This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3056502, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XX XX 1

Learning Dynamics and Heterogeneity of
Spatial-Temporal Graph Data for Traffic
Forecasting

Shengnan Guo, Youfang Lin, Huaiyu Wan, Xiucheng Li, Gao Cong

Abstract—Accurate traffic forecasting is critical in improving safety, stability, and efficiency of intelligent transportation systems.
Despite years of studies, accurate traffic prediction still faces the following challenges, including modeling the dynamics of traffic data
along both temporal and spatial dimensions, and capturing the periodicity and the spatial heterogeneity of traffic data, and the problem
is more difficult for long-term forecast. In this paper, we propose an Attention based Spatial-Temporal Graph Neural Network
(ASTGNN) for traffic forecasting. Specifically, in the temporal dimension, we design a novel self-attention mechanism that is capable of
utilizing the local context, which is specialized for numerical sequence representation transformation. It enables our prediction model to
capture the temporal dynamics of traffic data and to enjoy global receptive fields that is beneficial for long-term forecast. In the spatial
dimension, we develop a dynamic graph convolution module, employing self-attention to capture the spatial correlations in a dynamic

manner. Furthermore, we explicitly model the periodicity and capture the spatial heterogeneity through embedding modules.
Experiments on five real-world traffic flow datasets demonstrate that ASTGNN outperforms the state-of-the-art baselines.

Index Terms—Traffic forecasting, spatial-temporal graph data, self-attention, graph convolution.

1 INTRODUCTION

ECENTLY, many countries have been committed to de-
Rveloping the Intelligent Transportation System (ITS) as
part of the efforts of smart city. As an indispensable part
of ITS, traffic forecast provides essential input to optimize
the schedule of transportation resources, and helps people
to better schedule their daily trips. Due to its great practical
value, many efforts have been made towards an accurate
and long-term traffic forecast for the past years.

Traffic data is a type of time-series data consecutively
recorded with a fixed time duration by the deployed sen-
sors. Therefore, it is natural to adapt the classic time series
analysis models for the traffic forecasting problem in the ear-
lier days, and the representatives include Auto-Regressive
Integrated Moving Average (ARIMA) [1], and Vector Auto-
Regressive (VAR) [2]. Such methods are based on the linear
dependency assumption about the dynamics of time series
data. Not surprisingly, they do not perform well in practice
since the evolution of traffic data is often complex and
nonlinear. To relax the linear assumption, traditional ma-
chine learning-based models such as SVR [3] and KNN [4]
are adopted. These models deliver better results than the
linear models, but their performance heavily relies on the
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handcrafted features, which is labor-intensive to extract. To
sidestep this, increasing research efforts have been made
in developing deep neural networks-based methods for
the traffic forecasting problem recently. A widely adopted
frame for traffic forecast is Spatial-Temporal Graph Neural
Networks (STGNNSs) [5], in which each node represents
a traffic monitor station and the edges are indicated by
the road networks. STGNNs combines a graph convolution
block operating over the spatial dimension with a forward
computation function modeling the dynamics across the
temporal dimension. Depending on the choice of forward
computation function, the STGNNs-based methods can be
divided into two categories, RNNs-based approaches [6],
[7], [8] and CNNs-based approaches [9], [10], [11], [12]. In
comparison to the traditional machine learning methods,
they are able to achieve better performance without relying
on the intervention of human. Despite these achievements,
the challenges still remain for an accurate and long-period
traffic prediction.

First, it is still challenging to effectively model the
dynamics of traffic data along both temporal and spatial
dimension. Generally speaking, the concept dynamics is
usually associated with a physical quantity that changes
over time, and the dynamics describes how the quantity
evolves in time [13]. In our case, the physical quantity is
the traffic observation of interest made at each monitoring
station. Denoting it by x(¢), the dynamics of x(t) is then
a black box function f(¢) that determines how x(¢) will
change over time step t, i.e., we have a differential equation
42 = f(t) describing the evolution of z(t). Given the
dynamics and current value x (), we can predict its value
at any future time ¢; with z(t;) = z(to) + ft‘i)l f(¢)dt. The
key part of traffic forecast is mostly about how to model
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this black box function or the dynamics f. The linear auto-
regressive methods choose to model the dynamics with
a linear function, z(t) = ;" w;z(t — i) + b, in which
the dynamics is completely determined by the parameter
wi,...,w, and b. It is worthwhile noting two points: 1)
the dynamics is linear; 2) the dynamics is invariant to the
shift of time step. In other words, the dynamics does not
depend on the inputs z(t — i),¢ € {0,...,n}. This two
points greatly limit the flexibility of the model. Recurrent
Neural Nets (RNNs) models the dynamics by maintaining a
context-vector h;, a summary of past observations, which is
recursively updated as h; = c(Wph,_; + W z(t)) with
a nonlinear activation function o. RNNs relax the linear
limitation, but the dynamics is still invariant to the time
shift since the parameters W}, W, do not depend on inputs
x(t—1),7 € {0,...,n} either. The same problem remains for
Convolutional Neural Nets (CNNs) as their convolutional
kernels are also invariant to the inputs.

So far we only consider modeling the dynamics along
the temporal dimension for each individual traffic monitor
station. However, the traffic congestion usually propagates
from one road link to its neighboring streets. This implies
that the evolution of observations made at a station is
often correlated not only with the past history of itself
but also with those of its neighboring stations. To model
the spatial correlations, the de facto strategy is to perform
the graph convolution over the graph induced by the road
networks [6], [7], [8], [9], [12], whose structure is static. In
other words, the existing methods all consider the spatial
correlations to be constant, which might not hold in practice.

Second, the existing methods still struggle in making an
accurate long-term forecast. As aforementioned, the existing
deep learning approaches depend either on RNNs or CNNs
to model the dynamics for the forward computation. It is
widely known in the literature that RNNs tend to suffer
from the gradient vanishing issues, especially in the long
sequence modeling tasks [14]. On the other hand, the CNNs
make forward computation in the sequential modeling by
performing 1D convolution over the consecutive symbols
with a sliding window [15]. It is also very hard for them to
capture the long distance dependencies given the limited re-
ceptive fields imposed by the convolution kernels. Temporal
Convolutional Network (TCN) [16], [17] as a special kind of
1D CNN is a generic architecture for sequence prediction.
To capture long-term patterns, TCNs employ dilated convo-
lutions to enable an exponentially large receptive field [18].
But it still requires a stack of several convolutional layers to
connect any two positions in the sequence, which weaken
its ability to learn the long-term dependencies [19], [20].
Therefore, the performance of existing approaches usually
drops dramatically as the forecasting interval grows.

