the number of negative samples, and |cn| is the
number of auxiliary task labels. For the Transformer encoder,
the complexity is the same with the Transformer architecture
with O(|D||S|2d+ |D||S|d2), where |D| denotes the number
of trajectories used for training, and d is the dimension of
the Transformer hidden states. In the inference phase, our
goal is to derive representations for road segments and routes.
Dynamic road segment representations can be obtained via
look-up operations for road segments and specific time frames,
followed by the summation of these vectors, with a complexity
of O(d). To derive a route representation, the representations
for each road segment are organized into a sequence and
processed by the Transformer encoder, resulting in a final route
representation with a complexity of O(|S|2d+ |S|d2).

4) Remarks: The adoption of the sinusoidal function in our
framework offers a unified solution to significantly enhance
the temporal dynamics encoding within the proposed two mod-
ules. On the one hand, it complements the skip-gram objective
by capturing fluctuating and periodic patterns inherent in time-
dependent transportation graphs. This capability contributes to
a holistic understanding of the entire road network, thereby
providing a macroscopic perspective of temporal evolution.
On the other hand, this function serves as an effective way
of encoding visit timestamps within trajectories. Its seamless
integration into the Transformer’s self-attention mechanism
enables the model to perform continuous and translation-
invariant modeling of fine-grained temporal correlations. In
this way, it facilitates the capability of understanding micro-
scopic higher-order dependencies for road segments from each
individual trajectory.

As a result, the representations produced by DyToast –
both in terms of road segment representations and trajec-
tory representations derived from Transformer outputs – are
enriched with multi-faceted characteristics enhanced by the
inclusion of temporal dynamics. The model’s ability to capture
dynamic traffic patterns and traveling semantics ensures that
these representations are highly effective for time-sensitive
downstream applications.

V. EXPERIMENTS

In this section, we compare our proposed framework against
other methods applied in road network representation learning.
We perform extensive experiments on two real-world datasets,
and across three time-sensitive tasks to test the effectiveness
of the learned representations for both road segment-based and
trajectory-based applications.

A. Datasets

We utilize two datasets comprising road networks and
trajectory data from two cities, Chengdu and Xi’an. The road
networks are obtained from OpenStreetMap [51], while the
trajectory data was obtained from the ride-hailing company
DiDi, spanning the month of November 2016. To verify the
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effectiveness of leveraging trajectory data in road network
representation learning, we filter out the road segments not
covered by trajectory data. We further apply map matching
algorithm [39] to convert the GPS records from trajectories
into sequences of road segments. The statistics of the datasets
are presented in Table II.

TABLE II
STATISTICS OF THE DATASETS

Dataset #Road Segments #Edges #Trajectories

Chengdu 6,125 15,933 5,266,120
Xi’an 5,146 12,804 2,533,359

B. Compared Methods

To evaluate the performance of our proposed Toast and
DyToast, we conduct extensive comparisons with 9 baseline
methods, described as follow.
Conventional graph learning methods:

• node2vec [13]: It employs biased random walks on road
networks to explore neighborhood of each road segment,
capturing both local and high-order structural knowledge
within road networks.

• GCN [52]: It is the implementation of graph convolu-
tional network for road networks. The model is trained
to reconstruct the original road network structure.

• GAT [53]: It is the implementation of graph attention
network that applies attention mechanism in the aggre-
gation operation. The model is trained to reconstruct the
original road network structure.

Standard road network representation learning methods:
• SRN2Vec [18]: It adopts multi-task learning to make road

segments with similar properties, such as spatial closeness
and road shapes, close in the representation space.

• HRHR [20]: It employs a hierarchical GNN to model
different semantic levels in road networks. It utilizes
two reconstruction tasks to learn the inter-relationships
between the three layers of the road network hierarchy.

• RFN [21]: It utilizes a multi-view GNN to learn repre-
sentations from both node-relational and edge-relational
perspectives of road network graphs.

• SARN [24]: It adapts graph contrastive learning tech-
niques to road networks by integrating spatial proximity
and distance-based negative sampling in its data augmen-
tation stage.

