
1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2989142, IEEE
Transactions on Knowledge and Data Engineering

1

PGeoTopic: A Distributed Solution for Mining
Geographical Topic Models

Kaiqi Zhao, Gao Cong, and Xiucheng Li

Abstract—Geographical topic models have been used to mine geo-tagged documents for topical region and geographical topics, and
also have applications in recommendations, user mobility modeling, event detection, etc. Existing studies focus on learning effective
geographical topic models while ignoring the efficiency issue. However, it is very expensive to train geographical topic models — it may
take days to train a geographical topic model of a small scale on a collection of documents with millions of word tokens. In this paper,
we propose the first distributed solution, called PGeoTopic, for training geographical topic models. The proposed solution comprises
several novel technical components to increase parallelism, reduce memory requirement, and reduce communication cost.
Experiments show that our approach for mining geographical topic models is scalable with both model size and data size on distributed
systems.

Index Terms—Geographical topic model, Distributed machine learning

F

1 INTRODUCTION

With the prominence of GPS-equipped device, a huge
amount of documents associated with geo-locations (e.g.,
coordinates) are increasingly generated on the Web, such
as geo-tagged tweets, webpages and reviews. These geo-
textual documents contain both massive useful informa-
tion on what topics were discussed and where they were
discussed. It is of great interest to mine such data to an-
swer questions like how is topic “education” distributed
over United States and what are the differences between
Redmond and Silicon Valley in topics? In addition, mining
geo-textual data opens many research areas, such as point-
of-interest recommendation [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10], event detection [11], [12], geotagging [13], [14] and
travel planning [15], [16], etc.

To mine geo-textual documents, geographical topic mod-
els are proposed [1], [2], [3], [4], [6], [7], [10], [12], [17], [18],
[19], [20], [21]. There are two main concepts of such models,
i.e., “geographical topics” and “topical regions” [18]. Intu-
itively, geographical topics are spatially coherent topics, e.g.,
“education” in a university region. Topical region is a group
of nearby locations that share similar topic distributions.
Given a collection of geo-textual documents, geographi-
cal topic models learn the geographical topics and topical
regions in an unsupervised manner. Each topic is often
modeled as a word distribution. Each region contains two
components – (1) a topic distribution to model its semantics;
and (2) a Gaussian distribution over locations to model its
spatial information [2], [3], [10], [12], [18], [19]. Example 1.1
shows an example geographical topic model.

Example 1.1. Let D = {d1, d2, ..., d10} be a set of geo-tagged
documents. Figure 1 illustrates their locations. The word tokens
of each document are listed in Table 1. Suppose we want to mine
two topics and two regions, respectively. The geographical topic
model assigns a topic label (k1 or k2) for each word token as listed
in Table 1 and returns the topical regions r1 and r2 in Figure

1. Each region has a topic distribution, e.g., region r1 is mainly
about the movie topic, and its spatial information is represented by
a Gaussian distribution. Each topic is described by a distribution
of words. In the example, the movie topic is represented by the
distribution 〈“movie” = 1

8 , “cold” = 1
8 , “3D” = 1

16 , ...〉. The
topic distribution of each region is computed by counting the topic
assignments to word tokens in the regions. For example, the region
r1 is 11

15 related to “movie”, and 4
15 related to “food”. The ovals in

Figure 1 represent the contour lines of the Gaussian distributions.

Fig. 1: An example of geographical topics

TABLE 1: Word tokens of documents. The topic estimated
for each word token is placed in brackets. k1 and k2 stand
for the movie topic and food topic, respectively.

doc word tokens
d1 wonder woman (k1), ticket (k1)
d2 Atmos (k1), Dolby (k1), movie (k1)
d3 chicken (k2), soup (k2), sauce (k2), taste (k2)
d4 3D (k1), movie (k1), late (k1)
d5 pirates (k1), Caribbean (k1), cold (k1)
d6 terrible (k2), service (k2), cold (k1)
d7 seat (k2), sci-fiction (k1), boss (k1)
d8 snack (k2), seafood (k2), crab (k2), service (k2)
d9 promotion (k1), popcorn (k1), show (k1)
d10 seat (k2), noodle (k2), korean (k2), kimchi (k2)

Although the model quality of geographical topic mod-
els is extensively studied in the existing literature [2], [3],
[10], [12], [18], [19], the training efficiency is an important

Authorized licensed use limited to: Nanyang Technological University. Downloaded on February 18,2021 at 08:45:23 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2989142, IEEE
Transactions on Knowledge and Data Engineering

2

issue for learning big models from big data. As observed
in our experiments, training a moderate geographical topic
model with only 10 topics and 60 regions in a dataset with
120 million word tokens took more than 52 hours. In prac-
tice, both the number of topics and the number of regions
can be hundreds of thousands, resulting in a model with
more than 40 billion parameters (up to 160 GB1). Training
such a big model on hundreds of millions of documents may
take months on a modern machine. Worse still, we cannot
simply divide the map into grids and train small topic
models independently in each grid due to three reasons –
(1) It is non-trivial to estimate the geographical distribution
of a given topic across the subareas as the latent topics
learned in different subareas are often not comparable. (2)
Improper division of the data may split topical regions
on the boundary of subareas and these subareas cannot
be easily merged afterward. (3) Learning a model in each
subarea results in local optimal models that are not globally
optimized to the whole dataset.

To meet the need of learning geographical topic mod-
els on big data, it is of great interest to utilize powerful
computer clusters. Recently, distributed solutions [22], [23],
[24], [25], [26], [27], [28], [29] for topic models are proposed.
However, it is difficult to apply the existing solutions to
geographical topic models. Different from topic models,
geographical topic models have two big matrices of param-
eters that may contain tens of billions of entries, i.e., the
word-topic distribution matrix and the topic-region distri-
bution matrix, and these two parameter matrices are highly
coupled in collapsed Gibbs sampling, the most popular
method to train geographical topic models [1], [3], [4], [10],
[12], [17], [19]. The existing solutions for topic models only
consider the word-topic distribution matrix, lacking support
of efficient synchronization for both matrices. Therefore,
they are not applicable for geographical topic models.

In this work, we propose PGeoTopic, the first solution to
Parallelize the training of Geographical Topic models over
multiple machines. In general, we consider the following
design objectives: support parallelism, reduce the memory re-
quirement, and reduce the communication cost. However, it is
challenging to design a solution to achieve these objectives.
First, the Gibbs sampling algorithm needs both matrices of
parameters due to their interdependency, and thus all the
parameters have to be fetched from servers before sampling.
Such a requirement makes it difficult to parallelize the
sampling computation and the communication, and also
incurs expensive requirement on memory. Second, the two
matrices need to be distributed to the worker machines if the
parameter server framework [30], [31], [32], the most pop-
ular distributed machine learning architecture, is adopted.
To reduce the communication cost of each worker machine,
ideally we want to achieve parameter localization, i.e., each
worker mainly works on the part of parameters stored in
its local memory, and fetches other parameters in an on-
demand manner. However, it is difficult to achieve parame-
ter localization and fetching parameters on-demand.

PGeoTopic follows the setting of parameter servers [30],
[31], [32] in which the two matrix parameters are distributed

1. Suppose there are 300K unique words as in our Twitter
dataset.

and stored in each worker’s shared memory. To address the
above challenges, PGeoTopic comprises the following novel
techniques. Firstly, to support parallelism while reducing
memory requirement, we propose a new training algorithm
that decouples the interdependency of the word-topic ma-
trix and the topic-region matrix to allow independent access
to them. We also design a model parallelism for the pro-
posed training algorithm that partitions the two parameter
matrices into slices. The model parallelism supports the
parallelism of computation and network communication
and allows each worker machine only work on one slice
of either matrix each time. Secondly, we propose to adopt
spatial partitioning to make data allocated to each worker
spatially close, and propose solutions to achieve parameter
localization and on-demand parameter fetching, thus reduc-
ing communication cost. In summary, this paper makes the
following contributions:

1) We propose PGeoTopic, the first distributed solu-
tion for mining geographical topic models. We pro-
pose a new training method and model parallelism
to support the parallelism of computation and net-
work communication while reducing the memory
requirement of worker machines. We also propose
new techniques for parameter localization to reduce
the network communication cost.

2) We conduct extensive experiments to show that
PGeoTopic is efficient and scalable in distributed
learning of geographical topic models. The exper-
imental results also show that our solution outper-
forms the baseline solutions by orders of magnitude.

2 RELATED WORK

In this section, we introduce the existing distributed training
methods for topic models.