In addition, modeling the periodicity efficiently in long
traffic sequence data and considering the spatial hetero-
geneity without detailed information about spatial regions
still deserve more attention. Traffic data is generated by the
human beings daily activities and reveals itself with clear
periodic patterns. Figure 1-(1) shows the traffic flow of a
detector, which repeats itself over days. Thus it is essential
to consider such periodicity in an accurate traffic forecasting
model design. Some works also show that explicitly model-
ing periodicity benefits forecasting [21], [22], [23]. However,
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Fig. 1. (1) Periodicity: the traffic flow repeats its pattern over days. (2)
Spatial heterogeneity: most of the records of detector A lie in the range
(0,200) whereas the records of detector C mostly fluctuate in the range
(200, 600).

efficiently capturing the periodicity in long and redundant
historical sequences needs clever design. Another important
point in the traffic forecasting is the spatial heterogene-
ity [24]. Figure 1-(2) presents the changes of two detectors’
traffic flow against time on the same day. The detector A (left
one) is located on a living street and the detector C stays on
a motorway (right one). Even during the same period, the
two detectors demonstrate different traffic flow patterns—
most of the records of detector A lie in the range (0, 200)
whereas the records of detector C mostly fluctuate in the
range (200, 600). This means that the traffic records vary
across the spatial dimension, and different locations own
their distinct traffic patterns. We refer to such observation
as spatial heterogeneity, which could be explained by the
fact that different spatial regions are usually associated with
different static characteristics. However, the detailed static
characteristics of spatial regions e.g., road types, road width,
speed limit and POlIs (point-of-interest) might not always be
accessible in practice. It remains open that how to capture
such spatial heterogeneity in the cases where only road
network structure is available.

To address these challenges, we propose a novel traffic
forecasting model, called Attention based Spatial-Temporal
Graph Neural Network (ASTGNN), which is based on self-
attention mechanism. In contrast to RNNs or CNNs-based
approaches, in ASTGNN the parameters of dynamics de-
pend on the inputs, which is more flexible. To make predic-
tion, the self-attention allows each symbol’s representation
to be directly informed by the representations of all other
symbols in a sequence; this results in an effective global re-
ceptive field, and consequently enables our proposed model
to make an accurate long-term prediction. Moreover, we
explicitly model the periodicity and spatial heterogeneity,
which further improves the performance. The contributions
of this work are summarized as follows.

o For the first time, we propose a self-attentive traffic
forecasting model—ASTGNN, which captures the
dynamics in a flexible manner and offers more ac-
curate long-term prediction.

o We design a trend-aware self-attention module that
enables the self-attention being aware of the local
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context, and develop a dynamic graph convolution
module that models the spatial correlations in a
dynamic manner.

e In contrast to the existing methods, we explicitly
takes the periodicity of traffic data and spatial hetero-
geneity into consideration, which further improves
the model performance.

o We conduct extensive experiments on five real-world
traffic flow datasets. The results show that our pro-
posed ASTGNN significantly outperforms the state-
of-the-art traffic forecasting methods.

Compared to the Attention based Spatial-Temporal
Graph Convolutional Networks (ASTGCN) published in
our preliminary work [11], ASTGNN has the following
important improvements:

o Instead of adopting 1D-CNNs, ASTGNN is equipped
with a novel block — Temporal Trend-Aware Multi-
Head Self-Attention. It is able to capture the dynam-
ics of traffic data more effectively.

o In ASTGNN, we design a new dynamic graph con-
volution module to capture the spatial correlations
in a dynamic manner. Moreover, we explicitly model
the spatial heterogeneity, which further improves the
model performance.

o Experiments are conducted to evaluate the effective-
ness of ASTGNN; we also conduct the ablation ex-
periments to evaluate the impact of each component
of ASTGNN on the performance.

2 RELATED WORK
2.1 Spatial-Temporal Traffic Data Prediction

Traffic prediction is a fundamental problem in Intelligent
Transportation System [25] and has attracted extensive re-
search attention during the past decades [26], [27], [28],
[29], [30]. Earlier work is usually based on linear time-series
analysis methods. For example, VAR [2], a typical time series
analysis method, as an extension of autoregressive (AR), can
take the linear inter-dependencies among multiple time se-
ries into consideration. Not surprisingly, these linear models
usually perform poorly, since the changes in traffic data are
quite complex and the correlations are often nonlinear. To
relax the linear dependency assumption, machine learning-
based methods such as SVR [3] and KNN [4] are proposed.
These methods can model more complex dependencies and
deliver better results than the linear models, when given
high-quality handcrafted features, which are labor-intensive
and time-consuming to extract.

Recently, deep learning has proven very effective in
automatic feature extraction or representation learning [31],
and considerable research has been done in designing deep
learning-based approaches for spatial-temporal data model-
ing. In particular, the proposals [21], [22], [23], [26], [32], [33],
[34], [35] partition the region into 2D or 3D cells, and predict
the traffic volume for a cell by taking the structured space
as input with CNNs (Convolutional Neural Networks). For
example, Zhang et al [32] propose ST-ResNet based on the
residual convolution units to predict crowd flows. Yao et
al [33] integrate CNN and LSTM to jointly capture spatial
and temporal dependencies for traffic prediction. Guo et al

[35] propose to use 3D-CNN to capture both spatial and
temporal correlations. Zhang et al [34] combine ConvLSTM
and 3D-CNN together to model long-term trends and short-
term variations of the mobile traffic volumes.

The aforementioned CNNSs-based methods partition the
space into cells and perform convolution operation over the
structured 2D /3D space, which fail to capture the topology
induced by the road networks. To take the road network
topology into consideration, the proposals [6], [8], [9], [10],
[11], [12], [36] directly represent the traffic data with a graph
and make the prediction by using the spatial-temporal
graph neural networks (STGNNSs) [5]. These STGNNs mod-
els can be divided into RNN-based approaches and CNN-
based approaches, which use RNN and CNN, respectively,
for making the forward computation along the temporal
dimension.

RNN-based STGNNs employ recurrent units to store
historical information and replace the original linear projec-
tions in the recurrent units with graph convolution opera-
tions [6], [7], [8], [37]. Although RNNs are designed to learn
long-term correlations, theoretical and empirical evidence
shows that it is difficult to learn to store information for very
long sequence [14], [38]. Moreover, once an RNN is unfolded
in time, it can be regarded as a deep neural network sharing
the same weights at each time slice. Such a parameter
sharing mechanism restricts the representation capacity of
RNN-based models to describe the complex dynamics of
temporal correlation.

In addition, many CNN-based STGNNSs are proposed in
the literature in which the temporal dimension is modeled
by CNNSs. Bai et al [17] perform an evaluation of convo-
lutional and recurrent architectures for sequence modeling
and their experiments indicate the convolutional architec-
ture is usually superior to the recurrent network across
various datasets. CNN-based STGNNSs [9], [10], [11], [12]
utilize 1D CNN along the temporal dimension to capture
temporal features, and use graph convolutions to cap-
ture spatial features. CNN-based models make full use
of parallel computing to speed up the training process.
However, limited by the kernel size, it is also hard for
1D CNN to capture the long-term temporal correlation.
In addition, the parameter sharing scheme, the key idea
behind CNNs in order to control the number of parameters,
restricts the representation capacity of CNN-based models.
Actually, the parameter sharing assumption may not even
hold when dealing with the correlation of traffic data with
strong dynamics. To mitigate this, STSGCN [12] proposes a
multiple-module mechanism to replace the original param-
eter sharing scheme in CNNs to detect multiple dynamics
in data. But the parameters of these multiple dynamics are
still invariant to the input, which is the second limitation
of modeling dynamics discussed in Introduction. Graph
WaveNet [10] is another CNN-based STGNN that proposes
a novel dependency matrix for graph convolution opera-
tions in the spatial dimension. The dependency matrix is
calculated based on the learned node embedding vectors.
Once the training of the model finishes, the dependency
matrix is fixed. Therefore, Graph WaveNet still treats the
parameters of dynamics as invariant with respect to inputs.