Trajectory-enriched representation learning methods:
• JCLRNT [25]: It aims to derive both road segment and

trajectory representations through contrastive learning,
including the contrast between road-road, road-trajectory
and trajectory-trajectory interactions.

• TrajRNE [27]: It leverages trajectory data to construct
adjacency matrix for GNN aggregation, and incorporates
road context information using techniques similar to
SRN2Vec.

C. Experimental Settings

1) Downstream Tasks: Given the capability of DyToast
to produce both road segment and trajectory representations,
we adopt the experimental setups and tasks commonly used
in prior studies [17], [20], [25], [27]. These studies utilize
learned representations as inputs for training simple models
across various downstream tasks, following a typical paradigm
for leveraging general-purpose entity representations in the
geospatial domain (e.g., POIs, road networks, and regions).
This approach effectively evaluates the transferability of rep-
resentations to diverse downstream tasks [54]. Specifically,
we select three tasks from previous studies for evaluation:
road traffic inference, travel time estimation and destination
prediction [17], [20], [25], [27]. These tasks are evaluated
by utilizing static representations produced by models, which
typically ignore the temporal effects. As these tasks are inher-
ently time-sensitive, they provide a meaningful benchmark for
evaluating the model’s ability to capture temporal dynamics,
aligning closely with the scope of this paper.

Road speed inference. Our target is to infer dynamic traffic
speeds on all road segments in scenarios where only partial
traffic speed observations are available. Specifically, at each
time frame, and aim to infer the average traffic speed for road
segments that have missing values, using the model trained
on traffic speeds from other road segments. For evaluation,
we split a day into one-hour time frames, and extract the
speed information at each time frame using the aggregated
records across the days from the dataset to avoid data sparsity.
Then we randomly mask out 20% of the traffic speed data
at each time frame. We apply 5-fold cross validation to
evaluate the performance of all the compared methods. In
these methods, the learned road segment representations are
utilized as input features into a two-layer fully-connected
neural network, which functions as a regressor for this task.

Travel time estimation. Our target is to estimate the travel
time of trajectories that start at varying time frames. Specif-
ically, for methods that do not inherently generate trajectory
representations, we produce the trajectory representations by
employing a two-layer Transformer to process the representa-
tions of road segments as inputs. In contrast, for trajectory-
enriched methods that are equipped to produce trajectory
representations, we exclude timestamps in the inputs to avoid
data leakage. Subsequently, the derived or directly produced
trajectory representations are fed into a linear layer to get the
prediction of travel time for all the methods. We define each
time frame as one hour, and use 80% trajectory data for pre-
training tasks when applicable, while the remaining 20% is
further partitioned into 4:1 ratio for the task-specific training
and evaluation stages.

Destination prediction. Our target is to predict the destination
road segment of trajectories that start at varying time frames.
Specifically, we utilize the initial 50% of road segments
as partial trajectories to produce their corresponding repre-
sentations. Then these representations are fed into a linear
layer to classify the destination road segment. The strategies
for deriving trajectory representations, as well as the data
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TABLE III
PERFORMANCE OF THE COMPARED METHODS ON THE CHENGDU DATASET.

Task Road Speed Inference (m/s) Travel Time Estimation (s) Destination Prediction (%)

Metric MAE RMSE MAE RMSE Acc@5 Acc@10

node2vec 9.69 ± 0.13 12.92 ± 0.11 98.77 ± 1.87 142.08 ± 2.02 50.37 ± 0.21 59.50 ± 0.18
GCN 9.15 ± 0.20 12.27 ± 0.18 97.73 ± 2.36 141.22 ± 2.75 49.51 ± 0.32 58.53 ± 0.28
GAT 9.33 ± 0.23 12.56 ± 0.26 96.78 ± 2.17 140.33 ± 2.89 49.12 ± 0.22 57.90 ± 0.19

