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Disentangling Dynamics: Advanced, Scalable and
Explainable Imputation for Multivariate Time Series

Shuai Liu, Xiucheng Li, Yile Chen, Yue Jiang, Gao Cong

Abstract—Missing values pose a formidable obstacle in multi-
variate time series analysis. Existing imputation methods rely on
entangled representations that struggle to simultaneously capture
multiple orthogonal time-series patterns, leading to suboptimal
performance and limited interpretability. Meanwhile, requiring
the entire data span as input renders these models impractical
for long time series. To address these issues, we propose TIDER
and its enhanced version, AdaTIDER. TIDER employs low-rank
matrix factorization and disentangled temporal representations
to model intricate dynamics like trend, seasonality, and local
bias. However, TIDER is limited to single-period modeling and
does not explicitly capture dependencies between channels. To
overcome these limitations, AdaTIDER incorporates adaptive
cross-channel dependency modeling and multi-period seasonality
representations. These advancements enable it to dynamically
capture variable relationships and complex multi-period patterns,
significantly enhancing imputation accuracy and interpretability,
while maintaining TIDER’s scalability. Extensive experiments
on real-world datasets validate the superiority of our models in
imputation accuracy, scalability, interpretability, and robustness.

Index Terms—Time Series, Imputation, Disentangled Repre-
sentation, Matrix Factorization, Scalability, and Interpretability

I. INTRODUCTION

Recent progress in data acquisition and storage have resulted
in the accumulation of time series across diverse fields, in-
cluding traffic [1], healthcare [2], meteorology [3], and power
demand [4]. This abundance has led to the development of
numerous models [5]–[9]. However, as most models rely on
complete time series, they face challenges with missing values.
Therefore, they are susceptible to suboptimal performance
or outright failure when meeting missing values [10]–[12].
In practice, missing data frequently arises due to equipment
malfunctions, transmission errors, or high data collection costs.

Given these issues, multivariate time series imputation has
become a pivotal preliminary, as its quality directly impacts
the effectiveness of downstream tasks. Accurate imputation
restores original data’s temporal patterns, enabling reliable
analyses, while arbitrary imputation distorts inherent patterns,
leading to erroneous insights and degraded analytical perfor-
mance. Intuitively, multivariate time series can be represented
as an N × T matrix, where N is the number of channels,
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and T is the time span. This matrix-based representation
facilitates the exploration of cross-channel correlations (rows)
and temporal dynamics (columns) for imputation. Early im-
putation approaches [13]–[15] employed simplistic strategies
like aggregating observed entries across channels based on
estimated similarities or relying on local smoothness or linear
assumptions within the same channel. However, these meth-
ods have inherent limitations in capturing nonlinearities and
intricate correlations, resulting in suboptimal performance.

Recent years have witnessed a surge in deep learning-based
time series imputation [16]–[18]. These methods use RNNs
or Transformers to capture nonlinear dynamics. By mapping
input data to hidden state space and updating nonlinearly, such
models have achieved notable outcomes. Some methods fur-
ther incorporate multi-task loss [18], [19] or generative models
like GANs, VAEs, and diffusion models [16], [17], [20], [21]
to improve performance. Despite their success, these methods
rely on a single entangled representation, typically the hidden
state, to capture underlying dynamics. These approaches are
suboptimal for real-world multivariate time series, where dy-
namics often involve multiple independent factors like trend,
seasonality (periodicity), and local idiosyncrasies [22], [23].
Attempting to model these factors using a single entangled
representation can lead to suboptimal results, as such entangled
representation needs to compromise itself to explain multi-
ple orthogonal patterns (e.g., exogenous interventions versus
global patterns) simultaneously [24]. Another drawback is
their scalability, as they require the entire time span of time
series as input in each forward step, leading to computational
inefficiency for long time series [25]. Additionally, the hidden
states learned by these models represent complex entangled
combinations of various factors, which are difficult to extract
interpretable information to explain the imputation process.

To address these limitations, we propose Time-series
Imputation with Disentangled tEmporal Representations
(TIDER), as detailed in our prior ICLR publication [26].
It explicitly models time-series dynamics through a low-
rank matrix decomposition-based structure with distinct dis-
entangled representations to capture different components.
Specifically, TIDER introduces three distinct representations: a
trend representation for global patterns, a Fourier series-based
seasonality representation to incorporate periodic inductive
bias, and a local bias representation captures time step-specific
idiosyncrasies. This disentanglement provides TIDER with
great flexibility and robustness in modeling complex time-
series dynamics. However, TIDER has its limitations. It lacks
regularization for channel representations, where different
channels often exhibit inherent correlations [27]. Additionally,
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TIDER fails to capture multi-periodic patterns, as it merely
model a single predefined period’s seasonality pattern. As
highlighted in [22], [28] , many time series exhibit multiple
seasonal patterns, such as daily, weekly, and yearly cycles.

To address these issues, we present AdaTIDER (Adaptive
TIDER), an enhanced version of TIDER that achieves adaptive
learning across both temporal and cross-channel dimensions.
A key innovation is its fast Fourier transform-based approach
to adaptively capture multi-period seasonality features. Un-
like TIDER, which models periodic features under a single
pre-defined period, AdaTIDER incorporates several adaptive
single-period seasonality representations, each targeting a spe-
cific periodicity. This empowers AdaTIDER to effectively
impute time series with varying periodicities. Additionally,
AdaTIDER leverages an adaptive adjacency matrix to model
correlations between channels. By leveraging this matrix,
AdaTIDER generates more accurate and reasonable channel
representations. Specifically, each channel representation is
constructed by concatenating a residual and a non-residual
component. The residual component computes cross-channel
correlations, which are then utilized to regularize the non-
residual part. This design effectively mitigates the ’bootstrap-
ping’ issue, where correlations derived from channel informa-
tion are directly imposed back on the same channel, leading to
interference and weakening learning effectiveness [29], [30].
By incorporating correlation regularization from the residual
component, AdaTIDER enhances its ability to capture and
represent inter-channel relationships. While maintaining scal-
ability, AdaTIDER achieves higher imputation accuracy and
conveys richer semantic information. Comprehensive quanti-
tative and qualitative evaluations demonstrate the significant
performance of AdaTIDER in terms of imputation effective-
ness, scalability, and interpretability. Overall, the contributions
of this paper can be summarized as follows:

• We propose TIDER, a novel method which utilizes
effective and explainable disentangled representations to
capture complex time series dynamics. To the best of our
knowledge, TIDER is the first model to learn disentan-
gled representations for time series imputation.