Several STGNNSs [21], [37] attempt to incorporate var-
ious side information to improve prediction accuracy, e.g.,
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POI (Point-of-Interest) distributions, weathers, detailed road
network information (such as road types, road width, road
speed limit). However, such side information might not be
available in many scenarios. In contrast, our work focuses
on a more general setting of the spatial-temporal graph data
prediction problem, where only the time series of each node
and the graph structure are available.

2.2 Attention Mechanism

Attention mechanism provides a general method to model
the dependency between a collection of values and the
target under a query, by adaptively assigning to each value
in the collection a weight that is determined by the query
and keys associated to them. It has been widely used and
achieved great successes in various tasks such as natural
language processing (NLP) [39], [40], image caption [41]
and speech recognition [42]. SAnD [43], DSANet [44] extend
its usage into multivariate time series prediction. Notably,
ASTGCN [11], MRA-BGCN [8] and GMAN [36] also demon-
strate the effectiveness of attention mechanism in modeling
the dynamics of traffic data.

Self-attention is a particular implementation of attention
mechanism, where the queries, keys and values are the same
sequence of symbol representations. The Transformer model
which entirely relies on self-attention mechanism achieves
superior performance in a range of sequence modeling
tasks [19]. It transform a sequence by using self-attention to
compute a series of context-informed vector representations
of the symbols in the input sequence. As each symbol’s
representation is directly informed by all other symbols’
representations, this results in an effective global receptive
field, which stands in contrast to RNNs and CNNs. Hence,
self-attention offers a more flexible mechanism to model the
complex dynamics and long-term patterns of traffic data.

3 PROBLEM STATEMENT AND PRELIMINARIES

We first present the Problem Statement, and then briefly
review the key idea of attention mechanism.

3.1 Problem Statement

Definition 1. Traffic Network. We define a traffic network as
a directed or an undirected graph G = (V, E), where V
is a set of |V| = N nodes and each node corresponds to
a traffic surveillance, e.g., traffic detector or observation
station; F is a set of |E| = M edges.

Our proposed solution is applied to both directed and
undirected networks.

Definition 2. Traffic Signal Matrix. The observations on the
traffic network G at time slice ¢ are denoted by a traffic
signal matrix X; = (x¢,1,X¢.2,--.,X.n)7 € RV*C, where
Xtp € RE denotes the feature vector (a collection of
variables of interest) of node v at time ¢t and C is the
number of features.

Problem Statement. Traffic Forecasting. Given a sequence
of recent historical spatial-temporal traffic signal matrices
X = (thTh+1axt7Th,+27"~7Xt) € RVXCXTh gyer the
past T}, time slices, a global periodic sequence X, and

a local periodic sequence X; (which will be detailed in
Section 4.3.1), we aim to predict the sequence of future traffic
signal matrices Y = (X¢y1,X¢42,...,Xe41,) € RVXCxTp
over the next T}, time slices.

Most of related work [6], [12], [45] on the traffic fore-
casting problem only takes the recent historical traffic X
as the input. Therefore, to make a fair comparison, we
first follow the same input setting, and compare our model
ASTGNN with these baselines. In addition, as mentioned
in Section 1, the traffic data is related to human daily
activities and reveals with periodic patterns. We further
explicitly model the periodicity of traffic data and include
a global periodic sequence Xy and a local periodic sequence
A into the input. To distinguish the two settings, we use
ASTGNN(p) to denote our model when the input includes
the two additional sources.

3.2 Attention Mechanism

Attention [46] is a fundamental operation in our model.
Figure 2 illustrates the high-level idea of attention mecha-
nism. It aims to map a query and a set of key-value pairs
to an output, where the query, keys, values, and output are
all vectors. The output is a weighted sum of the values,
where the weight assigned to each value is determined by
the corresponding key and the query together. Each weight
denotes the relation strength between the query and each
key-value pair.

Q K, W, = f(QK1) v,
Ky asQKa)
QM@K o (0T
PR AC TR

Fig. 2. The high-level idea of attention mechanism.

Scaled Dot-Product Attention. Scaled Dot-Product Atten-
tion [19] is a type of attention function where the weights are
calculated as the dot-product between queries and values,
and thus it enjoys the appealing properties such as space
and time efficient. Formally, it is defined as follows,

T

Vv dmodel

where Q, K, V and diodel are queries, keys, values and
their dimension respectively.

Attention(Q, K, V) = softmax( WV (1)

4 ATTENTION BASED SPATIAL-TEMPORAL

GRAPH NEURAL NETWORKS

The high level idea of our proposed method is to di-
rectly model the complex dynamics of correlation with
self-attention along both the temporal and spatial dimen-
sion. Our proposed model ASTGNN builds on the general
encoder-decoder framework [47], and Figure 3 shows its
overall architecture. Both the encoder and decoder consist
of a stack of identical layers. To ensure effective training
as the model goes deeper, the residual connection [48] and
layer normalization [49] are used inside the blocks, and
thus all layers in the encoder share the same dimension
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trend-aware self-attention blocks (i.e., black blocks) and spatial dynamic GCN blocks (i.e., purple blocks). At each step, the model is auto-regressive,
using the previously generated data as additional input when generating the next.

dmodel. Denoting the input to the Ith encoder layer by
200 2 (5D XD Y0 e N <
with [ € {1,2,..., L}, the pipeline of ASTGNN works as
follows.

First, the raw input X ¢
verted into a high dimensional representation X © ¢
RN XdmoaerXTh via linear projection with a spatial em-

bedding layer and a temporal embedding layer, where

RNXCxTh  ig  con-

dmodel > C. Then the encoder maps the input se-
0 0 0

quence X0 = (XE—)T,L+1’X£—)T;L+2"“’x§ ') to &)

(XEE)T}L +1’X§E)Th 420---,X; ), a sequence of intermediate

representations, through L encoder layers. By conditioning
on the encoder final output X (L), the decoder employs
another L’ decoder layers to generate the output sequence

YO = i) XD X,
the end, Y is mapped into the target outputs Y by a
linear projection. The generation process is auto-regressive,
i.e., in order to generate V) with i € {1,...,T,} at each
step, the decoder takes X’ L) and all previously generated

traffic signal matrices yng_)l as inputs.

) of future traffic signals. In

4.1

The spatial-temporal encoder consists of a stack of identical
layers, and each layer contains two basic blocks, namely,
temporal trend-aware multi-head self-attention block and
spatial dynamic GCN block. The temporal trend-aware

Spatial-Temporal Encoder

multi-head self-attention block aims to model the dynamics
of traffic data across the temporal dimension, and the spatial
dynamic GCN block seeks to capture the spatial-relevant
dynamics of traffic data.