SRN2Vec 8.64 ± 0.16 11.71 ± 0.19 96.44 ± 1.72 139.38 ± 1.67 55.38 ± 0.24 64.42 ± 0.23
HNRN 8.70 ± 0.13 11.82 ± 0.12 93.72 ± 1.48 136.99 ± 1.63 54.60 ± 0.45 63.69 ± 0.43
RFN 8.99 ± 0.35 12.25 ± 0.41 93.27 ± 3.18 136.29 ± 3.02 47.44 ± 0.72 56.09 ± 0.99

SARN 8.96 ± 0.18 12.20 ± 0.18 94.80 ± 1.32 137.28 ± 1.44 52.57 ± 0.20 61.79 ± 0.22
TrajRNE 9.03 ± 0.20 12.27 ± 0.24 93.51 ± 1.53 136.76 ± 1.60 56.24 ± 0.35 65.44 ± 0.48
JCLRNT 7.89 ± 0.22 10.98 ± 0.27 88.18 ± 1.79 129.02 ± 1.93 60.52 ± 0.33 69.77 ± 0.36

Toast 8.74 ± 0.15 11.89 ± 0.16 82.86 ± 1.46 119.49 ± 1.37 58.79 ± 0.25 67.01 ± 0.26
DyToast 7.01 ± 0.17 10.14 ± 0.21 76.19 ± 1.60 111.83 ± 1.84 63.28 ± 0.25 72.39 ± 0.25

TABLE IV
PERFORMANCE OF THE COMPARED METHODS ON THE XI’AN DATASET.

Task Road Speed Inference (m/s) Travel Time Estimation (s) Destination Prediction (%)

Metric MAE RMSE MAE RMSE Acc@5 Acc@10

node2vec 8.42 ± 0.11 10.85 ± 0.13 123.59 ± 1.73 190.92 ± 2.01 47.67 ± 0.19 57.11 ± 0.18
GCN 7.85 ± 0.17 10.20 ± 0.17 120.69 ± 1.96 187.06 ± 1.87 43.73 ± 0.28 52.94 ± 0.27
GAT 8.04 ± 0.20 10.48 ± 0.22 118.49 ± 2.38 186.03 ± 2.60 44.76 ± 0.13 54.48 ± 0.14

SRN2Vec 7.49 ± 0.09 9.88 ± 0.11 115.63 ± 1.52 182.06 ± 1.53 52.21 ± 0.19 61.38 ± 0.17
HNRN 7.75 ± 0.14 10.17 ± 0.18 114.49 ± 1.44 180.80 ± 1.71 51.85 ± 0.39 60.93 ± 0.43
RFN 7.93 ± 0.26 10.41 ± 0.28 116.51 ± 2.87 182.27 ± 2.66 46.57 ± 0.76 56.02 ± 0.89

SARN 7.67 ± 0.16 10.05 ± 0.15 112.49 ± 1.30 178.36 ± 1.29 48.82 ± 0.17 58.06 ± 0.20
TrajRNE 7.75 ± 0.17 10.10 ± 0.19 115.33 ± 1.48 181.70 ± 1.53 52.69 ± 0.38 62.57 ± 0.40
JCLRNT 6.97 ± 0.20 9.32 ± 0.25 108.92 ± 1.83 172.44 ± 1.98 55.88 ± 0.27 66.35 ± 0.25

Toast 7.60 ± 0.12 9.99 ± 0.13 108.05 ± 1.57 171.12 ± 1.62 55.22 ± 0.26 65.99 ± 0.28
DyToast 6.53 ± 0.15 8.99 ± 0.17 92.84 ± 1.56 146.04 ± 1.72 58.95 ± 0.25 68.77 ± 0.26

partitioning settings, are consistent with those outlined in
travel time estimation task.

For the tasks of road speed inference and travel time
estimation, we use mean absolute error (MAE) and root mean
square error (RMSE) as evaluation metrics. For the task of
destination prediction, we use Top-N accuracy (Acc@N ) as
metrics to evaluate the proportion of instances where the actual
destination road segment appears in top-N predictions ranked
by highest probabilities. We run each method 10 times and
report the results along with their standard deviations.