• We introduce AdaTIDER as an improved version of
TIDER. It achieves greater temporal and cross-channel
adaptivity by learning multi-period seasonality represen-
tations and adaptive adjacency matrix, enabling more
accurate and interpretable imputation.

• Extensive experiments thoroughly evaluate TIDER’s and
AdaTIDER’s performance. The results demonstrate that
TIDER exhibits excellent performance in accuracy, scala-
bility, and interpretability. Moreover, AdaTIDER outper-
forms TIDER, showcasing its superiority and effective-
ness in imputing multivariate time series.

II. RELATED WORK

Early time series imputation methods use simple statistical
techniques, adapting inter-channel similarities and local tem-
poral smoothness. SimpleMean and SimpleMedian [31] use
averages and medians, MICE [32] applies chain equations,
and KNN [13] aggregates similar channels. These methods

overlook nonlinear dynamics and complex correlations across
channels, limiting their imputation performance.

Deep learning imputation models are recently used to
capture nonlinearity. RNN-based models excel at modeling
sequential data. BRITS [19] uses bidirectional RNNs, while
NAOMI [16] and GAIN [33] combine GAN and RNN. VAEs
also plays a significant role. PoGeVON [34] introduces a
position-aware graph-enhanced VAE to model spatial and tem-
poral dependencies. Meanwhile, diffusion models have gained
attention for conditional imputation. CSDI [17] employs
score-based diffusion models, while SADI [21] incorporates
similarity-aware diffusion. However, these methods rely on a
single entangled representation, limiting their ability to model
multiple temporal patterns like trends, seasonality, and local
fluctuations separately [22], [23]. Furthermore, they face scala-
bility challenges when applied to long time series, as they need
to process the entire length of time series in each forward step
to capture temporal dynamics [25]. Additionally, the learned
representations contain complex and entangled components,
making it challenging to extract explainable information. This
lack of interpretability hinders the understanding of imputation
process and underlying dynamics.

Fourier transform is widely used to capture periodic patterns
by decomposing data into distinct frequency components,
effectively identifying and reconstructing recurring patterns,
making it suitable for imputation [35], [36]. However, real-
world time series often exhibit more than periodic dynam-
ics. They frequently incorporate non-stationary behaviors like
trends and localized biases, which traditional Fourier methods
struggle to capture [22], [23]. As the classical Fourier trans-
form assumes stationarity and a single consistent periodicity,
its applicability is limited in complex, practical scenarios.

Many time series are composed of various periods [22].
To address the presence of multiple periodicities, various
approaches have been explored. MuSDRI [37] combines
seasonal-trend decomposition using Loess with RNNs to
address multiple seasonal patterns in its imputation framework.
TimesNet [38] transforms 1D time series into multiple
2D tensors, thereby capturing multi-period signals for
imputation in an end-to-end neural architecture. While these
methods effectively exploit multiple seasonal factors, they
primarily rely on deep learning backbones, which lack
explicit disentanglement of individual temporal components,
making interpretation more challenging. Additionally, these
deep learning models often require substantial computational
resources for long sequences, further limiting their scalability.

Our proposed TIDER and AdaTIDER aim to overcome
the above limitations by using a low-rank matrix factor-
ization (MF) framework [39]. Unlike deep learning based
methods—which typically encode entire sequences end-to-end
for imputation— MF-based models decompose the observed
time series into latent factors U and V. This decomposition
is particularly advantageous for long time series, where
RNN-based models suffer from vanishing gradients and
sequential dependencies, while Transformer-based models face
quadratic computational complexity with respect to sequence
length. Additionally, MF naturally allows for the integration
of explicit structural constraints to enhance interpretability,
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while deep learning methods tend to learn complex entangled
representations that lack explainability. However, these models
often overlook temporal continuity in time series. TRMF
[40] imposes autoregressive constraints on temporal factor V,
while LCR [41] introduces a Laplacian kernel for tempo-
ral regularization. Although these approaches capture some
temporal dependencies, they still rely on an entangled rep-
resentation to capture all dynamics, leading to similar issues
as encountered in deep learning-based methods. In contrast,
our models introduce multiple disentangled representations
with specialized constraints for different temporal components.
TIDER explicitly models key time-series dynamics like trend,
seasonality, and local bias through distinct representations.
However, TIDER lacks cross-channel constraints and captures
only one single pre-defined period’s seasonality. To overcome
this, AdaTIDER further fuses fast Fourier transform for
adaptive multi-period seasonality learning, enabling precise
decomposition of temporal patterns across varying periods.
Additionally, an adaptive adjacency matrix is employed for
cross-channel dependency modeling, further improving impu-
tation accuracy and interpretability.

III. PROBLEM STATEMENT

Given N univariate time series collected in T time steps, de-
noted as x1,x2, . . . ,xN ∈ RT , we organize them into a matrix
X ∈ RN×T , whose n-th row represents n-th univariate time
series xn (channel) and t-th column denotes all observations
at time step t. X is incomplete, with some entries missing.
We aim to infer missing values from the observed ones, and
we denote the mask matrix as M ∈ {0, 1}N×T , where

Mij =

{
1, if Xij is observed,
0, otherwise.

(1)

IV. TIME-SERIES IMPUTATION WITH DISENTANGLED
TEMPORAL REPRESENTATIONS

A. Method Overview

The core idea of TIDER is to decompose multivariate time
series matrix X into two latent factors U and V, where
U retains channel-specific features and V represents multi-
ple disentangled temporal components. This factorization, as
shown in Fig. 1, is motivated by two primary reasons: 1)
strong correlations among time series channels (rows of X), 2)
significant temporal variations across time steps (columns of
X). The benefits of this design are twofold: 1) cross-channel
correlations are decoupled as U only preserves channel-
specific features 2) temporal dynamics are isolated into V, and
it enables us to model the complex temporal dynamics with
multiple explainable disentangled representations. Inspired by
the principle that seasonality and trend can be treated as inde-
pendent factors in time-series generation under mild assump-
tions [22], and independence serves as a proxy criterion for
disentanglement [42], we enforce distinct constraints on differ-
ent representations to achieve disentanglement and introduce
specific inductive biases to capture semantically-independent
patterns. Specifically, we consider trend, seasonality, and bias,
represented by Vt, Vs, and Vb. Trend representation matrix
Vt ∈ RD×T captures gradual and smooth intrinsic trends,