4.1.1

Self-attention is a particular implementation of attention
mechanism in which the queries, keys, and values are the
same sequence of symbol representations. Multi-Head Self-
Attention [19] is the most widely adopted self-attention
in practice, and it enables to jointly attend to information
from different representation subspaces. The basic operation
in the multi-head self-attention is the scaled dot-product
attention defined in Eq. 1, where all the queries, keys
and values are the same sequence of representations, i.e.,
Q = K = V. The multi-head self-attention first linearly
projects the queries, keys and values into different represen-
tation subspaces and then performs the attention function
(Eq. 1) in parallel. At last, the outputs are concatenated and
further projected, resulting in the final output. Formally,

Temporal Trend-Aware Multi-Head Self-Attention

MHSelfAttention(Q, K, V) = @(head;, . .., head;, )W©°
2)
head; = Attention(QW*, KW X, VIv)) 3)

where h is the number of attention heads. WjQ, WE WY

J
are projection matrices applied on Q, K,V and Wé is the
final output projection matrix. The multi-head self-attention
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allows modeling the correlation of elements in sequences
regardless of their distance, and this results in an effectively
global receptive fields. It provides a flexible manner to
capture the complex dynamics of correlation in traffic data,
and thus enables an accurate long-term prediction.

However, the multi-head self-attention was initially pro-
posed to process the discrete tokens (e.g., words) and fails to
consider the local trend information inherent in continuous
data. Therefore, simply applying it to the traffic signal se-
quence transformation might lead to the mismatching issue.
We illustrate this with an example. The curve in Fig. 4 shows
a traffic signal series of a traffic detector, where A, B and
C refer to three data points at different time slices. In this
case, the traditional self-attention mechanism will wrongly
match point A with B, since they have the same point-wise
numerical value. However, A and B have different local
trends where A is in a plateau while B is at the peak of a
fluctuation. In other words, the recent historical trends of A
and B are significantly different. Therefore, if we apply the
multi-head self-attention to this piece of numerical data, we
will assign wrong correlation strengths to data pairs in the
sequence. Then we may get a bad sequence representation,
which will affect the final prediction performance.

To address the local trend agnostics issue of traditional
multi-head self-attention in numerical data prediction, we
design a temporal trend-aware multi-head self-attention
mechanism, which takes the local contextual information
into consideration. The temporal trend-aware multi-head
self-attention is shared among nodes. It is a variant of Con-
volutional Self-Attention [50], which replaces the projection
operations on the queries and keys in Eq. 3 with the 1D
convolutions. Since the convolution operation computes the
representations by taking the local contextual context as in-
put, this allows our model to be aware of the local changing
trend hidden in the traffic data series. Formally, our tempo-
ral trend-aware multi-head self-attention (TrSelfAttention)
is defined as follows,

TrSelfAttention(Q, K, V) = @(Trhead, . .., Trhead;, )W ©

Trhead; = Attention(q)? *Q, (I>jK * K, VWJV),

4)

which is shared among nodes and * indicates the convolu-

tion operation and ®%, ® are th ters of lu-
peration and ® 7, ®;* are the parameters of convolu

tion kernels. Consider the example (right) in Fig. 4. With our

trend-aware self-attention, points B and C' can be correctly
matched since they show analogous local changing trends.

Traditional self-attention Trend-aware self-attention

Fig. 4. The comparison between traditional self-attention (left) and our
temporal trend-aware self-attention (right) when they are applied on a
traffic signal series of a traffic detector. The traditional self-attention (left)
will wrongly match points A with B since they have the same point-wise
numerical value. In contrast, our temporal trend-aware self-attention
(right) can correctly match the most relevant points (B and C) based
on their local trends.

In the ' encoder layer, given input X =0 af-
ter performing the temporal trend-aware multi-head
self-attention on all the node, we obtain an interme-
diate sequence representation denoted by AL
@D 2D 70 € RN T

Due to the trend-aware self-attention mechanism, in our
model the parameters of temporal dynamics are computed
based on the inputs. In contrast, the temporal dynamics
are assumed to be invariant to the shift of time step in the
previous RNN-based and CNN-based STGNNS.

4.1.2 Spatial Dynamic Graph Convolution

To capture the dynamics across spatial dimension, we fur-
ther design a Dynamic Graph Convolution Net (DGCN)
block based on GCNs [51]. GCNs generalize the traditional
convolution operation from structured data to graphs, and
they are capable of capturing the non-structured patterns
hidden in the graphs. The general idea of GCNs is to learn
node representations by exchanging information among
them. Specifically, given a node, GCNs first aggregate its
neighboring representations to produce the node an inter-
mediate representation, and then they transform the aggre-
gated representation with a linear projection followed by a
non-linear activation. In our case,

GCN(Z!'™Y) = o(AZ{"W D) (5)

where Zglfl) € RN Xdmodel W (1) ¢ Rmode1 Xdmodel  and o are
node representations, projection matrix, and nonlinear acti-
vation, respectively. A € RV*¥ represents the interaction
relationship among nodes, which is defined as follows,

undirected graph
, directed graph

in which A is the graph adjacency matrix, and Dj; =
Z j Aij .

Such a traditional graph convolution operation is time
invariant, i.e., given a graph G the corresponding weight
matrix A is a constant. However, for the traffic network the
correlation among nodes is very likely to change over time,
and simply applying the GCNs to the traffic network will
fail to capture such dynamics. For this reason, we develop
a dynamic graph convolution net, DGCN, which is able to
adaptively adjust the correlation strengths among nodes.

The idea is to employ self-attention to dynamically cal-
culate the spatial correlation strengths among nodes. In our
case, given the node representations z§l‘” € RNV*dmodel (je.,
the output of temporal trend-aware multi-head attention
block) as input, the spatial correlation weight matrix S; is
calculated as follow,

T
Zgl—l)zgl—l)

V dmodel

Intuitively, the element S;; of S; represents the correlation
strength between node ¢ and node j —a large value indicates
a strong correlation while a small one implies a weak
correlation. Once the spatial correlation weight matrix S;
is obtained, we utilize it to adjust the static weight matrix A
with an element-wise dot-product operation,

X" = DGCN(ZIY) = s((A @ S)Z! VWD), (7)

S: = softmax( ) € RVXN (6)
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Note that with S; the spatial dynamics captured by our
model depend on the input while all the previous work
consider the the spatial correlations among nodes to be
invariant to the input. Our proposed dynamic graph
convolution blocks aggregate neighbor information based
on the varying correlation matrix decided by the inputs
z(=D, Finally, we get a spatially informed output X =

l l l
(XE—)T,ﬂLla X1(:7)Th+27 cee 7X1(5 )) € RN Xdmoder xTh

4.2 Spatial-Temporal Decoder

The spatial-temporal decoder generates output sequences
in an auto-regressive manner. To prevent from using the
information of future subsequence, the masking mechanism
is used in the decoder. The spatial-temporal decoder is
composed of a stack of L’ identical decoder layers. Each
decoder layer consists of two temporal trend-aware multi-
head attention blocks and a spatial dynamic GCN block.
Specifically, the first temporal trend-aware multi-head self-
attention block captures the correlation in the decoder se-
quence. To mask future information, following [50] the 1D
convolutions on the queries and keys are replaced with the
causal convolutions [16]. Because the causal convolution
performs the convolution operation by only filtering on the
positions to the left of the current position, it guarantees
that the operation will not peek from the future in the
output sequence. Figure 5 illustrates the difference between
the causal convolution and the traditional 1D convolution.
The second temporal trend-aware multi-head self-attention
block is used to capture the correlations between the de-
coder sequence (queries) and the encoder output sequence
(keys), in which the causal convolutions are applied on
queries while the 1D convolutions are applied on keys.