2) Parameter Settings: To select the model parameters, we
began with a grid search for a subset of parameters considering
the huge search space. Specifically, we explored the embed-
ding size from the candidate set {32, 64, 96, 128, 256} and the
number of layers from {1, 2, 3, 4}, while keeping the mask
ratio fixed at 0.25 and the auxiliary loss weight fixed at 2.
After that, we refined other parameters around the optimal
configurations identified in the grid search (embedding size
128 and 2 layers) by testing additional combinations of mask
ratio for Transformer pre-training and auxiliary loss weight for
traffic context prediction task from {0.1, 0.25, 0.4, 0.55, 0.7}
and {0.1, 0.5, 1, 2, 5} respectively. The final parameters se-
lected for the model are highlighted in bold. To ensure fair
comparison, we set the dimension of the representations for
both road segments and trajectories to be 128 for all the

compared methods, and select road type as the prediction
objective for auxiliary traffic context prediction task. We apply
30 training epochs for both modules iteratively in our exper-
iments. For the baseline methods, we adhere to the default
configurations for their model architectures as described in
their respective papers.

D. Performance Comparison
The results of all the methods across the three tasks on

the Chengdu and Xi’an dataset are presented in Table III and
Table IV, respectively. Then we have several observations.

First, methods such as node2vec, GCN and GAT, which are
not specifically designed for road networks, yield the worst
results among the baselines. This highlights the importance of
developing approaches to tackle the distinctive characteristics
of road networks. Second, methods like SRN2Vec, HNRN,
RFN and SARN, which focus on capturing road-specific
features and spatial information, demonstrates improved per-
formance in the road speed inference task compared to those
generic graph representation learning methods. However, they
are less effective in trajectory-based tasks due to a lack
of capability in modeling high-order dependencies among
road segments, which are usually reflected in trajectory data.
Furthermore, methods that leverage trajectory data for extract-
ing high-order dependencies, including TrajRNE, JCLRNT,
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and Toast, although not showing further improvement in
road speed inference task, exhibit enhanced performance in
trajectory-based tasks. Fourth, among all the baselines, Toast
achieves the best performance in travel time estimation, due to
its tailored sequence modeling for trajectory pre-training. On
the other hand, JCLRNT, building upon Toast by integrating
contrastive learning objectives, facilitates enriched interactions
between road segments and trajectories, thus enhancing the ef-
fectiveness for these two data modalities. Therefore, it achieves
the superior performance in both road speed inference and
destination prediction. Lastly, the baseline methods generally
fall short in capturing the dynamic aspects of road network
representation learning. In contrast, DyToast introduces a
unified temporal encoding strategy, adeptly adapting to the
temporal dynamics inherent in road networks. As a result, our
proposed DyToast outperforms all the compared methods with
substantial margin across these time-sensitive tasks.

E. Model Analysis

1) Ablation Study: We conduct an ablation study by re-
moving different components to investigate their contributions
to the performance. Specifically, we test the effectiveness of
components that enrich temporal dynamics, given that other
components have been previously evaluated in the Toast
study [23]. For this purpose, we compare DyToast with the
following variants:

• DyToast-G: it removes the construction of time-
dependent transportation graphs, relying instead on the
static road network structure while still applying the
proposed techniques for encoding temporal dynamics.

• DyToast-S: it removes the temporal encoding mechanism
within the traffic-enhanced skip-gram module.

• DyToast-T: it removes the temporal feature integration
module within Transformer, omitting the capture of fine-
grained temporal correlations in trajectory data.

• DyToast-ST: it is a combination of the variants of
DyToast-S and DyToast-T by removing both components
in skip-gram and Transformer modules.