= ×

Fig. 1: Architecture of TIDER. X is the time series matrix.
Vt,Vs, and Vb are trend, seasonality, and bias representation.

while seasonality representation matrix Vs ∈ RD×T reveals
periodic patterns. Vt and Vs jointly determine endogenous
dynamics. Bias representation matrix Vb ∈ RDU×T captures
time-specific variations, which are orthogonal to global dy-
namics but shared across channels. Hence, we interpret it as
a residual term matrix, i.e., X −U(Vt +Vs) ≈ 1N×Db

Vb.
Mathematically, we formulate the objective of TIDER as

min
Ua,V

∥(X−UaV)⊙M∥2 + λtft(Vt) + λbfb(Vb)

+ η1∥U∥2 + η2∥V∥2, (2)

Ua =
[
U 1

]
∈ RN×(D+DU ), (3)

V =

[
Vt +Vs

Vb

]
∈ R(D+DU )×T , (4)

where Ua is the augmented matrix of U ∈ RN×D, ft and
fb are corresponding constraint functions imposed on Vt and
Vb. η1∥U∥2, η2∥V∥2 are used to regularize the magnitude of
latent factors, and λt, λb, η1, η2 are corresponding weights for
each term. Once training is completed, we use the learned U
to get Ua, and the learnt Vt, Vs, and Vb to form V. Ua and
V are then used to generate the imputed time series X̃ as

X̃ij =

{
Xij , Mij = 1,

(UaV)ij , Mij = 0.
(5)

B. Trend Representation Matrix

Trend representation matrix Vt captures the intrinsic trend
of time series, whose evolution patterns change gradually and
smoothly. We impose a smoothness constraint on Vt as

ft(Vt) =

T∑
j=2

∥vj
t − vj−1

t ∥2, (6)

where vj
t is the j-th column of Vt. Eq. 6 encourages close

representations of two adjacent time steps, which will result in
a smooth change in data space. We only impose constraints on
two consecutive time steps to account for short-term patterns
whereas long-term patterns are explained by Vs. This is in
contrast with TRMF [40] which uses one temporal matrix to
account for both short-term and long-term patterns.

C. Seasonality Representation Matrix

Real-world time series often demonstrate seasonal patterns
[22]. Motivated by this, we model seasonality by parameter-
izing representation matrix Vs ∈ RD×T with Fourier basis.
We represent each row with a superposition of 2K sinusoidal
waves (K ≪ T ). Formally, let A, B ∈ RD×K be two
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×

Fig. 2: Architecture of AdaTIDER. Colors of the blocks are detailed in the main paragraph. (a) Main framework. (b) Adaptive
learning of the correlations between channels. (c) Multi-period seasonality representation matrix.

learnable coefficient matrices, and ϕsin, ϕcos ∈ RT×K be the
corresponding Fourier basis matrices, defining as

A =

 | | |
a1 a2 . . . aK
| | |

 , (7)

B =

 | | |
b1 b2 . . . bK

| | |

 , (8)

ϕsin =

 | | |
sin(1ωt) sin(2ωt) . . . sin(Kωt)

| | |

 , (9)

ϕcos =

 | | |
cos(1ωt) cos(2ωt) . . . cos(Kωt)

| | |

 ,

(10)

where t = [1, . . . , T ]⊤. For time-series with period P , ω is
calculated as 2π/P . Then Vs can be defined as

Vs = Aϕ⊤
sin +Bϕ⊤

cos. (11)

In other words, Vs is spanned by Fourier basis ϕsin and ϕcos.
The d-th row of Vs, denoted by (vd

s)
⊤, has the form

(vd
s)

⊤ =

K∑
k=1

Ad,k sin(kωt)
⊤ +

K∑
k=1

Bd,k cos(kωt)
⊤, (12)

which is a truncated Fourier series with coefficients Ad,k,
Bd,k. This elaborate design of Vs imparts meaningful pe-
riodic inductive bias, empowering TIDER to capture seasonal
patterns more accurately and effectively.

D. Bias Temporal Representation Matrix

Vt, Vs discussed so far jointly determine time-series dy-
namics driven by endogenous factors. However, there are
also various external factors (e.g., holidays, sudden accidents)
that affect real-world time series at specific time points and
influence all channels within short time periods. These external
factors are independent of endogenous dynamics captured by
Vt and Vs and cannot be represented by them. To address
these variations, inspired by the idea of user and item bias

in collaborative filtering [43], we propose bias representation
matrix Vb ∈ RDU×T , where the representation of a specific
time step is shared by all channels. Specifically, we impose a
short-term autoregressive constraint on Vb in temporal dimen-
sion as the impact of external factors usually lasts shortly. Let
vt
b be the t-th column of Vb and L be the event influencing

duration, we define the constraint function as follows,

fb(Vb) =

T∑
t=L+1

∥∥∥∥∥vt
b −

L∑
l=1

Wlv
t−l
b

∥∥∥∥∥
2

, (13)

where W = {Wl ∈ RDU×DU | l = 1 . . . L} is a group
of learnable parameters. In our setting, Db and L are small
numbers, thus group W only incurs very few extra parameters.

E. Adaptive Weight for Trend and Seasonality

In Sec. IV-A, we characterize the influence of endogenous
factors using additive form Vt+Vs, which assumes that trend
and seasonality contribute equally to endogenous dynamics.
However, in practice, their importance vary drastically across
data []. To introduce greater flexibility, we adopt a learnable
parameter α ∈ (0, 1) to adaptively adjust the contribution
of the two components., leading to a weighted additive form
αVt + (1− α)Vs. Eq. 4 then becomes:

V =

[
αVt + (1− α)Vs

Vb

]
. (14)

V. ADAPTIVE TIME-SERIES IMPUTATION WITH
DISENTANGLED TEMPORAL REPRESENTATIONS

A. Overview of the Model

As discussed in Sec. I, TIDER faces specific limitations. It
lacks explicit regularization for channel representations, which
are crucial for capturing inherent cross-channel correlations.
Additionally, its seasonality modeling is restricted to a single
predefined period, limiting its ability to handle datasets with
complex multi-periodic patterns commonly observed in reality.
To address these issues, we introduce AdaTIDER (Adaptive
TIDER), which builds upon TIDER and is more adaptive
in temporal and cross-channel dimensions. Key components
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in TIDER, like trend and bias temporal representation, are
retained due to their effectiveness in capturing temporal dy-
namics. AdaTIDER introduces tailored regularization to gain
better control over channel representations. Additionally, the
construction of seasonality representation matrix is enhanced
by adopting a flexible, multi-period framework. These adaptive
approaches allows AdaTIDER to effectively capture multiple
seasonality patterns, resulting in more accurate imputation.