Standard 1-D Convolution Causal Convolution

t—3t—-2t—-1t t+1t+2¢t+3 t—3t—2t—-1 t t+1t+2t+3

Fig. 5. The difference between the standard 1D convolution (left) and
the causal convolution (right).

4.3 Handling Periodicity and Position Embedding
4.3.1 Handling Periodicity

In this work, we further consider two types of periodic
patterns hidden in the traffic data, namely, the global peri-
odicity and local periodicity. The global periodicity is due to
the regularity of human activities, e.g., a commuter departs
from home at 8:00am every Monday, and thus the traffic
conditions falling into the same time slot on the same day
of a week tend to be similar. The local periodicity is often
caused by the change of climate or weather, e.g., the traffic
speed in three days of heavy snowing significantly differs
from that in the other days. To consider the two periodic
patterns in forecasting the traffic over the next 7T}, time steps,
we introduce another two data sources in addition to the
historical records in the past T}, time steps.

Global periodic tensor. To capture the global periodicity,
we consider the T), slices of traffic records from the same
day in the past w weeks as the present day, and this results
ina tensor X, € RNVxCxwxTp For ingtance, assume the time
step is one hour and we wish to predict the traffic conditions
of next four hours (I, = 4) from 7:00am to 11:00am on
Monday. We take the traffic records of 7:00am to 11:00am
from the past three Mondays (w = 3), and we obtain a
global periodic tensor X'y, € RV*Cx12,

Local periodic tensor. Analogously, to capture the local
periodicity, we consider the T, slices of traffic records from
each of the past d consecutive days, which results in a tensor
X, € RVXExdTy For instance, suppose again the time step
is one hour and we intend to predict the traffic conditions
of next four hours (7}, = 4) from 7:00am to 11:00am of the
present day, we take the traffic records of 7:00am to 11:00am
from the past two days (d = 2), and we obtain a local
periodic tensor X; € RVXCx8,

Once we obtain the global periodic tensor X ; and local
periodic tensor X';, we concatenate them with the past T}
time steps tensor X, resulting in a new input tensor with
shape RVXCx(wsTp+dxTy+Th) a5 the input of ASTGNN(p).

4.3.2 Temporal Position Embedding

In our temporal trend-aware module, the dynamics are
entirely modeled by the self-attention mechanism. Since
attention builds the dependency between inputs and target
with the weighted sum function, the attention mechanism is
completely agnostic to the order of symbols in the sequence.
However, the order information plays an important role
in time series modeling task since the nearby observations
are often more correlated, e.g., the traffic flow at 5:00pm
is more informative for predicting the flow at 5:30 than
that at 4:00pm. Hence, explicitly inducing the order bias
to the model potentially results in a more accurate pre-
diction. To this end, we equip each element representation
in X with a position embedding such that the nearby
elements tend to possess close position embeddings. For
simplicity, we choose the fixed position embedding [19] for
an input element at position ¢ and each vector-dimension
1 <d < dmodel is presented as follows.

ETP (t, 2d) = Sin(t/100002d/dlrwdel)
ETP (t7 2d + 1) = COS(t/lOOOO2d/dmode1)

where t is the relative index of each element in the input. As
a side benefit, when the input includes the global periodic
tensor and the local periodic tensor, introducing the tempo-
ral position embedding helps our model better recognize the
relative position relationship among X', A; and X, event
though they are simply concatenated.

®)

4.3.3 Spatial Position Embedding

In Section 4.1.2 we present how to capture the dynamically
changing correlations among different nodes (monitoring
stations), which are caused by the evolving traffic condi-
tions. However, one key observation we made is that, in
addition to the dynamically changing traffic conditions,
each spatial node is also associated with some static char-
acteristics, which are mostly determined by the spatial
features including the local topology of the node, and the
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corresponding road types such as motorway, secondary
way, living street, etc.

These static spatial characteristics are invariant over time
but vary over the space, and thereby account for the spatial
heterogeneity. They are also very informative for the traffic
prediction, e.g., the traveling speed of a motorway are often
much faster than that of a living street.

However, the detailed characteristics of spatial nodes
(i.e., road types, road width, road speed limit, POls) are often
not available. In this situation, several possible ways can be
employed to model the spatial heterogeneity on the graph.
One direct way to represent the unique spatial heterogene-
ity of each node is one-hot encoding. However, the high-
dimensional sparse feature not only results in expensive
computation but also loses the graph structure information.
An alternative way [52] is employing unsupervised graph
embedding methods such as DeepWalk [53] to learn rep-
resentations for spatial nodes. Although they can preserve
the similarities among neighbors on the graph, mostly they
fail to suit the specific supervised tasks. Inspired by the
well-known practice of unsupervised pre-training [54], we
also tried to learn the representations of nodes through
unsupervised graph embedding techniques, and then use
the learned representations as the initialization of the node
embedding vectors which will be fine-tuned later based on
supervised signals. But we did not observe any improve-
ment in our preliminary experiments. Graph Laplacian Reg-
ularization [55] is another approach to learn representations
preserving graph structure. It adds the graph Laplacian as
an additional unsupervised regularization loss to the origi-
nal supervised loss, but the hyper-parameter controlling the
strength of the regularization needs carefully tuning.

Li et al [56] prove GCN is actually a special form of
Laplacian smoothing, which enforces the representation of
each node close to its neighbors. Therefore, to explicitly
model the spatial heterogeneity while reflecting the graph
structure information, we first assign each node an addi-
tional embedding vector, resulting in an initial spatial posi-
tion embedding matrix Egl)j) € RNV >dmoder, Then a GCN layer
is applied subsequently to perform Laplacian smoothing
and get the final spatial position embedding matrix Egsp.

Both the temporal position embedding matrix Erp and
spatial position embeddin? matrix Fsp will be added to
the raw representations X (%), as illustrated in Figure 3. To
the best of our knowledge, no existing method explicitly
considers the spatial heterogeneity for the traffic forecasting
problem. As we will show in Section 5.4.2.2, our proposed
spatial position embedding is able to yield a fair model
performance improvement.

5 EXPERIMENTS

To evaluate the performance of our proposed model !, we
conducted extensive experiments on two categories of real-
world spatial-temporal traffic graph datasets. One is about
the highway traffic flow, which has four sub-datasets, and
the other one is about the crowd flow of the metro system.

1. We will release the code as we do for our preliminary work

5.1 Datasets

We evaluate our model on two types of traffic datasets
whose statistical information is summarized in Table 1.