2.1 Geographical Topic Models
Geographical topic modeling has been a hot research topic
in recent years. Sizov et al. [17], [33] proposes the GeoFolk
model, which introduces latent regions in geographical
topic modeling. In GeoFolk, each latent region consists of
two one-dimensional Gaussian distributions on latitude and
longitude, respectively, and a multinomial word distribu-
tion. Yin et al. [18] introduce latent topics and assume each
region has a topic distribution instead of a word distri-
bution. This model advances GeoFolk in that it captures
multiple topics for each region. Ahmed et al. [19] propose a
non-parametric approach to automatically learn a hierarchy
of latent regions and their corresponding topic distributions.

Recent studies focus on applying geographical topic
models to social media applications, including point-of-
interest (POI) recommendations [1], [6], [7], [8], [10], event
detection [11], [12], geotagging [13], [14] and travel plan-
ning [15], [16], etc. Yin et al. [7] jointly model spatial,
time and user information to improve POI recommendation
accuracy. Guo et al. [12] improve local event detection by
a non-parametric method that is able to learn the topics
and regions automatically. Liu et al. [15], [16] propose to
recommending travel packages by considering geographical
topics in different regions. Hong et al. [13] propose a model

Authorized licensed use limited to: Nanyang Technological University. Downloaded on February 18,2021 at 08:45:23 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2989142, IEEE
Transactions on Knowledge and Data Engineering

3

to predict the coordinates of tweets without geo-tags by
learning user’s preferences on latent regions and topics.

Although the above existing studies show the effective-
ness of geographical topics models, the training efficiency
is known to be an open problem for those models. Most
of the existing geographical topic models are trained using
Gibbs sampling, which is a Markov Chain Monte Carlo
(MCMC) method. Some studies are proposed to improve the
efficiency of MCMC on single machines [34], such as Hamil-
tonian Monte Carlo (HMC) [35] and efficient importance
sampling (EIS) [36]. However, these more efficient MCMC
methods are based on strong assumptions on the target
distribution and cannot be directly applied to geographical
topic models. For example, HMC does not work on discrete
variables while geo-topic models have both discrete and
continuous variables. EIS [36] assumes the density of the
target distribution to as an integral while the posterior
distribution if region and topic is not an integral. No study
shows the applicability of these more efficient MCMC meth-
ods to geo-topic models to the best of our knowledge.

2.2 Distributed Training of Topic Models

Our work is related to distributed training solutions to topic
models [22], [24], [25], [26], [27], [28], [29], especially the
Latent Dirichlet Allocation model [37]. Hierarchical Dis-
tributed LDA (HD-LDA) [28] assigns data across different
processors, and each processor performs Gibbs sampling on
its data followed by a global synchronization of parameters
in each iteration. Ahmed et al. [22] and Li et al. [23] apply
data parallel strategy, in which they partition and distribute
the documents to the workers and the model, i.e., the word-
topic distributions, is stored in the shared memory across
machines (called parameter servers). The data is not moved
around because it is often larger than the model. Instead, the
model is transmitted to the workers and each worker learns
topics from local data. However, when the model cannot fit
into memory, parts of the model are frequently swapped in
and out of the worker’s main memory, leading to expensive
I/O cost, which is similar to the first baseline used in our
experiments.

F+LDA [27] partitions the data across multiple workers
and builds a binary tree structure to speed up the sampling.
Peacock [24] and LightLDA [25] adopt both data parallel
and model parallel strategies. Peacock partitions the model
by words and each worker takes care of the words appear-
ing in its model partition. However, the extra document-
topic distributions has to be synchronized because a docu-
ment is processed across workers. LightLDA partitions the
model into slices by words as in Peacock, but distributes
each document to a single worker. Model slices are sched-
uled to workers slice by slice in each iteration such that the
workers process different parts of the model independently
at the same time. WarpLDA [26] further improves LightLDA
by a carefully designed memory access mechanism.

The aforementioned techniques are not suitable to geo-
graphical topic models. For example, if we extend LightLDA
or WarpLDA, the region-topic matrix will be accessed each
time a worker processes a model slice of the word-topic
matrix. Worse still, the region-topic matrix may not be able
to fit into memory. In our experiment, we extend LightLDA

Fig. 2: Graphical representation of a geographical topic
model.

for training geographical topic models as a baseline. To the
best of our knowledge, no existing work considers training
a geographical topic model in a distributed setting.

3 PRELIMINARIES

In this section, we introduce geographical topic models and
the corresponding training algorithm. For easy reference, we
summarize the notations in Table 2.

TABLE 2: Summary of notations

Notation Description
D The set of geo-tagged documents
K, R Number of topics and number of regions
zdi Topic assignment for i-th word in document d
rd Region assignment for document d
ld Location assignment for document d
η ∈ RR Region distribution
Ψ ∈ RR×K The topic-region matrix
Φ ∈ RK×V The word-topic matrix
Ψr ∈ RK The topic distribution of region r
Φz ∈ RV The word distribution of topic z
µr,Σr The mean and variance of region r
mzr Number of co-occurrences of the topic z and

region r in the same document
nzw Frequency of assigning topic z to word w
nz Frequency of topic z in the dataset
nr Frequency of region r in the dataset
α, β, γ Hyper-parameters of the model

3.1 Geographical Topic Model

In a geographical topic model, each latent topic is often
defined as a distribution of words Φz . Each latent region
r is often defined as a Gaussian distributionN (µr,Σr) with
mean µr and covariance Σr , and a distribution of topics Ψr .
A geospatial document is generated as follows [18]:

1) Draw region distribution η ∼ Dir(α)
2) Draw a latent region index r ∼ Multi(η)
3) Draw a location l ∼ N (µr,Σr)
4) For each word w in document d,

a) Draw a topic index z ∼ Multi(Ψr)
b) Draw w ∼ Multi(Φz)

Figure 2 shows the graphical representation of a geograph-
ical topic model. Note that some models [1], [4], [10], [12],
[20], [21] may consider more variables (e.g., time) besides
topics and regions. We will show that our solution can also
handle models with additional variables in Section 5.6.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on February 18,2021 at 08:45:23 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2989142, IEEE
Transactions on Knowledge and Data Engineering

4

3.2 Training Geographical Topic Models

Most of the geographical topic models are learned using
Collapsed Gibbs sampling [1], [3], [4], [10], [12], [17], [19].
Specifically, a region r and a topic k is sampled for the
i-th word token w in the document d with the following
probability, given the topic and region assignments of other
word tokens and the document collection D:

p(zdi = k, rdi = r|Ψ−di,Φ−di, D)

∝ n−dikw + βkw∑
w′ n

−di
kw′ + βkw′︸ ︷︷ ︸

word-topic matrix

· m−dikr + γkr∑
k′ m

−di
k′r + γk′r︸ ︷︷ ︸

topic-region matrix

f(ld|µr,Σr) · (n−dr + αr)︸ ︷︷ ︸
location-region relation

(1)

where n−dikw denotes the frequency of assigning word w to
topic k excluding the assignment of the i-th word token
in document d. The notation m−dikr denotes the frequency of
assigning topic k to region r excluding the assignment of the
current token. The hyperparamters αr , βkw, γkr are the prior
probability of region r, the prior probability of observing
topic k together with word w, and the prior probability
of observing topic k together with region r, respectively2.
The function f(·|µr,Σr) denotes the probability density of
the Gaussian distribution of region r. The count n−dr is the
number of documents falling into region r excluding docu-
ment d. After the regions of word tokens in a document are
sampled, the region assignment of a word token is randomly
selected as the region of the document. The training process
runs iteratively until the model converges.

The first two terms in Eq. (1) can be stored as matrices.
For ease of presentation, we use word-topic matrix denoted
by Φ and topic-region matrix denoted by Ψ to refer to the
two parameters in the remaining of the paper. The Gibbs
sampler needs to access the whole topic-region matrix when
computing Eq. (1) for all topic-region pairs. The whole topic-
region matrix can be too large to be synchronized among
machines in a distributed setting and may not even fit into
the local memory.

4 PROBLEM STATEMENT

This paper focuses on geo-textual documents, such as geo-
tagged tweets, Foursquare check-ins, geo-tagged news, geo-
tagged web pages, etc. Formally, we define geo-textual
document as follows.

Definition 1. Geo-textual Document. A geo-textual document
is a tuple d = 〈wd, ld〉, where wd is a set of word tokens and ld
is a latitude-longitude geo-location.