Fig. 2 presents an overview of AdaTIDER. Original time
series X is divided into missing (white blocks) and observed
parts (red blocks). Purple blocks do not retain gradients
while blue and green blocks participate in gradient updates.
Similarly, AdaTIDER adopts a low-rank matrix factorization
framework to decompose X into Ua and Va. One key
advancement is an adaptive adjacency matrix for Laplacian
regularization on channel representations (Fig 2-(b)), which al-
lows channel features to incorporate both channel-specific pat-
terns and inter-channel relationships. Additionally, AdaTIDER
incorporates a multi-period seasonality representation (Fig 2-
(c)), which enables independent modeling of different period-
icities, allowing for a more comprehensive understanding of
various periodic factors. Formally, AdaTIDER’s objective is:

min
Ua,Va

∥(X−UaVa)⊙M∥2 + λtft(Vt) + λbfb(Vb)

+ λufu(U) + η1∥Ua∥2 + η2∥Va∥2,
(15)

Ua =
[
U 1 Ub

]
∈ RN×(D+DU+DT ), (16)

Va =

 αVt + (1− α)V̂s

Vb

1

 ∈ R(D+DU+DT )×T , (17)

where Vt, Vb, ft, fb, fu, η1∥Ua∥2, and η2∥Va∥2 are identical
to those in TIDER. The difference lies in V̂s, Ua and Ub,
representing the novel advancements of AdaTIDER, which
will be elaborated in subsequent sections. Upon the conclusion
of the training phase, we use the learned U and Ub to obtain
Ua, and the learnt Vt, Vs, and Vb to form Va. The generation
process of imputed time series X̃ is similar as Eq. 5.

B. Adaptive Cross-channel Correlation

In multivariate time series, different channels often ex-
hibit complex dependencies, and accurately modeling their
relationships is crucial for effective analysis. Previous ap-
proaches [44] rely on adjacency matrices based on spatial
proximity to approximate their dependencies. However, this
approach faces notable challenges because spatial relationships
are only defined in geographical contexts, making it unsuitable
for abstract spaces like financial market. Additionally, spatial
distance does not always reflect true correlations, as strongly
correlated time-series may be geographically distant, while
adjacent time-series may exhibit distinct patterns. [45], [46]
employ adaptive adjacency matrices computed from learned
representations. These matrices are then integrated into graph
neural networks. However, directly applying such adaptive
matrices risks a ”bootstrapping” issue, where using channel
representations to constrain themselves will weaken and dis-
tort regularization effect [29], [30]. AdaTIDER innovatively

addresses it by decomposing Ua into a residual term Ub and a
non-residual term U. U contains channel-specific information,
whereas Ub is used to impose regularization and produce the
adaptive adjacency matrix G as:

G = softmax(ReLU(UbU
⊤
b )), (18)

Ĝ = D−1/2GD−1/2, (19)

L̂ = D̂− Ĝ, (20)

fu(U) = tr(U⊤L̂U), (21)

where D, D̂ are degree matrices of G, Ĝ separately and the
operator tr denotes the matrix trace calculation operation. The
Laplacian regularization—Eq. 21—can be further expanded as

fu(U) = tr(U⊤L̂U) =

N∑
i=1

N∑
j=1

Gij∥u⊤
i − u⊤

j ∥22, (22)

where Gij is the ij-th element of G, and u⊤
i and u⊤

j are rows
of U. Gij aims to minimize the gap between nearby points
according to adjacency matrix G, so as to promote spatial
smoothness and penalize variations between nearby points.

The adaptive adjacency matrix G in AdaTIDER has dis-
tinct advantages over adjacency matrices derived solely from
spatial proximity, for G captures context-specific inter-channel
dependencies that may not be driven by physical proximity.
This adaptability enables the model to identify meaningful
relationships when spatial distance is not an accurate measure
of correlation. Furthermore, G is applicable to time-series
data without explicit spatial information. In such domains,
the learned adjacency matrix can be interpreted as capturing
correlations in a semantic space, reflecting latent interdepen-
dencies between channels. Overall, the adaptive adjacency
matrix offers AdaTIDER enhanced power and flexibility in
capturing inter-channel dependencies, making it applicable to
a wide range of data types, including both geographically
meaningful and non-geographical time series.

C. Adaptive Multi-period Seasonality Representation Matrix

In real-world time series, recurring patterns within specific
time intervals, known as seasonality, are commonly observed.
TIDER models this through Vs, but this approach is limited
to capturing periodicity of a single pre-specified period. In
practice, time series often exhibit multiple periodic patterns
simultaneously [22], [28]. For example, traffic flow data may
reflect daily and weekly patterns due to commuting activities,
while solar power generation data may show periodicities
influenced by seasonal changes and weather conditions. This
makes single-period modeling, as used in TIDER, insufficient.
To address this, AdaTIDER introduces an adaptive approach
to capture multiple inherent periods. Given time series X ∈
RN×T , we perform fast Fourier transform on each channel,
calculate the average amplitude of each frequency across all
these channels, and identify Q frequencies with the highest
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average amplitudes along with their corresponding periods.
Mathematically, this can be formatted as,

AMP = Mean(Amp(FFT(X))), (23)
{ω1, · · · , ωQ} = argTopQ

ω
(AMP), (24)

{p1, · · · , pQ} = {⌊ T
ω1

⌋, · · · , ⌊ T

ωQ
⌋}. (25)

For each period pi, corresponding Ai and Bi are learned,
resulting in a single-period seasonality matrix Vsi . These
single-period seasonality matrices are then summed to obtain
the multi-periods seasonality representation V̂s:

Vsi = Aiϕ
⊤
sini

+Biϕ
⊤
cosi , (26)

V̂s =
∑

i=1,··· ,Q
Vsi . (27)

D. Computational Complexity and Scalability Analysis

Training TIDER primarily involves O(NTD) matrix oper-
ations, with O(D(N + T )) parameters. Its structure supports
efficient parallelization and batching along channel dimen-
sion, ensuring scalability for large datasets. AdaTIDER fur-
ther incorporates adaptive adjacency matrix and multi-period
seasonality representation. The adjacency matrix results in
an additional complexity term of O(N(DT )

2), while multi-
period seasonality introduces another term of O(NQD). Since
DT and Q are significantly smaller than N and T , these
terms are negligible compared to the main complexity term.
Combining these factors, AdaTIDER’s total time complexity
becomes O(NTD +N(DT )

2 +NQD), which is asymptoti-
cally equivalent to O(NTD). Similarly, the space complexity
extends to O(D(N + T ) +DTN +QD), still dominated by
the original term O(D(N + T )). As a result, AdaTIDER
remains on the same complexity level as TIDER. In contrast,
RNN-based methods like BRITS sequentially update hidden
states, struggling to parallelize computations over long time
series, and thus exhibit significantly longer training times.
Diffusion-based methods like CSDI require multiple diffusion
and sampling steps, and rely on large neural networks to
capture complex distributions, resulting in substantial time and
resource consumption.