The first kind of datasets are about highway traffic flow
in California, which is collected by the Caltrans Performance
Measurement System (PeMS) [57] in real time every 30 sec-
onds. The raw traffic flow data is aggregated into 5-minute
interval. Geographic information about the sensor stations
is recorded in the datasets. We construct four datasets
from four districts respectively, namely PEMS03, PEMS04,
PEMS07 and PEMS08. In our experiments, the four highway
traffic networks are defined as undirected graphs and C' = 1
denotes traffic flow. The second kind of datasets is about
metro crowd flow of the Hangzhou metro system?. The raw
crowd flow data is aggregated into 5-minute interval. In
our experiments, the traffic network of the metro system
is defined as an undirected graph and C' = 1 denotes the
inflow or the outflow.

The two types of datasets exhibit different spatial cor-
relations due to their different generation process. On the
highway traffic network, the vehicle flows are usually
recorded by a collection of spatially-close traffic monitor
stations. As a result, the traffic flows collected at these
neighboring monitor stations typically show very strong
correlation. In contrast, only the check-in and check-out
events of the passengers are recorded in the metro system,
and such recording gaps are usually much larger than that
of traffic flow. Hence, the spatial correlation between the
neighboring metro stations is greatly reduced. We evaluate
the performance of ASTGNN via conducting experiments
on the two types of datasets.

In the experiments, we aim to predict the data for the
next hour (i.e., 12 steps).

TABLE 1
Dataset Description.

Data type  Datasets  # of sensors Time range
PEMS03 358 09/01/2018 - 11/30/2018
Highway = PEMS04 307 01/01/2018 - 02/28/2018
traffic flow  pEMS07 883 05/01/2017 - 08/31/2017
PEMS08 170 07/01/2016 - 08/31/2016
Metro
crowd flow  HZME 80 01/01/2019 - 01/26/2019

5.2 Baseline Methods

e VAR [58]: Vector Auto-Regression is an advanced
time series model, which captures the pairwise re-
lationships among multiple time series.

e SVR [59]: Support Vector Regression utilizes a linear
support vector machine to perform regression.

e LSTM [60]: Long Short-Term Memory network, a
special RNN model.

e DCRNN [6]: Diffusion Convolutional Recurrent
Neural Network employs diffusion graph convolu-
tional networks and GRU based on seq2seq to predict
traffic graph series data.

ASTGCN [11]. 2. https:/ /tianchi.aliyun.com/competition/entrance /231708 /information
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e STGCN [45]: Spatial-Temporal Graph Convolutional
Network uses ChebNet in the spatial dimension and
2D convolutional networks in the temporal dimen-
sion to model the correlations in spatial-temporal
graph data.

e ASTGCN [11]: Attention Based Spatial-Temporal
Graph Convolutional Networks designs spatial at-
tention and temporal attention mechanisms to model
spatial and temporal dynamics.

e Graph WaveNet [10]: Graph WaveNet combines
graph convolutions with temporal convolutions to
capture spatial-temporal dependencies.

e STSGCN [12]: Spatial-Temporal Synchronous Graph
Convolutional Network proposes a new kind of con-
volution operation to capture spatial and temporal
correlations simultaneously.

DCRNN and STGCN are two representative baselines
that are widely used for traffic forecasting. ASTGCN is
the method in our preliminary work. Graph WaveNet and
STSGCN are two recent approaches.

5.3 Settings

We split all datasets at ratio 6 : 2 : 2 into training sets,
validation sets, and test sets by the time. We normalize
all data into range [—1, 1] with Min-Max method and feed
the normalized data into the model, which is optimized by
reverse mode automatic-differentiation and Adam [61]. Dur-
ing training, we feed the historical data into the encoder and
the decoder generates predictions given previous ground
truth observations. Thus, all the attention in encoder and
decoder can be parallelized. During training, we feed the
historical data into the encoder and the decoder generates
predictions given previous ground truth observations. Thus,
all the attention operations in the encoder and decoder can
be parallelized. During testing, the ground truth fed into
the decoder is replaced by the prediction generated by the
model itself. To mitigate the discrepancy between the inputs
to the decoder in the training stage and testing stage, we
fine-tune the model for several epochs on the training sets
by using the predictions as the input to the decoder.

For evaluation, we re-transform the predicted values
back to the actual values and compare them with the ground
truth. Mean absolute error (MAE), root mean square error
(RMSE) and mean absolute percentage error (MAPE) are
used as the evaluation metrics. All the experiments are
repeated 5 times, and the means and standard deviations
are reported.

We implemented the ASTGNN model based on the
PyTorch® framework. We choose Mean absolute error (MAE)
as the loss function. The hyperparameters and the best mod-
els are determined by the performance on the validation
sets. The model dimension d;,0q¢ is 64 and the number
of attention heads h is 8. Learning rate Ir is 0.001. Other
detailed settings of the ASTGNN model for the five datasets
are described in Table 2.

To make a fair comparison, for all methods, we first
use the historical data over the past hour (12 steps) to
predict the next hour’s data, to show the effectiveness of

3. https:/ /pytorch.org

ASTGNN. Then we evaluate how the model performance
improves when the periodicity of traffic data is considered
explicitly. ASTGNN(p) denotes our model with global or
local periodic tensors in the input.

TABLE 2
Settings of the ASTGNN model in five datasets.

Dataset encoder decoder convolution

#layers L #layers L'  kernel size k
PEMS03 3 3 3
PEMS04 4 4 3
PEMS07 3 3 3
PEMS08 4 4 3
HZME (inflow) 4 4 3
HZME (outflow) 3 3 5

5.4 Comparison and Analysis of Results on the High-
way Traffic Flow Prediction

Table 3 shows the average results over the next hour (12
steps predictions). Without considering the periodicity, our
ASTGNN outperforms all the baseline methods on all the
datasets for most of cases. In PEMS04 (resp. PEMS07), AST-
GNN improves the state-of-the-art method Graph WaveNet
by 3.9%, 2.5%, 7.1% (resp. 2.9%, 0.4%, 2.2%) in terms of
MAE, RMSE and MAPE, respectively. In PEMS03, ASTGNN
has the best performs in terms of MAE and RMSE. In
PEMS08, ASTGNN has the best performs in terms of MAE
and MAPE.

Figure 6 shows the effect of increasing prediction inter-
vals on prediction performance for different methods. In
general, as the prediction intervals become larger, the tasks
becomes more difficult, and thus the performance of all
models drops. However, the performance of our ASTGNN
degrades the least in most cases, i.e., the advantage of our
ASTGNN becomes more evident for long-term forecast.

SVR and LSTM only take the temporal features into
consideration, but do not consider the spatial correlations,
which are also important for the spatial-temporal traffic
forecasting. Therefore, their forecasting performance is the
worst. Although VAR models both spatial and temporal
correlations among multiple time series, its representation
ability to capture nonlinear and dynamic spatial-temporal
correlations is weak. Thus, its forecasting performance fluc-
tuates significantly. Especially, as shown in Table 3, the
average forecasting performance of VAR drops significantly
on PEMS07 which has a large number of nodes. Since the
performance of VAR on PEMS07 is much worse than other
methods, we do not show it in Figure 6 for clarity.