Consider that the data is often much larger than the
model, we adopt the parameter server setting [30], [31], [32]
as does the recent study on distributed LDA [25], [26]. That
is, we transfer the model instead of the data via network
during training. In the parameter server architecture, the
memory of each machine is divided into two parts - (1)
worker memory and (2) the shared memory which is re-
garded as the “server memory” of the parameter servers.
The model parameters are distributed and stored in the

2. These prior distributions are often set to uniform when we
do not have any prior knowledge of the distribution.

shared memory of each machine, i.e., the parameter server.
Under this setting, we formulate the problem as follows:

Definition 2. Distributed Training of Geographical Topic
Models. Given a set of geo-textual documents D, and a cluster
of M machines, the task of distributed training of a geographical
topic model is to distribute D to the M machines and learn the
model, i.e., the topic-word matrix Φ, the region-topic matrix Ψ,
and the Gaussian distribution N (µr,Σr) of each region, on the
data distributed to the workers in parallel.

5 PGEOTOPIC

In this section, we first provide an overview of our proposed
solution (Section 5.1). Then, we present the key techniques
of the proposed solution (Section 5.2 - 5.4). Finally, we give
a summary of the whole training process (Section 5.5).

5.1 PGeoTopic Overview
To the best of our knowledge, there is no existing distributed
training solution for geographical topic models. We start
with a straightforward method with only data parallelism
to motivate the design objectives of PGeoTopic. A straight-
forward method is to evenly distribute the data randomly
to each worker. In each iteration, each worker fetches the
parameters from the parameter servers to its local memory
and use Eq. (1) to sample the topic and region for each
word token in the documents assigned to the worker. When
parameters cannot fit into the memory of workers, paging
algorithm, e.g., Least Recently Used (LRU), is used to swap
the parameters between memory and hard disk. At the end
of each iteration, the updated parameters are pushed back
to the parameter servers.

The shortcomings of this method are three-fold. Firstly,
the computation and network communication cannot be
conducted in parallel. The training algorithm cannot run
until the updated parameters are fetched from the parame-
ter servers. Secondly, a large model may not fit into mem-
ory. This method has to frequently swap the parameters
between memory and hard disk, incurring expensive I/O
cost. Thirdly, access and synchronization of the parameters
within iterations incurs heavy network communication cost.

Design Objectives. The motivation of this work is to ad-
dress these issues. Specifically, we propose the following
design objectives:

1) Support the parallelism between computation and
network communication - The worker machines can
start training before all parameters are loaded.

2) Reduce memory requirement - Each time a small
subset of the parameters are fetched via network
and held in memory for training.

3) Reduce communication cost - Instead of accessing
all the parameters in each iteration, we aim to local-
ize the parameters such that each worker needs to
access only part of the parameters and the worker
machines only fetch the parameters via network
when necessary.

Based on the three design objectives, we propose a dis-
tributed solution, called PGeoTopic. PGeoTopic comprises

Authorized licensed use limited to: Nanyang Technological University. Downloaded on February 18,2021 at 08:45:23 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2989142, IEEE
Transactions on Knowledge and Data Engineering

5

three novel techniques – A new distributed training algo-
rithm (Section 5.2), a model parallelism (Section 5.3) and a
parameter localization mechanism (Section 5.4).

5.2 The Proposed Distributed Training Algorithm
Consider sampling the topic and region for a word token
using Eq. (1). Even though we can only fetch the topic vector
of one word token each time from the word-topic matrix, the
whole topic-region matrix is needed before sampling a topic
and region for every word token. This interdependency
between the two parameter matrices incurs extremely high
network communication before the sampling computation.
To solve the problem, we propose to decouple the interde-
pendency of the two matrices and make use of them inde-
pendently. The high-level idea is to divide the word tokens
into two sets, and for one set we use the word-topic matrix
and the region parameters (e.g., f(ld|µr,Σr) · (nr + αr) in
Eq. (1)) to sample topics and regions while using the topic-
region matrix to sample topics and regions for the other set.

To realize the high-level idea, we propose a new training
algorithm that uses Metropolis-Hastings [38] as building
block. Metropolis-Hastings (MH) algorithm is often used to
draw samples from distributions that are hard to sample
from. The idea is to sample from a proposal distribution
and test whether each sample should be accepted or re-
jected. The current sample is accepted when it is more
likely to be sampled from the original distribution than the
previous one. More precisely, current sample xt is accepted
with the probability min(1, p(x=xt)q(x=xt−1)

p(x=xt−1)q(x=xt)
), where xt−1 is

the previous sample, p(x) and q(x) are the density (at x)
of the original distribution and the proposal distribution,
respectively. It often takes several sampling steps (burn-in
steps) for MH to generate samples similar to the original
distribution.

In our case, the original distribution is the posterior in
Eq. (1), and we aim to derive a proposal distribution that
supports independent access to the two parameter matrices.
Challenges. Designing a proper proposal distribution is
usually difficult. The proposal distribution should be able
to draw similar samples as does Eq. (1), and be able to
converge to similar likelihood within similar number of it-
erations as does Eq. (1). Meanwhile, the sampling efficiency
should be as high as possible, and support independent
access to the two matrices. Figure 3 shows the training effec-
tiveness and efficiency of some example proposals. Uniform
distribution with 10 burn-in steps (Uniform-10) is the most
efficient. It does not need to access the matrices but fails to
improve the log-likelihood. To the other extreme, sampling
from true posterior (True posterior) needs to access both ma-
trices and is often time-consuming. Our goal is to construct a
proposal like PGeoTopic in Figure 3 that achieves effective
and efficient training and supports independent access to
the word-topic and topic-region matrices.
Observations. To address the aforementioned challenges,
we develop our training algorithm based on the following
three observations.

• Observation 1: If we only consider the word-topic
and location-region correlations, sampling a topic
from the word-topic distribution and a region from
the posterior of Gaussian mixture are independent,

-6.0E+06

-5.8E+06

-5.6E+06

-5.4E+06

-5.2E+06

-5.0E+06

-4.8E+06

-4.6E+06

 0 10 20 30 40 50 60 70 80 90 100

L
o
g
-l

ik
el

ih
o

o
d

Iterations

True posterior
PGeoTopic-1
PGeoTopic-5

PGeoTopic-10
Uniform-10

(a) Log-Likelihood v.s. Itera-
tions

-6.0E+06

-5.8E+06

-5.6E+06

-5.4E+06

-5.2E+06

-5.0E+06

-4.8E+06

-4.6E+06

 0 500 1000 1500 2000

L
o
g
-l

ik
el

ih
o
o
d

Time (sec.)

True posterior
PGeoTopic-1
PGeoTopic-5

PGeoTopic-10
Uniform-10

(b) Log-Likelihood v.s. Time

Fig. 3: Training effectiveness and efficiency on a random
sample of 10K geo-tagged tweets, where N of PGeoTopic−
N is the number of burn-in steps. Both numbers of topics
and regions are set at 10.

i.e., p(zdi = k, rdi = r|D) ≈ p(zdi = k|wd) · p(rdi =
r|ld).

• Observation 2: If we only consider the topic-region
correlation, sampling a topic-region pair with prob-
ability proportional to mkr is similar to sampling
from a data-independent joint distribution p(zdi =
k, rdi = r).

• Observation 3: The proposal distribution should pre-
serve all the correlations in Eq. (1) to draw similar
samples as does Eq. (1).

To tackle the aforementioned challenges, we propose two
proposal distributions, namely independent proposal and
joint proposal, respectively, and apply a method to combine
the two proposals to preserve all the correlations in Eq. (1)
in order to generate similar samples to Eq. (1).
Independent proposal. We define the independent proposal
as:

qindep(zdi = k, rdi = r) ∝ nkw + βkw
nk + β̄

·f(ld|µr,Σr)·(nr+αr),
(2)

where nk =
∑
w′ nkw′ and β̄ =

∑
w′ βkw.

In this proposal, we sample a topic with probability
proportional to nkw+βw

nk+β̄
and a region from f(ld|µr,Σr)·(nr+

αr) independently. For simplicity, we use p(k, r) to denote
p(zdi = k, rdi = r|Ψ−di,Φ−di, D) (Eq. (1)) and qindep(k, r)
to denote qindep(zdi = k, rdi = r). The acceptance ratio of
the samples drawn from the proposal is then computed as:

min(1,
p(kt, rt)qindep(kt−1, rt−1)

p(kt−1, rt−1)qindep(kt, rt)
),

where t is the t-th sample, and t− 1 represents the previous
sample.

In the independent proposal, the term nkw+βw

nk+β̄
ensures

similar topic-word correlations as does the true posterior,
while f(ld|µr,Σr) ·(nr+αr) preserves the spatial proximity
and the region popularity in the true posterior. The indepen-
dent proposal only needs to access the word-topic matrix
and the region parameters in which the region parameters
are often small (O(R)), and thus the communication cost is
mainly from the word-topic matrix.
Joint proposal. We propose the joint proposal to capture the
topic-region correlation. It is defined as:

qjoint(zdi = k, rdi = r) ∝ (mkr+γkr)·f(ld|µr,Σr)·(nr+αr),
(3)

Authorized licensed use limited to: Nanyang Technological University. Downloaded on February 18,2021 at 08:45:23 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2989142, IEEE
Transactions on Knowledge and Data Engineering

6

with acceptance ratio of the samples:

min(1,
p(kt, rt)qjoint(kt−1, rt−1)

p(kt−1, rt−1)qjoint(kt, rt)
).