VI. EXPERIMENTS

We evaluate TIDER and AdaTIDER on imputation accu-
racy, scalability, interpretability, disentanglement, and stability.
Since TIDER and AdaTIDER demonstrate similar scalability
and stability, we present AdaTIDER’s results to represent both
in these aspects. However, in terms of interpretability and dis-
entanglement, AdaTIDER outperforms TIDER, as evidenced
by multiple case studies. The code of TIDER and AdaTIDER
is available at https://github.com/liuwj2000/TIDER.

A. Experimental Setup

Baseline Methods We select statistical models like Sim-
pleMean [14], KNN [13], and MICE [47], MF-based
methods like MF [48], MF+L2 [48], SoftImpute [49],
LCR [50], and TRMF [40], and deep learning approaches

including BRITS [19], GAIN [33], NAOMI [16], Sin-
gleRes [16], SAITS [51], CSDI [17],TimeCIB [52],
SADI [21], PoGeVON [34], PITC [53], MTSCI [54], and
TimesNet [38]. We also introduced a variant of TIDER called
TIDER (no W), which excludes the learnable parameter α,
allowing us to assess the effectiveness of this weight.
Datasets We use three real-world datasets, representing differ-
ent scenarios: small, large, and long time series. These datasets
enable us to demonstrate the robustness and effectiveness of
our models across diverse conditions. Details are as follows:

• Guangzhou 1. It consists of traffic speed measured every
10 minutes from 214 anonymous urban road segments
in Guangzhou, China. We select the last 5000 minutes,
resulting in a time series matrix of size 214× 500.

• Solar-Energy 2. It comprises records of solar power pro-
duction sampled every 10 minutes from 137 PV plants in
Alabama, USA, resulting in a matrix of size 137×52560.

• Westminster3 It includes hourly averaged speed measure-
ments of road segments in Westminster, collected by Uber
Movement in January 2020, with a size of 7489× 744.

Metrics We adopt Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), and Mean Absolute Percentage Error
(MAPE) for evaluation.
Training Setup Data is randomly split into training, valida-
tion, and testing sets. Given a missing rate r, the ratio of
training/validation/testing is (0.9 − r)/0.1/r. Each model is
evaluated over 7 rounds on each dataset, with the imputed
results averaged across these runs. All experiments are con-
ducted on a Linux workstation with a 32GB Tesla V100 GPU.

B. Imputation Accuracy Comparison

Tab. I and II display the imputation accuracy with varying
missing rates r. ”OOM” refers to Out Of Memory. Deep-
learning methods generally outperform other baseline meth-
ods. Our methods surpass all baseline methods, demonstrating
their effectiveness in accurate imputation. A notable advantage
of our models is their superiority in the solar-energy dataset,
with a long time span of 52560. Many deep learning methods
encounter OOM errors when executed on a 32GB GPU. In
contrast, our models remain applicable and achieves better
imputation performance. This can be attributed to their ability
to disentangle multiple factors, allowing the representations to
capture and leverage underlying patterns and dependencies.

All MF-based models are well-suited for long time series.
Their main difference lies in their constraints imposed on
U and V. LCR stands out among MF-based baselines as it
utilizes Laplacian convolutional representations to incorporate
spatial relationships into imputation process. However, LCR
does not explicitly model temporal dynamics, which limits
its ability to capture temporal patterns. In contrast, TIDER
employs disentangled features such as trend, seasonality, and
local bias to reconstruct temporal patterns. This approach

1https://zenodo.org/record/1205229
2https://www.nrel.gov/grid/solar-power-data.html
3This dataset is no longer open to public.
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Fig. 3: Different methods’ memory usage with with log-
arithmic scaling on y-axis: (a) varied N and fixed T on
Westminster; (b) varied T and fixed N on the Solar-Energy.

Fig. 4: (a) Average running time for 100 epochs on a 100×100
matrix. (b) Total training time on Westminster-Central.

leverages explanatory factors, resulting in significantly im-
proved imputation results. Furthermore, TIDER performs bet-
ter than TIDER (no W), validating that trend and seasonality
components may not contribute equally to global dynamics.
AdaTIDER, which further considers adaptive cross-channel
correlations and adaptive multi-period seasonality patterns,
outperforms TIDER in most cases. However, there is an
exception in the Westminster dataset with missing rate of
0.2. AdaTIDER performs slightly worse than TIDER, and
its performance is also worse than that in the same dataset
with a larger missing rate. We hypothesize that this may be
due to a combination of factors, including an extremely large
number of channels (N ), a small missing rate (r), and a short
time span (T ). With such factors combined, AdaTIDER may
inadvertently learn many outliers and suspicious cross-channel
correlations, leading to overfitting. Furthermore, the small time
span of the Westminster dataset may also limit AdaTIDER’s
ability to effectively capture recurrent patterns within the time
series, such as the weekly pattern in this traffic dataset.

To validate our hypothesis, we conduct an experiment on
modified version of Westminster dataset, named Westminster-
Central. We select a subset of road segments (as shown
in Fig. 5) and the time length is extended to six months,
resulting in a matrix of size 284 × 4273. Imputation results
in Tab. III, confirm our hypothesis: as number of channels
decreases and time span increases, AdaTIDER mitigates the
overfitting issues. Fewer channels alleviate the impact of
suspicious cross-channel correlations, while a longer time
span helps to better capture recurrent patterns. Furthermore,
most methods’ performance declined. This is because fewer
channels limit the inter-variable interaction information, while
an extended time span introduces greater complexity into time
series dynamics. These factors make the imputation task more
challenging, causing most methods to struggle. AdaTIDER
still outperforms all other methods. This can be attributed
to its flexible dynamic disentanglement framework, which
effectively models trends, periodicity, and local deviations,
enabling AdaTIDER to maintain robust performance even
when faced with fewer channels and longer time spans.