The results for these model variants on the tasks of traffic
speed inference and travel time estimation are shown in
Fig. 3. Based on the results, we can observe that excluding
different components from the framework leads to a decrease
in performance across both road segment-based and trajectory-
based tasks. This highlights the importance of integrating tem-
poral dynamics on road networks from various perspectives to
enhance the model performance. Notably, the removal of tem-
poral encoding within the pre-trained Transformer module (-
T) indicates a more pronounced impact on model performance
than modifications to the traffic-enhanced skip-gram module
(-G and -S), demonstrating the benefits of capturing fine-
grained temporal correlations in trajectory data. Furthermore,
the contributions of these components are complementary,
as the removal of multiple modules (i.e. -ST) result in the
most significant performance degradation. Overall, the ablation
study validates the effectiveness of our proposed techniques
to enrich the knowledge on temporal dimension into road
network representation learning.
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Fig. 3. Ablation study of four model variants without modules for encoding
temporal dynamics.

TABLE V
COMPARISON FOR TEMPORAL ENCODING TECHNIQUES ON TRAFFIC SPEED

INFERENCE TASK.

Dataset Chengdu Xi’an

Metric MAE RMSE MAE RMSE

T-Emb 7.66 ± 0.23 10.74 ± 0.28 7.03 ± 0.20 9.41 ± 0.27
Road-Emb 7.48 ± 0.18 10.38 ± 0.20 6.70 ± 0.17 9.13 ± 0.19
T-Attention 7.56 ± 0.34 10.50 ± 0.39 6.73 ± 0.35 9.15 ± 0.41

CPE 8.02 ± 0.37 11.20 ± 0.42 7.23 ± 0.41 9.58 ± 0.48

DyToast 7.01 ± 0.17 10.14 ± 0.21 6.53 ± 0.15 8.99 ± 0.17

2) Temporal Encoding Techniques: We further examine the
effectiveness of our temporal encoding techniques in DyToast
compared to other temporal encoding methods utilized for
trajectory data. Specifically, we replace the techniques as
described in Section IV-D with four alternative techniques
for incorporating time information, while keeping all other
components consistent. The details of these techniques are
listed as follows:

• T-Emb: it partitions the time into discrete 1-hour intervals
and represents each interval with a distinct embedding.
These embeddings are applied to all road segments, and
subsequently utilized as inputs to the traffic-enhanced
skip-gram module.

• Road-Emb: unlike T-Emb, it assigns discrete embed-
dings based on 1-hour time intervals to each road seg-
ment independently. In other words, every road segment
possesses its own set of time embeddings.

• T-Attention [55]: it employs a time interval-aware self-
attention mechanism by transforming these intervals into
bias terms in attention score calculation in Transformer.

• CPE [56]: it converts time intervals into kernels, which
are applied within convolution operations to incorporate
fine-grained temporal information. The results after con-
volution are utilized as inputs in Transformer.

The results of the traffic speed inference task against these
compared methods are shown in Table V, and similar results
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Fig. 4. Results of compared methods on road label classification task.

can be found on other tasks. From the results, we can make
the following observations. First, CPE shows the worst per-
formance, attributed to the misalignment between its original
application context in GPS trajectories and the map-matched
trajectories in our scenario. Second, despite the simplicity
of discrete time embeddings (T-Emb and Road-Emb), they
achieve performance improvements for the time-sensitive task.
This indicates the benefits of integrating temporal information.
While Road-Emb outperforms T-Emb, it also significantly
increases the parameter numbers compared to all other meth-
ods. Third, T-Attention generally produces the best results
among baselines, validating the effectiveness of enhancing the
self-attention mechanism with additional temporal knowledge
in trajectory data. Last, DyToast further advances the self-
attention mechanism by incorporating sinusoidal function,
exhibiting superior properties such as translation invariance,
strong inductive bias and the capacity for continuous temporal
modeling. Moreover, the learned parameters do not increase
with the number of frames increases. These features facilitate a
better capture of temporal dynamics, thereby surpassing these
baseline methods in performance.