The joint proposal only accesses the topic-region matrix
and the region parameters. It is used to make sure the
learned topics and regions are correlated. We keep the
Gaussian mixture term f(ld|µr,Σr) · (nr + αr) to support
our proposed model parallelism (Section 5.3).
Combining the two proposals. We combine the two propos-
als using the cyclic method [39]. Specifically, after applying
the independent proposal to a word token, we switch to use
the joint proposal to process the next word token. The cyclic
method is proven to be able to converge and is equivalent
to a probability distribution with density that equals to the
multiplication of the densities of two proposals [39]. In our
case, the multiplication of the two proposals results in the
similar form of Eq. (1).

Note that we need to access the topic-region matrix to
compute the density p(zdi = kt, rdi = rt) in the acceptance
ratio of the independent proposal. The same problem exists
in the joint proposal. To allow using the two matrices inde-
pendently for drawing samples, we delay the computation
of the acceptance ratio to the end of each iteration as does
WrapLDA [26]. In other words, we first draw a sequence of
s samples (zdi, rdi) using the two proposals for each word
token, where s is the number of burn-in steps. Given that all
the samples are drawn, we then compute the true posterior
distribution p(zdi = kt, rdi = rt) and the acceptance ratio by
accessing the corresponding parameters, and accept/reject
the samples in the sample sequence of each word token. We
present the details in Section 5.3.

5.3 Model Parallelism

Based on the proposed training algorithm, we design a
model parallelism that supports the parallelism of train-
ing and network communication, and reduce the memory
requirement of worker machines. Note that we only focus
on the model parallelism for the word-topic matrix and the
topic-region matrix since other parameters, i.e., Gaussian
parameters µr,Σr , region counts nr and topic counts nk,
are of small size. Our high level idea is to partition the two
matrices into slices, and each time a worker machine only
fetches one slice for training. When a worker is sampling
with one slice, it prefetches the next slice to parallel the train-
ing computation and communication. Figure 4 illustrates the
proposed model parallelism.
Parallelism of Word-Topic Matrix. Before training, we al-
locate the independent (white) and joint (grey) proposals
alternatively to the word tokens in the data of a worker.
As a result, sampling for the words in white only needs to
access the word-topic matrix while sampling for the words
in grey only needs to access the topic-region matrix. Then,
we partition the word-topic matrix by words into word
slices (blue rectangle in Figure 4) and the topic-region matrix
by regions into region slices (in red rectangle in Figure 4).
Given a training document and a word slice on a worker,
we only sample the topics and regions for the word tokens
of the document that are contained in the word slice and
allocated to the independent proposal.

Parallelism of Topic-Region Matrix. For the topic-region
matrix, the case is different because the whole topic-region
matrix may be accessed for each single word token in the
joint proposal. As such, we propose a two-step sampling
scheme. The idea is to first sample regions for each word to-
ken. Given a document and a region slice, we then only sam-
ple topics for the word tokens that are assigned to regions in
the region slice. Specifically, the joint proposal can be viewed
as a mixture model, i.e., the probability of sampling a topic
k from it is p(zdi = k) =

∑
r p(zdi = k, rdi = r)p(rdi = r),

where p(rdi = r) ∝ f(gd|µr,Σr) · (nr + αr). Our two-step
sampling scheme follows the sampling routine of a mixture
model. In the first step, we sample a region for a word token
based on f(ld|µr,Σr) · (nr + αr); In the second step, we
sample a topic k according to the probability of observing
region r together with topic k, which is proportional to
mkr + γkr .

For example in Figure 4, given document d4 and region
slice r1 ∼ r2, we first sample the regions of the word tokens
in d4 (e.g., r2 and r3). Then, we sample the topics for the
word tokens assigned to region r2 (in red color). After the
region slice r3 ∼ r4 is fetched, we sample the topics for the
word tokens assigned to region r3 (in black color). In each
training iteration, a worker fetches the two matrices slice by
slice from the parameter servers. After using a word slice
or a region slice, the updates are pushed to the parameter
servers and the local copy of the slice can be removed from
memory. In addition, when sampling with a parameter slice
we can prefetch the next parameter slice at the same time to
hide the network communication time.

Fig. 4: An example of model parallelism.

5.4 Parameter Localization
To reduce the communication cost, we first use spatial
partitioning techniques to ensure documents in each worker
are spatially close, and only relate to part of the regions.
Without loss of generality, we use k-d tree [40] to partition
the data3. Then, we propose two ideas for parameter local-
ization – (1) on-demand fetching of topic-region matrix and
(2) parameter allocation to related worker.

5.4.1 On-demand Fetching of Topic-Region Matrix
As we partition the data according to the spatial information
(e.g., using k-d tree), the documents in a worker are spatially
close. When we apply the two-step sampling scheme in
Section 5.3, regions that are far from the document are less
likely to be sampled in the first step, because the Gaussian

3. We leave the comparison among spatial partitioning techniques as
future work.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on February 18,2021 at 08:45:23 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2989142, IEEE
Transactions on Knowledge and Data Engineering

7

distribution has exponential decrement of density w.r.t. the
distance. As a result, only a small number of regions are
close to the documents in a particular worker machine,
and the worker only needs to access relevant region slices
(contain regions sampled from the first step of the two-step
sampling scheme) without iterating all the region slices.
Benefit from spatial partitioning, this on-demand fetching
manner largely reduce the chance of accessing the topic-
region parameters stored in the remote parameter servers.

5.4.2 Parameter Allocation to Related Worker

The parameter servers store the parameters in the shared
memory, which is distributed over all the machines. Based
on the data parallelism and the two-step sampling scheme,
we can find the regions that a worker is related to, and
the corresponding region slices. We propose the second
idea to reduce communication cost, which stores region-
topic matrix slices in the shared memory of the related
worker, and then accessing these slices from the parameter
servers only needs access local memory. We achieve this by
initializing the Gaussian mixture parameters of the regions
with the data in the same machine. For example in Figure 4,
we initialize r1 and r2 with the documents in worker 1 such
that r1 and r2 (depicted as red ovals) are spatially close to
the documents in worker 1. We store r1 and r2 in the shared
memory of worker 1, and thus worker 1 only needs to read
from its memory to access the region slices for r1 and r2.

5.5 Summary of the Training Process

Algorithm 1 shows the sampling process in a worker ma-
chine. The data allocated to the worker is split into data
blocks that can fit into memory and each time we read
a data block from disk. To process a data block, we first
allocate one of the two proposals (independent or joint) to
each word token alternatively as mentioned in Section 5.2
(Line 5). After that, we sample a sequence of s (burn-in
steps) pairs of topic-region for Metropolis-Hastings. For the
t-th sample of region-topic pair, we use Rdi[t] and Kdi[t]
to denote its region and topic, respectively. Specifically, we
draw s regions from the posterior of the Gaussian mixture,
i.e., f(ld|µr,Σr) · (nr + αr), and store the samples in Rdi
and the corresponding density in pdi and qdi (Lines 6 -
9). With all the regions sampled, we next sample topics
for each word token. We fetch the topic-region parameters
slice by slice and sample s topics for each word token
allocated to the joint proposal (Lines 11 - 18). During the
sampling process, we also update and store the density
(Lines 17 - 18). Similarly, we fetch the word-topic parameters
slice by slice and sample s topics for each word token
allocated to independent proposal (Lines 19 - 27). Because
we have sampled topics and regions for all word tokens
allocated to the joint proposal, we can now update the
true posterior density p(zdi = kt, rdi = rt) of all word
tokens allocated to both proposals at the same time when
we are working on the word slices (Line 27). To this end,
we have computed and stored the true posterior density
for all word tokens allocated to the joint proposal. We then
update the true posterior density for word tokens allocated
to the independent proposal by accessing necessary topic-

region parameters4 (Lines 28 - 30). Finally, we compute
the acceptance ratio and accept/reject the samples for each
word token (Lines 32 - 35). The resulting region assignment
for word tokens in a document forms an empirical region
distribution p(rd|D) =

cdr
Nd

, where cdr is the number of words
assigned to region r in the document d, and Nd is the total
number of word tokens in d. Directly sampling from such
distribution takes O(R) time. As such, we sample the region
of the document by randomly selecting from one of its
word’s region assignment rdi′ (Lines 36 - 38). Because there
are cdr out of Nd words assigned to region r, this sampling
process is equivalent to sample from the empirical region
distribution. We terminate the sampling process when the
model converges, i.e., the increment of likelihood is less than
a percentage threshold (e.g., 0.1%).