C. Scalability Analysis

We evaluate the scalability of different methods in memory
usage and training time. Fig. 3-(a) and 3-(b) present memory
footprints against number of channels (N ) and time span (T ).
As shown in Fig. 3-(a), NAOMI, SingleRes, and BRITS
exhibit rapid memory growth. In contrast, AdaTIDER requires
substantially less memory. Similarly, Fig. 3-(b) illustrates that
NAOMI, SingleRes, and SAITS experience fast memory
growth. Once again, AdaTIDER requires the lowest memory.
Notably, in Fig. 3(a), CSDI’s memory usage is slightly higher
than AdaTIDER’s, while in Fig. 3(b), BRITS’ memory usage
lies slightly above AdaTIDER’s. Fig. 4(a) further shows the
running time of different methods when processing a 100 ×
100 matrix over 100 epochs, while Fig. 4(b) presents their
total training time on Westminster-Central dataset. The results
clearly show AdaTIDER’s superior efficiency.

D. Ablation Analysis for Temporal Disentanglements

To assess the effectiveness of disentangled temporal rep-
resentations in AdaTIDER, we conduct an ablation study
on the Guangzhou dataset, where we remove each repre-
sentation matrix individually while retaining the remaining
parts. Additionally, we compare the imputation results of
using Vs with using V̂s. The ablative results are presented
in Tab. IV. We observe a decrease in performance when any
representation matrix is removed. This demonstrates that each
representation plays a crucial role. Among these components,
Vt is the most critical, with its removal causing the largest
decline in RMSE, MAE, and MAPE metrics. This highlights
its importance in capturing long-term temporal dynamics and
ensuring stable imputation. V̂s also demonstrates significant
importance. Replacing Vs with V̂s consistently improves the
model’s performance, showcasing its ability to model complex
and adaptive periodic patterns. Lastly, Vb contributes to the
model’s robustness by capturing short-term fluctuations.

E. Ablation Analysis for Adaptive Adjacency Matrix Modules

To assess the effectiveness of each computational module in
calculating the adaptive adjacency matrix, we compare differ-
ent variations of AdaTIDER to evaluate their performance in
imputing missing values. The variations we explored include:

• Geo-Ada. It obtains the adjacency matrix based on the
geographical adjacency of road segments.

• No-Ub. No-Ub directly uses U to calculate adaptive
adjacency matrix and constrains Ua itself using this
adaptive adjacency. There is no Ub in this case.

Tab V reveals that none of the variations can match the per-
formance of AdaTIDER. There are clear reasons behind this
observation. When using geographical adjacency, the model is
forced to use inappropriate connections while ignoring hidden
correlations that are essential for accurate imputation. On the
other hand, No-Ub suffers from the “bootstrapping” problem,
where channels rely on their own information to constrain
themselves, leading to self-referential constraints that may not
be optimal for regularization. As a result, the model may
not effectively capture true underlying relationships between
channels, thus affecting the imputation performance.
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TABLE I: Imputation accuracy of different methods with missing rate r = 0.2

Method Guangzhou Solar-energy Westminster
(r = 0.2) RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

SimpleMean 10.24 8.023 0.396 3.352 2.433 4.527 5.233 4.247 0.410
KNN 6.540 4.731 0.242 2.701 1.748 2.324 2.249 1.611 0.147
MF 5.642 4.301 0.188 3.769 2.447 4.243 2.275 1.641 0.137

MF+L2 5.400 4.074 0.177 2.761 1.918 2.760 2.109 1.523 0.134
SoftImpute 5.876 4.465 0.217 2.692 1.903 3.051 2.347 1.645 0.141

MICE 5.097 3.859 0.161 2.647 1.763 2.372 2.638 2.014 0.169
TRMF 4.563 3.407 0.148 3.212 2.010 2.937 1.903 1.370 0.119
BRITS 4.416 3.003 0.139 2.617 1.861 2.677 2.154 1.488 0.136
GAIN 4.976 3.451 0.154 2.803 1.917 2.501 1.947 1.403 0.121
SAITS 4.407 3.025 0.140 OOM OOM OOM 1.893 1.366 0.119
CSDI 4.301 2.991 0.135 OOM OOM OOM 1.886 1.361 0.116

TimeCIB 4.698 3.371 0.152 OOM OOM OOM 1.891 1.357 0.123
SADI 4.933 3.394 0.155 OOM OOM OOM 2.062 1.447 0.129

PoGeVON 3.854 2.765 0.117 1.608 1.005 2.292 OOM OOM OOM
PITC 5.262 4.297 0.188 OOM OOM OOM 2.207 1.822 0.177
LCR 4.601 3.458 0.136 1.837 1.189 2.382 2.070 1.581 0.176

MTSCI 3.739 2.693 0.114 OOM OOM OOM 1.943 1.392 0.117
NAOMI 5.173 4.013 0.167 OOM OOM OOM OOM OOM OOM

SingleRes 4.997 3.979 0.172 OOM OOM OOM OOM OOM OOM
TimesNet 5.211 3.620 0.139 1.514 0.753 2.193 2.036 1.475 0.139

TIDER (no W) 4.431 3.229 0.142 1.872 0.893 2.522 1.981 1.426 0.127
TIDER 4.168 3.098 0.132 1.676 0.874 2.227 1.867 1.354 0.115

AdaTIDER 3.553 2.586 0.106 1.029 0.515 2.096 1.885 1.361 0.114
Improvement(%) 4.975 3.973 7.018 32.03 31.61 4.423 3.911 2.730 2.564

TABLE II: Imputation accuracy of different methods with missing rate r = 0.4

Method Guangzhou Solar-energy Westminster
(r = 0.4) RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

SimpleMean 9.949 7.901 0.384 3.259 2.412 4.889 5.243 4.259 0.407
KNN 6.712 4.955 0.252 2.724 1.835 2.874 2.391 1.714 0.159
MF 7.671 5.844 0.246 4.111 2.887 5.851 2.476 1.807 0.153

MF+L2 7.324 5.553 0.235 2.617 1.80 2.977 2.157 1.593 0.134
SoftImpute 5.811 4.465 0.209 2.536 1.849 3.311 2.333 1.637 0.145