3) Performance on Static Task: While temporal dynamics
are effectively captured in DyToast, it is worth investigating
how the associated module impacts the performance on static
tasks. To this end, we follow the experimental settings in [23]
and utilize the learned road segment representations as inputs
for the road type classification task. Specially, we employ a
logistic regression classifier and five-fold cross validation to
evaluate the performance of all the compared methods. For
evaluation metrics, we use Micro-F1 and Macro-F1 scores,
as adopted in prior studies [23], [26], [27]. For DyToast, we
calculate the average road segment representations across time
frames to serve as input for the classification task.

The results of the road type classification task are presented
in Figure 4, and several observations can be drawn. First, meth-
ods that incorporate trajectory data with sequential models,
namely JCLRNT and our proposed two methods, generally
achieve effective performance. This is because traveling se-
mantics in trajectory sequence inherently encode correlations
in representations for road segments with similar static fea-
tures. For example, trajectories tend to traverse coherent roads
(e.g., same road type) rather than switching frequently unless
necessary. Second, SARN achieves the best result among
GNN-based methods by a large margin. This can be attributed
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Fig. 5. Impact of hyperparamters on model performance.

to its contrastive learning paradigm, which explicitly generates
similar representations for road segments that share similar
spatial characteristics (e.g., shape), rather than relying solely
connectivity as in other methods, such as HRNR and GAT.
Third, while Toast outperforms other compared methods, the
inclusion of temporal dynamics does not necessarily enhance
the performance of the static task, where temporal information
is not critical. Instead, encoding temporal dynamics may
introduce additional noise, thereby negatively affecting the
model’s effectiveness on the static task. As a result, this
represents a key limitation of our proposed method, which
is discussed further at the end of this section.

4) Impact of Hyperparameters: We study the impacts of
various hyper-parameters on the model performance, including
embedding size, mask ratio in Transformer pre-training, and
the weight of auxiliary traffic context prediction objective. The
results for the traffic speed inference task are presented in
Fig. 5. We omit the results for other tasks since the patterns
are found to be similar.

Impact of embedding size. As illustrated in Fig. 5(a), an
increase in embedding size generally leads to improved per-
formance. However, when the embedding size exceeds 128,
the improvement becomes negligible, or even degrade on the
Chengdu dataset probably due to over-fitting issues. Thus, an
embedding size of 128 is set as the default value.

Impact of mask ratio. As illustrated in Fig. 5(b), increasing
the mask ratio during the Transformer pre-training with tra-
jectory data improves the performance. However, the benefits
of increasing the mask ratio becomes saturated after the mask
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Fig. 6. Illustration of two dimensions for the learned temporal encoding
functions.

ratio of 0.4, while accompanied by more computational cost.
Therefore, a mask ratio of 0.4 is chosen as the default setting.

Impact of auxiliary loss weight. As illustrated in Fig. 5(c),
selecting either excessively low or high weights for the traffic
context prediction objective exhibits negative effect on perfor-
mance. An optimal value is achieved at a weight of 1.0, which
is adopted in our experiments.

5) Analysis on Temporal Encoding Function: In addition to
the quantitative results presented in Section V-E2, we further
analyze the effects of the learned trigonometric function used
to encode the temporal dynamics in the proposed method. For
this analysis, we select four road segments with two distinct
dynamic speed characteristics. As shown in Fig. 6(a), r30
and r6 represent road segments which exhibit relatively stable
speeds throughout the day, and r20 and r103 represent road
segments which exhibit higher fluctuations, characterized by
lower speeds during the daytime and higher speeds at night.

The learned trigonometric functions for two dimensions are
depicted in Fig. 6(b). For r6 and r30, the functions demonstrate
minimal fluctuations or remain nearly constant, indicating that
these road segments experience limited variation over time for
the given dimensions. In contrast, r20 and r103 display more
pronounced amplitude variations, reflecting the greater tempo-
ral dynamics associated with these road segments. Moreover,
the frequencies of the learned functions are lower for r6 and
r30 compared to r20 and r103, aligning with the intuition that
functions with longer periodicity correspond to more moderate
temporal dynamics. This analysis demonstrates the ability of
the proposed method to effectively capture and differentiate
varying temporal patterns in road segments.