Note that in Algorithm 1, each worker reads and samples
data blocks as well as fetches parameter slices from parame-
ter servers during sampling. We can further reduce the train-
ing time by overlapping I/O, network and computation,
i.e., we prefetch the next data block and the next parameter
slice while sampling with current data block. Specifically,
we maintain a sampling thread, an I/O thread and a model
thread. The sampling thread gets data blocks from the I/O
thread and parameter slices from the model thread. The I/O
thread keeps reading data blocks and feeding them to the
sampling thread, while the model thread keeps retrieving
the next parameter slice from network.

5.6 Extension of PGeoTopic
Geographical topic models have many variants [1], [4], [10],
[12], [20], [21] in which other variables such as user and
time are considered. Suppose we have a set of additional
variables X correlate to topics and/or regions (e.g., time),
the Gibbs Sampler for a model with additional variables X
is often in the following form:

p(zdi = k, rdi = r,X|Ψ−di,Φ−di, D)

∝p(zdi = k, rdi = r|Ψ−di,Φ−di, D) · g−di(X|k, r),
(4)

where g−di(X|k, r) is the posterior predictive distribution
excluding the current word token. Our solution can be
applied to these variants with minor modification. Consider
the variables Xz ⊆ X that are only related to topic, and
Xr ⊆ X that are only related to region, we extend the
independent proposal as:

q′indep(zdi = k, rdi = r) ∝qindep(zdi = k, rdi = r)·
g−di(Xz|k) · g−di(Xr|r),

(5)

such that the parameters in the independent proposal are
related to either topic or region. The parameters related
to topics and regions can then be partitioned into slices
by words and regions, respectively, for parallelism. For
variables Xzr ⊆ X that are related to both topic and region,
we extend the joint proposal as:

q′joint(zdi = k, rdi = r) ∝qjoint(zdi = k, rdi = r)·
g−di(Xzr|k, r),

(6)

4. We can buffer these necessary parameters in the local memory
when we work on the region slices to avoid fetching these parameters
via network.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on February 18,2021 at 08:45:23 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2989142, IEEE
Transactions on Knowledge and Data Engineering

8

Algorithm 1: Training process in a worker

1 while The model has not converged do
2 foreach data block Db in the worker do
3 Q← ∅;
4 foreach d in Db and i in wd do
5 Allocate the two proposals to wdi

alternatively;
6 for t=1 to s do
7 Rdi[t]← Sample a region

rt ∝ f(ld|µr,Σr) · (nr + αr);
8 pdi[t]← f(ld|µrt ,Σrt) · (n−drt + αrt) ;
9 qdi[t]← f(ld|µrt ,Σrt) · (nrt + αrt);

10 Q← Q ∪ { unique regions from Rdi};
11 while Has next region slice do
12 Fetch next region slice that has regions in

Q;
13 foreach d, i where rdi is in the region slice do
14 if Joint proposal is allocated then
15 for t=1 to s do
16 Zdi ← Sample a topic

kt ∝ mkRdi[t] + γkRdi[t] ;
17 pdi[t]←

pdi[t] · (m−diktRdi[t]
+ γktRdi[t]) ;

18 qdi[t]←
qdi[t] · (mktRdi[t] + γktRdi[t]) ;

19 while Has next word slice do
20 Fetch next word slice;
21 foreach d, i where wdi in the word slice do
22 if Independent proposal is allocated then
23 for t=1 to s do
24 Zdi[t]← Sample a topic

kt ∝
nkwdi

+βkwdi

nk+β̄
;

25 qdi[t]← qdi[t] ·
nktwdi

+βktwdi

nkt+β̄
;

26 for t=1 to s do

27 pdi[t]← pdi[t] ·
n−di
ktwdi

+βktwdi

n−di
kt

+β̄
;

28 foreach wdi allocated to independent proposal do
29 for t=1 to s do
30 pdi[t]←

pdi[t] · (m−diZdi[t]Rdi[t]
+ γZdi[t]Rdi[t]);

31 foreach d in Db and i in wd do
32 zdi, rdi ← Zdi[1], Rdi[1] ;
33 for t=2 to s do
34 if Random(0,1) <

AcceptanceRatio(pdi[t− 1], pdi[t],
qdi[t− 1], qdi[t]) then

35 zdi, rdi ← Zdi[t], Rdi[t];

36 foreach d in Db do
37 i′ ← random(1,|wd|);
38 rd ← rdi′ ;

and parallelize the parameters related to Xzr in the same
way as the topic-region matrix. Then, we can apply Algo-
rithm 1 on the extended proposals.

6 EXPERIMENTS

6.1 Experimental Setup

Datasets. We conduct experiments on three datasets, namely
Twitter, Yelp and Web. The Twitter dataset is collected from
New York city users during 2015, which contains more
than 136 million geo-tagged documents. The Yelp dataset5

contains 4.40 million user reviews on points of interest in
four states (Nevada, Utah, California and Arizona) of USA.
We use the geo-location of the points of interest as the
location of the reviews. The Web dataset is collected from
the Common Crawl data6, which contains 22 millions web
pages. Because the web pages do not have geo-tags, we ran-
domly assign the web pages to a POI dataset SimpleGeo’s
Places7 with 12 millions locations in United States. Note
that we only use the Web dataset for evaluating the training
efficiency. Table 3 reports the statistics of both datasets.

TABLE 3: Statistics of the datasets

Twitter Yelp Web
#docs 136.69 M 4.40 M 22.04 M
#tokens 755.80 M 234.47 M 1.30 B
vocabulary 316,890 153,621 162,694
latitude [40.4, 40.9] [33.2, 41.2] [18.3, 71.3]
longitude [-74.2, -73.7] [-115.4, -111.6] [-168.0, -64.9]

Distributed training solutions. We compare the proposed
solution (PGeoTopic) with the following baseline solutions:

• Baseline: The straightforward solution in Section 5.1.
• Baseline+M: We extend Baseline by applying the

model parallelism of LightLDA [25], [41] on the
word-topic matrix.

• PGeoTopic-O: PGeoTopic without the on-demand
parameter fetching method (Section 5.4.1).

• PGeoTopic-L: PGeoTopic without allocating the pa-
rameters to related workers (Section 5.4.2).

• PGeoTopic-P: PGeoTopic without overlapping I/O,
computation and network communication (Section
5.5).

• PGeoTopic-S: PGeoTopic that distributes data to
worker machines randomly, but not based on spatial
partitioning.

We set both the number of topics and the number of regions
at 10,000 if not specified. The hyper parameters of all meth-
ods are set at the same values, i.e., α = 0.1, β = 10−3/|V |,
and γ = 10−3/K . We also place a normal-Wishart prior to
the Gaussian distribution of each region for all methods, to
avoid zero denominator when updating the region parame-
ters µr,Σr .
Experimental environment. Our solution can be built based
on most of the existing parameter servers. In this pa-
per, we implement the proposed solution on top of an

5. https://www.yelp.com/dataset
6. https://aws.amazon.com/public-datasets/common-crawl/
7. https://freegisdata.rtwilson.com/

Authorized licensed use limited to: Nanyang Technological University. Downloaded on February 18,2021 at 08:45:23 UTC from IEEE Xplore. Restrictions apply.

https://www.yelp.com/dataset
https://aws.amazon.com/public-datasets/common-crawl/
https://freegisdata.rtwilson.com/

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2989142, IEEE
Transactions on Knowledge and Data Engineering

9

open-sourced8 stale-synchronized parameter server called
Bösen [30]. We setup the experiments on an Amazon EC2
cluster with 20 machines, each of which has 27 computation
units, 61 GB RAM and 1 Gbps network. The default number
of machines used for training is 20 if not specified.
Objectives. (1) We evaluate the scalability of PGeoTopic
with model size, number of machines and data size (Sec-
tion 6.2); (2) We evaluate the time used for computation
versus network communication to show the usefulness of
overlapping the computation and network communication
(Section 6.3); (3) We evaluate the memory cost of worker
machines and the network communication cost (Section 6.4
and Section 6.5); (4) We also evaluate the model quality
via two applications (Section 6.6) and present a case study
(Section 6.7).

6.2 Scalability
We first show that PGeoTopic is able to handle a big model
with 100,000 topics and 100,000 regions. We run Baseline,
Baseline+M and PGeoTopic on 20 machines on the Twitter
dataset. We observe that Baseline and Baseline+M cannot
finish one iteration of training within one week. PGeoTopic
finishes training within 20 hours. This is because PGeoTopic
improves parallelism and reduces network communica-
tions. In contrast, the two baseline methods do not consider
the parallelism on the topic-region matrix, thus incurring
high network communication.