MICE 7.119 5.417 0.235 2.756 1.823 3.517 2.755 2.113 0.175
TRMF 6.119 4.617 0.198 3.407 2.199 3.586 2.014 1.453 0.126
BRITS 4.874 3.335 0.158 2.842 1.985 3.146 2.180 1.527 0.138
GAIN 5.550 3.671 0.192 2.639 1.883 3.117 2.337 1.711 0.145
SAITS 4.839 3.391 0.159 OOM OOM OOM 1.998 1.453 0.129
CSDI 4.813 3.202 0.157 OOM OOM OOM 1.982 1.437 0.124

TimeCIB 4.927 3.399 0.162 OOM OOM OOM 1.993 1.472 0.135
SADI 5.001 3.414 0.160 OOM OOM OOM 2.062 1.447 0.129

PoGeVON 4.158 2.907 0.137 1.898 1.029 2.421 OOM OOM OOM
PITC 6.892 4.976 0.203 OOM OOM OOM 2.512 2.013 0.163
LCR 4.923 3.724 0.139 1.916 1.272 2.805 2.162 1.697 0.183

MTSCI 4.528 3.336 0.133 OOM OOM OOM 1.924 1.403 0.119
NAOMI 5.986 4.543 0.222 OOM OOM OOM OOM OOM OOM

SingleRes 6.051 4.705 0.252 OOM OOM OOM OOM OOM OOM
TimesNet 5.528 3.926 0.148 1.998 1.052 2.956 2.115 1.608 0.143

TIDER (no W) 4.708 3.469 0.155 1.697 0.878 3.152 2.013 1.466 0.125
TIDER 4.764 3.527 0.152 1.679 0.838 2.735 1.959 1.422 0.121

AdaTIDER 3.996 2.880 0.122 1.050 0.522 2.071 1.717 1.247 0.107
Improvement(%) 3.896 0.929 8.271 44.68 97.12 14.46 10.76 11.12 10.08

TABLE III: Imputation accuracy of different methods for Westminster-Central

Method Westminster-Central (r = 0.2) Westminster-Central (r = 0.4)
RMSE MAE MAPE RMSE MAE MAPE

TRMF 2.485 1.802 0.146 2.681 1.907 0.155
BRITS 2.743 2.045 0.133 3.215 2.378 0.134
SAITS OOM OOM OOM OOM OOM OOM
CSDI 2.180 1.571 0.129 2.194 1.603 0.133

TimeCIB 2.093 1.547 0.124 2.117 1.552 0.133
SADI 2.266 1.639 0.130 2.512 1.704 0.141

PoGeVON 2.032 1.432 0.122 2.175 1.542 0.128
PITC 2.607 2.092 0.186 2.864 2.344 0.197
LCR 2.109 1.627 0.185 2.233 1 709 0.188

MTSCI 2.091 1.542 0.124 2.168 1.597 0.133
TimesNet 2.393 1.568 0.147 2.323 1.563 0.168
TIDER 2.173 1.567 0.128 2.159 1.600 0.131

AdaTIDER 1.953 1.419 0.116 2.038 1.488 0.122
Improvement(%) 3.887 0.908 4.918 3.731 3.502 4.688
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TABLE IV: Ablation Analysis for temporal components of
AdaTIDER on Guangzhou dataset (r = 0.2).

Name RMSE MAE MAPE
Vt +Vb 3.616 2.652 0.114
V̂s +Vb 4.405 3.279 0.143
Vs +Vb 6.963 5.281 0.250
Vt + V̂s 3.804 2.805 0.116
Vt +Vs 3.900 2.848 0.118
TIDER 4.168 3.098 0.132

AdaTIDER 3.553 2.586 0.106

TABLE V: Ablation Analysis for channel-correlation compo-
nents of AdaTIDER on Westminster-Central dataset (r = 0.2).

Name RMSE MAE MAPE
Geo-Ada 2.098 1.542 0.129
no-Ur 2.045 1.505 0.123

AdaTIDER 1.953 1.419 0.116

F. Case Study of Adaptive adjacency matrix

We visualize the adjacency matrix learned by AdaTIDER
on Westminster-Central dataset. Specifically, we select a road
segment colored in blue (Fig. 5). By applying suitable thresh-
olds, we identify other related road segments based on their
association strengths, represented in red and black. The results
reveal that spatial adjacency plays a crucial role, as nearby
segments (Rd1–Rd5, Bk1) show strong correlations, indicating
likely traffic flow interactions with the blue segment. However,
spatial proximity does not guarantee strong associations, as Y1
lacks a clear connection. Interestingly, distant segments like
Rd6 and Rd8 exhibit notable associations despite their spatial
separation. These correlations likely arise from shared func-
tional roles, such as being part of bus routes or having traffic
dependencies along upstream and downstream segments.

Fig. 6 further contrasts the geographical adjacency matrix
(Fig. 6(a)) with the adaptive adjacency matrix (Fig. 6(b)).
Due to the large number of road segments, we focus on the
segments highlighted in Fig. 5. The geographical adjacency
matrix reflects direct spatial connections based on physical
proximity. However, it overlooks complex dynamic interac-
tions. In contrast, AdaTIDER’s adaptive adjacency matrix
reveals a broader range of associations, capturing both explicit
spatial adjacency and implicit relationships.

Fig. 5: Visualization of the learned adaptive adjacency matrix.

Fig. 6: Comparison of different adjacency matrices for road
segments in Fig. 5. (a) Geographical adjacency matrix(b)
Adaptive adjacency matrix learned by AdaTIDER.

(Ⅰ)

(Ⅱ)

(Ⅲ)

(Ⅳ)

(Ⅴ)

(a) (b)

Fig. 7: Disentanglement validation on synthetic dataset. I is
the raw time series. II and IV show trend and seasonality
components learned. III and V depict the ground-truth trend
and seasonality components from the raw time series.

G. Case Studies of Temporal Disentanglement

We demonstrate the disentanglement and interpretability of
AdaTIDER’s learned temporal representations through syn-
thetic time series. Two sets of time series are created: one
with the same trend but different seasonality, and another
with the same seasonality but different trend. Fig. 7 visualizes
the ground-truth factors alongside the corresponding learned

Fig. 8: Disentanglement comparison between TIDER and
AdaTIDER. (a) is the raw time series. (b) shows the different
trends. (c),(d), and (e) are seasonality components.
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Fig. 9: Learned Temporal components of AdaTIDER from
Westminster-Central. (a) Raw Data, (b)Learned trend, (c)–(g)
Learned Seasonality, (h) Learned local Bias.