DCRNN is a typical RNN-based method for spatial-
temporal graph data forecasting. Limited by the ability of
RNN to capture long-term temporal correlations, its fore-
casting accuracy is much lower than our method ASTGNN,
especially for the long-term predictions. STGCN, ASTGCN,
Graph WaveNet and STSGCN are four typical CNN-based
methods, which employ 1D CNN or TCN along the tempo-
ral dimension to capture the temporal correlations. Limited
by the size of the convolution kernel, it is hard for 1D CNN
to attend long-term temporal information. Besides, although
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TABLE 3

Performance comparison on the four highway traffic flow datasets.
(the best results are in bold and * denotes the second-best results. 1 denotes our models.)

5 Baseline methods | /5 SVR LSTM DCRNN STGCN  ASTGCN(r) Graph WaveNet ~ STSGCN ~ ASTGNN'  ASTGNN(p)!
atasets |  Metrics |

MAE 2108 2201007 2062+019 1839+017 1828+039 17.85+045 1479+ 008 1751 £0.13 1478° £ 005  14.55 % 0.07
PEMS03 | RMSE | 3475 3528+ 008 3354+034 30564017 3073+078 2988+065 25514017  29.05+040 2500%+018  24.96 + 0.31
MAPE (%) | 2235 2293+109 28944276 2022+283 17524032 17.65+079 14324024 16924022 1479+022  13.66 + 0.14

MAE 2375  28.66 £0.01 2681 +0.31 23.65+0.04 2227+0.18 22424019 19.36 & 0.02 21.08 £0.14  18.60* £ 0.06 18.44 + 0.08
PEMS04 RMSE 36.66 4459 +£0.02 4074+0.17 37124007 35.02+0.19 3475+0.19 31.724+0.13 33.83 £0.27  30.91 £ 0.22 31.02* +0.18
MAPE (%) 18.09 19.15+0.04 2233+1.60 16.05+0.10 14364012 1587 4+0.36 1331 £0.19 13.88 £ 0.07  12.36 = 0.11 12.37* £ 0.08

MAE 101.20 3297 4+098 29.71+0.09 23.60+0.05 27.41+045 2598+ 0.78 21.22 +0.24 2399 +£0.14  20.62* £0.12 19.26 + 0.17
PEMS07 RMSE 155.14 50.15+0.15 45324027 36.51+0.05 41.02+0.58 39.65+0.89 3412 +0.18 39.32 £0.31  34.00* £ 0.21 32.75 + 0.25
MAPE (%) | 39.69 1543 4+1.22 14144+1.00 1028+ 0.02 1223+0.38 11.84 +0.69 9.07 +0.20 10.10 £ 0.08  8.86* 4 0.10 8.54 + 0.19

MAE 2232 23254001 22194013 18224006 18.04+0.19 1886+ 041 15.07 £0.17 17.10 £0.04  15.00* + 0.35 12.72 £ 0.09
PEMS08 RMSE 3383 36.1540.02 33594005 28294009 2794+0.18 2855+ 049 23.85* £0.18 26.83 £0.06  24.70 £ 0.53 22.60 + 0.13
MAPE (%) | 1447 14714+016 1874+279 1156+ 0.04 11.16 +£0.10 1250 + 0.66 9.51 £ 0.22 1090 £0.05  9.50* £+ 0.11 8.78 £ 0.20
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Fig. 6. Performance changes of different methods on the four datasets as the prediction interval increases.

TCN employs dilated convolutions to enable an exponen- data are dependent on the input data while the parameters
tially large receptive field, compared to the self-attention in all the other baseline methods are invariant to the input
mechanism, TCN still requires a stack of O(logy(T},)) convo-  after being learned. ASTGCN employs traditional attention
lutional layers to connect any two positions in the sequence, mechanism in both the spatial and temporal dimensions to
where k is the kernel size of convolutions [19]. Thus, it capture the dynamics in traffic data. However, as discussed
is also hard for them to make accurate long-term predic- in Section 4.1.1, traditional self-attention mechanism might
tion [20]. In contrast, in the temporal dimension, ASTGNN  suffer from the mismatching issue in learning sequence
utilizes attention mechanisms to attend information at all representations. In contrast, ASTGNN utilizes a novel trend-
time slices for data at each time slice, so that ASTGNN can aware self-attention mechanism in the temporal dimension
well capture long-term correlations. to flexibly model the dynamics of traffic data and applies

ASTGCN in our preliminary work is the only baseline self-attention mechanism on the adjacency matrix to assign
in which the parameters capturing the dynamics in traffic
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importance to neighbors dynamically according to the in-
puts. By elaborately modeling the dynamics of traffic data,
ASTGNN achieves the best forecasting performance.

5.4.1 Explicit Periodicity Modeling

Figure 1-(1) shows that traffic data exhibits strong periodic-
ity over days and weeks. ASTGNN takes such periodic pat-
terns into consideration to improve forecasting accuracy. To
evaluate the effectiveness of the component for periodicity,
we next perform experiments on ASTGNN(p) where letter
p stands for periodicity. The inputs to ASTGNN(p) consist of
X4, X and the original X as described in Section 4.3.1.

In ASTGNN(p), T}, still equals to T}, that is one hour.
We consider the hyperparameters in the local and global
periodic tensors d,w € {0, 1,2}. The settings of hyperpa-
rameters are shown in Table 4, which are determined by the
performance on the validation sets. The right two columns
in Table 3 compares the average results (over the next hour)
of ASTGNN and ASTGNN(p). Figure 6 also shows the
detailed comparison as the prediction interval increases. The
results show that explicitly modeling the periodicity further
improves the forecasting accuracy in general. The improve-
ments are more significant on PEMS07 and PEMS08.

TABLE 4
Settings of the ASTGNN(p) model in five datasets.

encoder decoder convolution
Dataset d .
#layers L  #layers L'  kernel size k
PEMS03 1 0 3 3 3
PEMS04 0 1 4 4
PEMS07 1 1 3 3 3
PEMS08 1 1 4 4 3
HZME (inflow) 0 1 4 4 3
HZME (outflow) 0 1 4 4 3

5.4.2 Ablation experiments

To further evaluate the effects of different components in
ASTGNN, we conduct ablation experiments and analyze
experimental results on the PEMS03 dataset.

Temporal Dimension. In the temporal dimension, we de-
sign three variant versions of ASTGNN, including;:

e ASTGNN-noTE: It removes the temporal position
embedding to study the benefits of modeling order
information of the sequences.

e ASTGNN-conv: It replaces the temporal trend-aware
self-attention layer with the convolutions (1D conv in
the encoder and causal conv in the decoder) to study
the advantages of self-attention mechanism over con-
volutions in capturing the temporal dependencies.

e ASTGNN-noTrA: It replaces the temporal trend-
aware multi-head self-attention block with tradition
multi-head self-attention operation to study the use-
fulness of considering trends when forecasting.