We follow Yuan et al. [25] to use average throughput
instead of overall training time in the remaining scalability
experiments because it is impractical to run the baseline
methods until they converge. The average throughput is
measured by the average number of word tokens sampled
per second. It is roughly inversely proportional to the train-
ing time because all methods converge in similar numbers
of iterations as observed from the results on small datasets.
We run each baseline method for 10 hours and count the
number of total tokens sampled for computing the average
throughput. For PGeoTopic, we run util it converges.
Scalability with model size. We first fix the number of
regions at 10,000 and vary the number of topics from {1000,
10,000, 100,000} to evaluate the scalability with number of
topics. To evaluate the scalability with number of regions,
we fix the number of topics at 10,000 and vary the number of
regions from {1000, 10,000, 100,000}. We report the average
throughput of all methods in Figure 5 and Figure 6.

In all datasets, PGeoTopic outperforms the two baseline
methods by several orders of magnitude. The through-
put of the two baselines degrades fast as the number
of topics/regions increases. Compared to the baselines,
PGeoTopic is less sensitive to the number of topics/regions.
When the number of topics/regions increases, the through-
put of PGeoTopic slightly degrades. This is because when
the model is large, it is more difficult to overlap the network
communication cost with the computation.
Scalability with number of machines. We run PGeoTopic,
Baseline and Baseline+M on 12, 16 and 20 machines, re-
spectively, and report the average throughput in Figure 7.
Both baseline methods have extremely low throughput, i.e.,
less than 0.2 tokens per second on all the datasets. The

8. https://github.com/sailing-pmls/jbosen

proposed solution scales roughly linearly to the growth of
number of machines in Twitter and Web. In Yelp dataset, the
performance of PGeoTopic does not increase significantly
when the number of machines increase from 16 to 20. This
may because the Yelp dataset is smaller than the other two,
and thus each worker machine has less computation cost to
overlap with the network communication. Overall, our so-
lution is efficient and scalable w.r.t. the number of machines,
because PGeoTopic overlaps the computation with network
communication, and reduces the network communication
cost.
Scalability with data size. We vary the size of the data by
randomly sampling 10%, 50%, and 100% of the data to eval-
uate the scalability of PGeoTopic with different data sizes.
The average throughput is reported in Figure 8. PGeoTopic
has higher throughput on larger dataset, because when the
dataset is large, the worker machines spend more time for
computation on each model slice. When the dataset is small,
the time spent on sampling computation may not be able
to largely overlap the time for network communication. In
contrast, the two baselines do not display the property.

6.3 Computation v.s. Network and I/O
We run PGeoTopic and PGeoTopic-P on the Twitter dataset,
and report the breakdown of the average training time per
iteration for computation and network communication in
Figure 9. Both the number of topics and the number of
regions are set at 10,000.

Figure 9 shows that PGeoTopic-P is 1–3 times more
expensive than PGeoTopic for communication cost while
they take similar time for computation. In addition, we
observe that PGeoTopic-P takes 23.5 seconds on average for
I/O per iteration while PGeoTopic only takes 2 seconds on
average. The reason is that PGeoTopic-P does not overlap
computation with network communication and I/O. Our
experimental results demonstrate the benefits of overlap-
ping computation with network communication and I/O.

6.4 Memory Requirement on Worker Machines
We next evaluate the memory requirement on the worker
machines. We run PGeoTopic on 12, 16 and 20 machines, and
report the average memory usage for each machine during
each iteration in Table 4.

TABLE 4: Memory usage of PGeoTopic in gigabytes

Machines 12 16 20
Worker 7.92 7.51 7.44
Shared Memory 24.86 18.92 15.24
Total 32.79 26.43 22.70

The row “Worker” reports the amount of local memory
used for training the model while “Shared Memory” of each
worker machine is employed for parameter servers. The
shared memory usage drops when the number of machines
increases because the memory usage for model parameters
is amortized to more machines. The worker memory usage
remains stable irrespective of the number of machines. This
is because PGeoTopic only needs to load one model slice
into memory each time. This experiment indicates that
PGeoTopic is applicable to machines with limited memory.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on February 18,2021 at 08:45:23 UTC from IEEE Xplore. Restrictions apply.

https://github.com/sailing-pmls/jbosen

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2989142, IEEE
Transactions on Knowledge and Data Engineering

10

 0

 1

 2

 1000 10000 100000

T
h
ro

u
g
h
p
u
t

(#
to

k
en

s
/

se
c)

Number of Topics (log-scale)

1.0E+05

1.5E+05

2.0E+05

2.5E+05

3.0E+05

T
h
ro

u
g
h
p
u
t

(#
to

k
en

s
/

se
c)

PGeoTopic
Baseline

Baseline+M

(a) Twitter

 0

 1.5

 3

 1000 10000 100000

T
h
ro

u
g
h
p
u
t

(#
to

k
en

s
/

se
c)

Number of Topics (log-scale)

1.0E+05

1.5E+05

2.0E+05

2.5E+05

3.0E+05

T
h
ro

u
g
h
p
u
t

(#
to

k
en

s
/

se
c)

PGeoTopic
Baseline

Baseline+M

(b) Yelp

 0

 1

 2

 1000 10000 100000

T
h
ro

u
g
h
p
u
t

(#
to

k
en

s
/

se
c)

Number of Topics (log-scale)

1.0E+05

1.5E+05

2.0E+05

2.5E+05

3.0E+05

T
h
ro

u
g
h
p
u
t

(#
to

k
en

s
/

se
c)

PGeoTopic
Baseline

Baseline+M

(c) Web

Fig. 5: Varying number of topics

 0

 1

 2

 1000 10000 100000

T
h
ro

u
g
h
p
u
t

(#
to

k
en

s
/

se
c)

Number of Regions (log-scale)

1.0E+05

1.5E+05

2.0E+05

2.5E+05

3.0E+05

T
h
ro

u
g
h
p
u
t

(#
to

k
en

s
/

se
c)

PGeoTopic
Baseline

Baseline+M

(a) Twitter

 0

 1.5

 3

 1000 10000 100000

T
h
ro

u
g
h
p
u
t

(#
to

k
en

s
/

se
c)

Number of Regions (log-scale)

1.0E+05

1.5E+05

2.0E+05

2.5E+05

3.0E+05

T
h
ro

u
g
h
p
u
t

(#
to

k
en

s
/

se
c)

PGeoTopic
Baseline

Baseline+M

(b) Yelp

 0

 1

 2

 1000 10000 100000

T
h
ro

u
g
h
p
u
t

(#
to

k
en

s
/

se
c)

Number of Regions (log-scale)

1.0E+05

1.5E+05

2.0E+05

2.5E+05

3.0E+05

T
h
ro

u
g
h
p
u
t

(#
to

k
en

s
/

se
c)

PGeoTopic
Baseline

Baseline+M

(c) Web

Fig. 6: Varying number of regions

 0

 0.1

 0.2

 12 16 20

T
h
ro

u
g
h
p
u
t

(#
to

k
en

s
/

se
c)

Number of Machines

1.0E+05

1.5E+05

2.0E+05

2.5E+05

T
h
ro

u
g
h
p
u
t

(#
to

k
en

s
/

se
c)

PGeoTopic
Baseline

Baseline+M

(a) Twitter

 0

 0.15

 0.3

 12 16 20

T
h
ro

u
g
h
p
u
t

(#
to

k
en

s
/

se
c)

Number of Machines

1.0E+05

1.5E+05

2.0E+05

2.5E+05

T
h
ro

u
g
h
p
u
t

(#
to

k
en

s
/

se
c)

PGeoTopic
Baseline

Baseline+M

(b) Yelp

 0

 0.1

 0.2

 12 16 20

T
h
ro

u
g
h
p
u
t

(#
to

k
en

s
/

se
c)

Number of Machines

1.0E+05

1.5E+05

2.0E+05

2.5E+05

T
h
ro

u
g
h
p
u
t

(#
to

k
en

s
/

se
c)

PGeoTopic
Baseline

Baseline+M

(c) Web

Fig. 7: Varying number of machines

 0

 0.1

 0.2

 0 0.2 0.4 0.6 0.8 1

T
h
ro

u
g
h
p
u
t

(#
to

k
en

s
/

se
c)

Percentage of Data

1.0E+05

1.5E+05

2.0E+05

T
h
ro

u
g
h
p
u
t

(#
to

k
en

s
/

se
c)