Fig. 10: Failure case study of AdaTIDER from a randomly-
created time series. (a) Raw Data and learned time series. (b)
Learned trend. (c)–(d) Learned Seasonality. (e)–(f) Local Bias.

representations. It’s clear that the learned representations
closely match the ground-truth factors. This validates the
interpretability and disentanglement of AdaTIDER.

AdaTIDER’s superiority over TIDER is evident in Fig. 8. In
multi-period scenarios, AdaTIDER effectively separate trend
from seasonality and disentangle multiple periodic patterns.
It closely aligns with the true trend (Fig. 8 (b)) and captures
multiple periodic patterns (Fig. 8 (c), (d)). In contrast, TIDER
is limited to single-period modeling, failing to capture multi-
frequency periodic patterns or disentangle trend and periodic-
ity. It may even misattribute parts of the seasonality as trends.

Fig. 9 visualizes the temporal components AdaTIDER
learned. To show its robustness, Q is set to 5, larger
than the actual number of periods. The results reveal that
AdaTIDER successfully captures major periodic patterns,
including weekly (168), daily (24), and short-term fluctuations
(8), while the amplitudes of the fourth and fifth components is
minimal. This underscores AdaTIDER’s ability to adaptively
identify and disentangle meaningful temporal features.

For completeness, we explore a failure case where
AdaTIDER is applied to a time series without trend and
seasonality (Fig 10). Although most real-world time series
contain trends and periodicity [22], [28], certain datasets, such
as financial or stock market data, may lack such patterns.
Using a randomly initialized time series without trends and
periodic features, we find that AdaTIDER struggles to extract

Fig. 11: Maximal Information Coefficient (MIC) matrix for
time series factors and representations AdaTIDER has learnt.

meaningful components, resulting in significant deviations in
the decomposed trend and seasonality terms. Addressing the
imputation of such datasets remains an open challenge.

H. Quantitative Evaluation of Temporal Disentanglements

To evaluate AdaTIDER’s disentanglement, we employed
Maximal Information Coefficient (MIC) to measure relation-
ships between original time series factors and representations
learned by AdaTIDER. MIC is a non-parametric measure that
captures both linear and nonlinear associations without assum-
ing a specific functional form. A higher MIC value signifies a
stronger association. Formally, MIC can be computed as:

MIC[x; y] = max
|X||Y |<B

I[x; y]

log2(min(|X|, |Y |))
, (28)

where x and y are two variables. |X| and |Y | represent the
number of grids in x-axis and y-axis, and B is a predefined
threshold that limits the number of grids. I[x; y] is the mutual
information between x and y. We employ the same time
series as in Fig. 8. MIC values are computed between factors
and representations, and the results are organized into a 3×3
matrix, as visualized in Fig. 11. It’s observed that MIC between
trend factor and trend representation, as well as between
the two seasonality factors and their respective seasonality
representations, exhibit substantial values. Conversely, MIC
between different types of factors and representations show
small values. This suggests that AdaTIDER effectively disen-
tangles the learned components, as evidenced by the strong as-
sociations between factors and corresponding representations.

I. Hyperparameter Sensitivity

We assess the impact of key hyperparameters (D, DT ,
DU , Q) on AdaTIDER using Guangzhou dataset, as shown
in Fig. 12. AdaTIDER maintains stable performance across
various hyperparameter settings, attributed to its model de-
sign, including an adaptive adjacency matrix and disentangled
temporal representations. Additionally, AdaTIDER employs a
feature separation mechanism, enabling independent modeling
of different time-series components, including periodicity,
trends, and local biases. This design mitigates the impact of
individual hyper-parameters on overall model performance.

Specifically, Q has small impact within a reasonable range.
Even if Q slightly exceeds the actual number of periodic
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Fig. 12: Performance of AdaTIDER against different hyper-
parameters.

patterns, the parameters associated with these extra periods (A
and B) will converge toward zero, minimizing their influence
(as Fig 9(f), (g) shows). However, setting Q excessively
high (e.g., above 20 in Guangzhou) may cause these small-
amplitude periodic components to accumulate, reducing im-
putation accuracy. Similarly, D traditionally plays a critical
role, but its impact in AdaTIDER is mitigated by the disen-
tangled modeling of features. Variations in D show limited
influence on the model’s performance as other mechanisms
adaptively capture the essential dynamics. These findings high-
light AdaTIDER’s robustness to hyperparameter variations,
providing reliable performance while minimizing the burden of
hyperparameter selection. In practice, we recommend setting
hyperparameters as follows. Starting with a small Q (e.g., 2
or 3) and gradually increasing it until no further performance
improvement is observed, while D depends on the dataset’s
complexity. We suggest using D = 50 for simpler datasets and
gradually increasing it to 100 for more complex scenarios.

VII. CONCLUSION

In this paper, we introduce two innovative multivariate time
series imputation methods, TIDER and AdaTIDER, which
are the first models to leverage low-rank matrix factoriza-
tion with semantically meaningful disentangled representa-
tions to account for various factors influencing time series.
TIDER employs neighboring-smoothness, Fourier basis-based
periodicity, and time bias representations to explain trend,
capture periodic patterns, and identify external factors, re-
spectively. AdaTIDER builds upon TIDER by incorporat-
ing adaptive cross-channel correlations and adaptive multi-
period seasonality matrix, leading to improved effectiveness
in capturing hidden characteristics and enhanced imputation
accuracy. Experimental results demonstrate the superiority
of TIDER and AdaTIDER in terms of imputation accu-
racy, scalability, explainability, and robustness, especially in
handling long time series. However, in scenarios where the
underlying data lack distinct trends or seasonal patterns, the
trend and seasonality modules fail to extract meaningful
structures, leading to imputation performance degradation.
Our failure case experiment (Fig 10) empirically illustrates
this phenomenon. Consequently, TIDER and AdaTIDER are
better suited for time series with trends and seasonal patterns,

such as traffic flow, meteorological, and energy-consumption
data. Moving forward, an open research challenge lies in
developing specific flexible feature representations within a
disentangled framework to handle time series without clear
trends or seasonality, such as those in finance and economics.
Additionally, we propose other potential future research di-
rections, including applying TIDER and AdaTIDER to other
time-series analysis tasks, accommodating tensor-shaped time
series, exploring their applicability in blackout time series
imputation, and integrating contrastive learning to further
enhance their capabilities and performance. By addressing
these directions, we can advance the field of multivariate time
series analysis and imputation, enhancing the applicability and
effectiveness of TIDER and AdaTIDER.
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