All the variant models have the same settings as ASTGNN
except the differences mentioned above. Figure 7 gives the
average prediction results of the models over next hour
and the detailed results of prediction performance at each
time slice. By comparing ASTGNN-noTE and ASTGNN,

we can see that the temporal position embedding layer is
an important component. ASTGNN-noTE, which performs
attention operations without position embedding and order
information, perfoms much worse than ASTGNN. More-
over, ASTGNN-conv performs worse than ASTGNN-noTrA,
indicating that the self-attention mechanism is superior to
convolutions in capturing the temporal correlations. AST-
GNN is better than ASTGNN-noTrA and their performance
differences become larger as the prediction intervals in-
crease. This result proves the usefulness of modeling the
local trend in using multi-head self-attention for traffic
prediction, especially for long-term forecasting.
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Fig. 7. Components analysis in the temporal dimension.
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Fig. 8. Components analysis in the spatial dimension.

Spatial Dimension. In the spatial dimension, we design two
variant versions of ASTGNN, including:

e ASTGNN-noSE: It removes the spatial position em-
bedding to study the benefits of modeling the inher-
ent static spatial characteristics of the traffic network.

o ASTGNN-noSAt: It removes the spatial self attention
layer to study the usefulness of dynamically adjust-
ing spatial correlation strength instead of only based
on the static topological relationship.

All the variant models have the same settings as AST-
GNN except the aforementioned differences. Figure 8 shows

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on February 18,2021 at 08:49:37 UTC from IEEE Xplore. Restrictions apply.



Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XX XX

TABLE 5

Performance comparison on the metro crowd flow dataset.
(the best results are in bold and * denotes the second-best results. 1 denotes our models.)
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Graph WaveNet | 11.20* +0.1116  17.50* £ 0.1234

19.73* £ 0.4610

30.65 £+ 0.4059 | 23.75* £0.7082  73.65 4+ 2.7181

Baseline methods | MAE \ RMSE \ MAPE (%)

Metrics | inflow outflow | inflow outflow | inflow outflow
VAR | 17.65 22.35 | 28.10 37.96 | 58.07 96.68
SVR | 21.94+0.0173 25.59 £ 0.1187 | 40.73 £ 0.0205 50.07 £ 0.1732 | 49.40 £ 0.0679 91.71 £ 3.1788
LST™M | 22.53 & 0.5089 26.18 £ 03193 | 39.33 & 0.3506 4891404458 | 60.12 +2.4417  103.06 + 8.5229

DCRNN | 1225401316  18.024+0.1579 | 2091 +£0.3290  31.45+0.3879 | 25.53 & 0.3811 66.98+ 1.6475

STGCN | 12.88 4 0.2810 19.12 £0.2312 | 22.86 + 0.3884 33.12 £ 0359 | 29.66 & 1.4970 73.66 £ 1.4909

ASTGCN | 13.10 + 0.4733 19.35 £ 0.5071 | 23.23 +0.8127 3320 +£1.0714 | 33.29 £ 3.6336 88.75 + 3.9984
\ \
| |
\
\

STSGCN | 12.85 4 0.1006 18.74 & 0.1289 23.20 + 0.3773 33.12 + 0.4260 28.02 £ 0.1947 76.85 = 1.0094
ASTGNN' ‘ 11.46 £ 0.0841 17.94 £+ 0.1093 ‘ 20.84 4 0.2498 31.91 + 0.3163 24.42 + 0.3029 72.46 1+ 2.4177
ASTGNN(p)* ‘ 10.94 + 0.0393 17.47 £ 0.0310 ‘ 18.89 + 0.1081  30.78* + 0.0774 | 23.33 &£ 0.1400 70.52*+ 0.2739

the results. We can observe that ASTGNN-noSE is worse
than ASTGNN and this demonstrates that explicitly consid-
ering static spatial characteristics contributes to capturing
the spatial heterogeneity in traffic data. ASTGNN-noSAt
performs much worse than ASTGNN. This demonstrates
the usefulness of dynamically adjusting spatial correlation
strength in ASTGNN.

5.4.3 Effect of Different Network Configurations

To further investigate the influences of hyper-parameter
settings and how the residual connection and layer nor-
malization affect the model performance, we conduct ex-
periments with different network configurations. Except for
the studied varying factor, all the models follow the same
settings as described in Section 5.3. Figure 9 illustrates
the results. Generally, ASTGNN is not sensitive to hyper-
parameter settings. Increasing dmode, L and h can slightly
improve the performance. Additionally, we find that (1) if
the model is neither equipped with residual connections nor
normalization layers, it is hard to train and the loss does not
convergence; (2) The model with residual connections and
normalization layers together yields the best performance.

TANTh
aHALY

MAE RMSE MAPE MAE RMSE MAPE

MAE RMSE MAPE MAE RMSE MAPE

Fig. 9. Network configuration analysis. The four figures respectively
show the effect of different network configurations, including the model
dimension d,,,.q4¢1, the number of encoder/decoder layers L, the number
of attention heads h, whether the model is equipped with the residual
connection or layer normalization.

5.4.4 Time Cost Study

In the temporal trend-aware multi-head self-attention
block, the computational complexity is O(T7?dmodel) and
O(kTyd?, o) for the multi-head self-attention operation
and the convolution operation, respectively, for each node;
the computational complexity of the spatial dynamic GCN
block is O(Mdyede1) and O(N2dyode1) for the GCN oper-
ation and the spatial attention operation, respectively, for
every time step.

The training time of ASTGNN grows linearly with the
number of data-points. It takes around 0.35s per batch, with
a batch size 16 on PEMS03 using a Tesla V100 GPU card. In
the prediction stage, ASTGNN can process a sample batch
with size 16 within 0.8 seconds through auto-regressive
generation for the next 12-steps forecast.

5.5 Comparison and Analysis of Results on the Metro
Crowd Flow Prediction

Table 5 shows the average results over the next hour (12
steps predictions). On the metro crowd flow dataset, AST-
GNN is still competitive. Without modeling the periodicity,
ASTGNN, Graph WaveNet achieve the similar best perfor-
mance and ASTGNN shows advantages on MAPE. When
taking the periodicity into consideration, ASTGNN(p) is
able to improve all the metrics further.

In addition, we find that the improvements of ASTCNN
and ASTGNN(p) over other baselines on metro crowd flow
dataset are not as obvious as those on the highway traf-
fic flow datasets. The reason could be that the excellent
performance of ASTCNNs can be largely explained by its
great ability in capturing the dynamical correlations among
the neighboring spatial nodes and consecutive time steps;
however, as discussed in Section 5.1, the recording gaps of
the metro crowd flow are much larger than that of the traffic
flows, which leads to weak spatial correlations among the
neighboring metro stations and subsequently, a degraded
performance of ASTGNNSs. But it is worth noting that even
in the weak spatial correlation cases, ASTGNNS are still very
competitive.

The experimental results on the two kinds of datasets
show that the proposed ASTGNNSs are more suitable for the
prediction tasks on spatial-temporal graph traffic data with
strong neighboring spatial-temporal correlations.
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6 CONCLUSIONS [15] D. Li, J. Zhang, Q. Zhang, and X. Wei, “Classification of ecg
. . . signals based on 1d convolution neural network,” in 2017 IEEE

In this paper, we propose an effective deep learning based 19th International Conference on e-Health Networking, Applications and

neural network ASTGNN for traffic forecasting. In AST- Services (Healthcom). 1EEE, 2017, pp. 1-6.
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