PGeoTopic
Baseline

Baseline+M

(a) Twitter

 0

 0.15

 0.3

 0 0.2 0.4 0.6 0.8 1

T
h
ro

u
g
h
p
u
t

(#
to

k
en

s
/

se
c)

Percentage of Data

1.0E+05

1.5E+05

2.0E+05

T
h
ro

u
g
h
p
u
t

(#
to

k
en

s
/

se
c)

PGeoTopic
Baseline

Baseline+M

(b) Yelp

 0

 0.1

 0.2

 0 0.2 0.4 0.6 0.8 1

T
h
ro

u
g
h
p
u
t

(#
to

k
en

s
/

se
c)

Percentage of Data

1.0E+05

1.5E+05

2.0E+05

2.5E+05

T
h
ro

u
g
h
p
u
t

(#
to

k
en

s
/

se
c)

PGeoTopic
Baseline

Baseline+M

(c) Web

Fig. 8: Varying data size

 0

 1000

 2000

 3000

 4000

 5000

 6000

PGeoTopic-P

PGeoTopic

PGeoTopic-P

PGeoTopic

PGeoTopic-P

PGeoTopic

A
v

er
ag

e
ti

m
e

(s
ec

.)
 p

er
 i

te
ra

ti
o

n

Number of Machines

Computation
Network

I/O

201612

Fig. 9: Training time breakdown -
computation v.s. network commu-
nication and I/O per iteration.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

A
v

er
ag

e
C

o
m

m
u

n
ic

at
io

n
 T

im
e

(S
ec

co
n

d
/I

te
r) PGeoTopic-S

PGeoTopic-O
PGeoTopic-L

PGeoTopic

Fig. 10: Average network commu-
nication time (in sec.) per iteration.

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

A
v

er
ag

e
C

o
m

m
u

n
ic

at
io

n
 C

o
st

 (
G

B
/I

te
r)

PGeoTopic-S
PGeoTopic-O
PGeoTopic-L

PGeoTopic

Fig. 11: Average size of the topic-
region parameters (in GB) trans-
mitted via network per iteration.

6.5 Network Communication Cost

We evaluate the effect of the parameter localization of
PGeoTopic in reducing the communication cost. Specifi-
cally, we compare PGeoTopic with three variants — (1)
PGeoTopic-O that disables the on-demand parameter fetch-
ing; (2) PGeoTopic-L that assigns the region slices to the
machines randomly without allocating them to related
workers; (3) PGeoTopic-S that randomly allocates the data
to workers without spatial partitioning. We run all the
methods on 20 machines, and report the average network
communication time and the size of the topic-region param-
eters transmitted via network in each iteration in Figure 10
and Figure 11, respectively.

PGeoTopic reduces the network communication time by
58.7% compared to the best variant, i.e., PGeoTopic-L. Both
PGeoTopic-S and PGeoTopic-O have high communication
cost. PGeoTopic-S does not apply spatial partitioning, and
thus the on-demand parameter fetching method does not
work properly. PGeoTopic-O requires to fetch all parame-
ters in each iteration and thus performs worst. The result
demonstrates the usefulness of both spatial partitioning
and on-demand fetching. PGeoTopic-L has smaller com-
munication cost compared with the other two variants,
benefitting from the on-demand parameter fetching method.
PGeoTopic performs best and reduces the network com-
munication cost significantly. This is because PGeoTopic
achieves parameter localization by allocating the parameters
to related workers.

6.6 Model Quality
We investigate the model quality on two downstream ap-
plications of geographical topic models – (1) Predicting new
documents [18]; and (2) Predicting location of documents
without geo-tags [10]. In new document prediction, we
apply the learned models to predict new documents and
we use perplexity (the lower the better) to measure how
likely the models can predict new documents. For location
prediction, we take the text of a tweet/review as input
and predict the coordinates where the tweet/review was
posted. We use distance errors in kilometers to evaluate
how well the models can predict locations given the words.
We train both Baseline and PGeoTopic until the models
converge. Because Baseline cannot train large models on
large datasets, we randomly sample 10% tweets from the
Twitter dataset. For Yelp dataset, we use the whole dataset.
For both datasets, we hold off 10% of the data for testing
and use the remaining 90% data for training.
Model quality w.r.t. number of regions. We learn 100 topics
and {20, 50, 100} regions on 8 machines and report the
results in Table 5 and Table 6. We observe that both per-
plexity and location prediction error decrease as the number
of regions increases in both datasets. This is because we
can learn finer-grained topical regions, which contains local
semantics (i.e., topic distribution) and more accurate loca-
tion information (i.e., mean and variance). For document
prediction, PGeoTopic has only 5%-6.5% higher perplexity
than Baseline. For location prediction, PGeoTopic increases
the error by 1% in the worst case. Overall, PGeoTopic
achieves similar performance to Baseline in both tasks.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on February 18,2021 at 08:45:23 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2989142, IEEE
Transactions on Knowledge and Data Engineering

11

TABLE 5: Document prediction (Perplexity)

Regions 20 50 100

Twittter
Baseline 1721.25 1245.31 1124.41
PGeoTopic 1614.24 1327.30 1180.51

Yelp
Baseline 809.65 804.49 420.15
PGeoTopic 810.65 765.83 401.67

TABLE 6: Location prediction (Error in km)

Regions 20 50 100

Twittter
Baseline 28.55 17.66 10.14
PGeoTopic 26.21 17.87 10.18

Yelp
Baseline 12.83 12.80 5.11
PGeoTopic 12.34 11.78 5.36

Model quality w.r.t. number of machines. We learn 100
topics and 100 regions on {8, 12, 16} machines and re-
port the results in Table 7 and Table 8. Both Baseline
and PGeoTopic perform similarly with different number of
worker machines on both datasets. The difference of per-
plexities PGeoTopic among different number of machines
is around 1%-2%, and the distance errors change within 2
kilometers on both datasets. This experiment shows that
PGeoTopic retains the model quality by increasing the num-
ber of worker machines, and thus is effective to train on
larger computer clusters.
Summary. Combining the previous scalability experiments,
we conclude that PGeoTopic can efficiently train big geo-
graphical topic models on large datasets while preserving
the model quality.

TABLE 7: Document prediction (Perplexity)

Machines 8 12 16

Twittter
Baseline 1124.41 1143.67 1109.81
PGeoTopic 1180.51 1161.05 1191.24

Yelp
Baseline 420.15 425.00 415.56
PGeoTopic 401.67 403.13 404.78

TABLE 8: Location prediction (Error in km)

Machines 8 12 16

Twittter
Baseline 10.14 10.52 10.10
PGeoTopic 10.18 11.75 12.02

Yelp
Baseline 5.19 5.23 5.11
PGeoTopic 5.36 5.18 4.90

6.7 Case Study
We show some example latent regions and topics. In partic-
ular, we select 100 most informative regions from the 10,000
regions learned from Twitter dataset, ranked by the entropy
w.r.t. the topic distribution of each region. Regions with high
entropy only mention particular topics rather than covering
all topics. We randomly select two regions from the map
and two other regions near “Newark Liberty International
Airport”. We plot the four regions in Figure 12. The top two
topics and their representative words (i.e., words with high
probability) for each region are listed in Table 9.

Observe from Figure 12a and Figure 12b, the university
area covers topics such as class and campus life, while the

(a) University (b) Beach

(c) Airport - lounges (d) Airport - gate

Fig. 12: Example regions learned on the Twitter dataset. The
ovals are the contour lines at confidence level p = 0.9. The
pins point out the centers of the regions.

TABLE 9: Topics for each region

Region Topic Representative words

University 4879 class, hit, sleep, caring, clothes, easier
2987 campus, silent, weekend, pic, nights

Beach 612 beach, sweatshirt, remember, eat, hold
2929 Drinking, drink, #Veterans, cheat, maybe

Airport 958 urge, phone, @mangomeagan, Playing, fm
(lounges) 7955 delayed, #Weather, fan, engaged, destined

Airport 9321 Uber, ending,#z100MendesMadness,ready,
fam

(gate) 4428 airport, let, carrier, #cathedral, hashtag

topics in beach area focus on entertainment (e.g., wearing,
eating, and drinking). In addition, Figure 12c and Figure 12d
shows that even in the same airport, the model discovered
different topical-regions such as gates and lounges. Topics
in lounges are mainly about things to do for time killing
and flight delays, while in the gate area, people often talk
about arrival/departure and carrier information.

7 CONCLUSIONS

In this paper, we propose PGeoTopic, the first distributed
training solution for geographical topic models. PGeoTopic
increases the parallelism and reduce the memory require-
ments with a novel training algorithm and model paral-
lelism. It also reduces network communication by localizing
parameters to related worker machines. Our experimental
results demonstrate that the proposed solution is scalable
w.r.t. number of machines, data size and model size, and
outperforms baseline solutions by orders of magnitude.