6) Case Study: We study how the evolution of road segment
representations over a day by visualizing r6 and r103, which
exhibit relatively stable speeds and higher fluctuations, respec-
tively (Fig. 6(a)) using t-SNE [57]. The results are presented

r6
r103
Start
End

Fig. 7. Visualization of two sampled dynamic road segment representations.

in Fig. 7.
We can observe that the representations of r6 form a

compact and localized cluster, suggesting relatively stable and
consistent dynamics that align with its speed characteristics
with minimal speed fluctuations. In contrast, the represen-
tations of r103 span a broader area with a more distributed
pattern, reflecting the higher variability and dynamic changes
inherent to this segment. Moreover, despite the observed
fluctuations of the road segment representations, the end repre-
sentations for both road segments are positioned close to their
start representations. This demonstrates the clear periodicity
in traffic speed patterns (i.e., daily traffic patterns tend to
repeat). This visualization exhibits strong interpretability of
our method, which effectively captures and distinguishes the
temporal dynamics of road segments.

Discussions. Through extensive experiments, we can identify
several insights into the strengths and limitations of our
proposed methods. Toast and DyToast introduce innovative
techniques to jointly capture traffic patterns and traveling
semantics on road networks, addressing the gaps in existing
studies. By combining context-aware skip-gram models and
Transformer-based trajectory modeling, the methods effec-
tively capture the unique characteristics of road networks.
Moreover, we propose to further integrate temporal dynamics
in DyToast through unified trigonometric functions, achiev-
ing superior performance across time-sensitive tasks such as
road speed inference, travel time estimation, and destination
prediction (Section V-D). Within the model, different compo-
nents demonstrate their meaningful contributions to the overall
performance. This reflects the well-considered design of each
module for encoding temporal dynamics (Section V-E1).
Furthermore, the proposed temporal encoding technique based
on unified trigonometric functions not only accommodates
varying time frame lengths without increasing space com-
plexity, but also outperforms alternative temporal encoding
approaches found in related works (Section V-E2). Apart
from these strengths, DyToast shows relative insensitivity
to hyperparameter settings, facilitating robust performance
without extensive tuning (Section V-E4). In addition, it
demonstrates good properties in modeling temporal dynamics
for evolving traffic patterns with interpretability, as illustrated
in the analysis of temporal encoding function and case study
(Section V-E5 & Section V-E6).
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Despite these significant strengths, the proposed methods
still possess limitations, which present opportunities for further
improvement. First, the reliance on extensive trajectory data
for modeling trajectory sequences and constructing transition
graphs poses challenges for data collection, particularly in un-
derdeveloped cities with limited urban sensing infrastructure.
Enhancing the methods to perform effectively in data-scarcity
settings is an important direction for future research. Second,
while encoding temporal dynamics enhances performance on
time-sensitive tasks, it reduces effectiveness on static tasks,
such as road label classification, which does not rely on
temporal information (Section V-E3). Therefore, we need
to utilize Toast and DyToast separately for static and time-
sensitive tasks for superior performance. Addressing such a
limitation also represents a promising direction for future
research.

VI. CONCLUSION

In this paper, we propose a novel framework, Toast, along
with its advanced version DyToast, designed to enhance the
integration of temporal dynamics for effective road network
representation learning. The methods are designed to learn
generic representations of both road segments trajectories,
supporting a wide range of downstream applications, partic-
ularly those sensitive to temporal variations. Specifically, our
framework is featured with two modules: a traffic-enhanced
skip-gram module to incorporate traffic contexts into the learn-
ing process, and a trajectory-enhanced Transformer module
to extract the travelling semantics encoded in trajectory data.
These modules are further augmented by a unified approach
based on trigonometric functions, enabling the capture of
temporal dynamics from both time-dependent transportation
graphs and trajectory data with fine-grained time interval
knowledge. Our experiments demonstrate that the proposed
framework consistently outperforms the state-of-the-art road
network representation methods on three different tasks within
dynamic settings.
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