Acknowledgments. This work was supported in part by a
MOE Tier-2 grant MOE2016-T2-1-137, a MOE Tier-1 grant
RG31/17, and NSFC under the grant 61772537.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on February 18,2021 at 08:45:23 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2989142, IEEE
Transactions on Knowledge and Data Engineering

12

REFERENCES

[1] H. Yin, Y. Sun, B. Cui, Z. Hu, and L. Chen, “LCARS: a location-
content-aware recommender system,” in KDD, 2013, pp. 221–229.

[2] B. Liu, Y. Fu, Z. Yao, and H. Xiong, “Learning geographical
preferences for point-of-interest recommendation,” in KDD, 2013,
pp. 1043–1051.

[3] B. Liu, H. Xiong, S. Papadimitriou, Y. Fu, and Z. Yao, “A gen-
eral geographical probabilistic factor model for point of interest
recommendation,” TKDE, vol. 27, no. 5, pp. 1167–1179, 2015.

[4] Y. Liu, M. Ester, B. Hu, and D. W. Cheung, “Spatio-temporal topic
models for check-in data,” in ICDM, 2015, pp. 889–894.

[5] W. Wang, H. Yin, L. Chen, Y. Sun, S. W. Sadiq, and X. Zhou, “Geo-
sage: A geographical sparse additive generative model for spatial
item recommendation,” in KDD, 2015, pp. 1255–1264.

[6] H. Yin, X. Zhou, B. Cui, H. Wang, K. Zheng, and N. Q. V. Hung,
“Adapting to user interest drift for POI recommendation,” TKDE,
vol. 28, no. 10, pp. 2566–2581, 2016.

[7] H. Yin, B. Cui, X. Zhou, W. Wang, Z. Huang, and S. W. Sadiq, “Joint
modeling of user check-in behaviors for real-time point-of-interest
recommendation,” TOIS, vol. 35, no. 2, pp. 11:1–11:44, 2016.

[8] W. Wang, H. Yin, S. W. Sadiq, L. Chen, M. Xie, and X. Zhou,
“SPORE: A sequential personalized spatial item recommender
system,” in ICDE, 2016, pp. 954–965.

[9] H. Yin, W. Wang, H. Wang, L. Chen, and X. Zhou, “Spatial-
aware hierarchical collaborative deep learning for POI recommen-
dation,” TKDE, vol. 29, no. 11, pp. 2537–2551, 2017.

[10] Q. Yuan, G. Cong, K. Zhao, Z. Ma, and A. Sun, “Who, where,
when, and what: A nonparametric bayesian approach to context-
aware recommendation and search for twitter users,” ACM Trans.
Inf. Syst., vol. 33, no. 1, pp. 2:1–2:33, 2015.

[11] L. Zhao, F. Chen, C.-T. Lu, and N. Ramakrishnan, “Spatiotemporal
event forecasting in social media,” in SDM, vol. 15, 2015, pp. 963–
971.

[12] J. Guo and Z. Gong, “A nonparametric model for event discovery
in the geospatial-temporal space,” in CIKM, 2016, pp. 499–508.

[13] L. Hong, A. Ahmed, S. Gurumurthy, A. J. Smola, and K. Tsiout-
siouliklis, “Discovering geographical topics in the twitter stream,”
in WWW, 2012, p. 769.

[14] K. Zhao, G. Cong, and A. Sun, “Annotating points of interest with
geo-tagged tweets,” in CIKM, 2016, pp. 417–426.

[15] Q. Liu, Y. Ge, Z. Li, E. Chen, and H. Xiong, “Personalized travel
package recommendation,” in ICDM, 2011, pp. 407–416.

[16] Q. Liu, E. Chen, H. Xiong, Y. Ge, Z. Li, and X. Wu, “A cocktail
approach for travel package recommendation,” TKDE, vol. 26,
no. 2, pp. 278–293, 2014.

[17] S. Sizov, “Geofolk: Latent spatial semantics in web 2.0 social
media,” in WSDM, 2010, pp. 281–290.

[18] Z. Yin, L. Cao, J. Han, C. Zhai, and T. Huang, “Geographical topic
discovery and comparison,” in WWW, 2011, pp. 247–256.

[19] A. Ahmed, L. Hong, and A. J. Smola, “Hierarchical geographical
modeling of user locations from social media posts,” in WWW,
2013, pp. 25–36.

[20] L. Hong, A. Ahmed, S. Gurumurthy, A. J. Smola, and K. Tsiout-
siouliklis, “Discovering geographical topics in the twitter stream,”
in WWW, 2012, pp. 769–778.

[21] B. Hu, M. Jamali, and M. Ester, “Spatio-temporal topic modeling
in mobile social media for location recommendation,” in ICDM,
2013, pp. 1073–1078.

[22] A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy, and A. J.
Smola, “Scalable inference in latent variable models,” in WSDM,
2012, pp. 123–132.

[23] Z. Liu, Y. Zhang, E. Y. Chang, and M. Sun, “Plda+: Parallel latent
dirichlet allocation with data placement and pipeline processing,”
TIST, vol. 2, no. 3, pp. 26:1–26:18, May 2011.

[24] Y. Wang, X. Zhao, Z. Sun, H. Yan, L. Wang, Z. Jin, L. Wang, Y. Gao,
J. Zeng, Q. Yang et al., “Towards topic modeling for big data,”
arXiv preprint arXiv:1405.4402, 2014.

[25] J. Yuan, F. Gao, Q. Ho, W. Dai, J. Wei, X. Zheng, E. P. Xing, T.-Y. Liu,
and W.-Y. Ma, “Lightlda: Big topic models on modest computer
clusters,” in WWW, 2015, pp. 1351–1361.

[26] J. Chen, K. Li, J. Zhu, and W. Chen, “Warplda: a cache efficient o
(1) algorithm for latent dirichlet allocation,” PVLDB, vol. 9, no. 10,
pp. 744–755, 2016.

[27] H.-F. Yu, C.-J. Hsieh, H. Yun, S. Vishwanathan, and I. S. Dhillon,
“A scalable asynchronous distributed algorithm for topic model-
ing,” in WWW, 2015, pp. 1340–1350.

[28] D. Newman, A. Asuncion, P. Smyth, and M. Welling, “Distributed
algorithms for topic models,” Journal of Machine Learning Research,
vol. 10, no. Aug, pp. 1801–1828, 2009.

[29] C. Zhang and C. Ré, “Towards high-throughput gibbs sampling
at scale: A study across storage managers,” in SIGMOD, 2013, pp.
397–408.

[30] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A.
Gibson, G. Ganger, and E. P. Xing, “More effective distributed ml
via a stale synchronous parallel parameter server,” in NIPS, 2013,
pp. 1223–1231.

[31] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josi-
fovski, J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed
machine learning with the parameter server.” in OSDI, vol. 14,
2014, pp. 583–598.

[32] A. Smola and S. Narayanamurthy, “An architecture for parallel
topic models,” PVLDB, vol. 3, no. 1-2, pp. 703–710, 2010.

[33] S. Sizov, “Latent Geospatial Semantics of Social Media,” TIST,
vol. 3, no. 4, pp. 1–20, 2012.

[34] C. P. Robert, V. Elvira, N. Tawn, and C. Wu, “Accelerating mcmc
algorithms,” Wiley Interdisciplinary Reviews: Computational Statis-
tics, vol. 10, no. 5, p. e1435, 2018.

[35] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, “Hybrid
monte carlo,” Physics letters B, vol. 195, no. 2, pp. 216–222, 1987.

[36] R. Liesenfeld and J.-F. Richard, “Improving mcmc, using efficient
importance sampling,” Computational Statistics & Data Analysis,
vol. 53, no. 2, pp. 272–288, 2008.

[37] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of machine Learning research, vol. 3, no. Jan, pp. 993–1022,
2003.

[38] W. K. Hastings, “Monte carlo sampling methods using markov
chains and their applications,” Biometrika, vol. 57, no. 1, pp. 97–
109, 1970.

[39] L. Tierney, “Markov chains for exploring posterior distributions,”
the Annals of Statistics, pp. 1701–1728, 1994.

[40] J. L. Bentley, “Multidimensional binary search trees used for
associative searching,” Communications of the ACM, vol. 18, no. 9,
pp. 509–517, 1975.

[41] A. Q. Li, A. Ahmed, S. Ravi, and A. J. Smola, “Reducing the
sampling complexity of topic models,” in KDD, 2014, pp. 891–900.

Kaiqi Zhao is a Lecturer in the School of Com-
puter Science at the University of Auckland.
He received the PhD degree from the Nanyang
Technological University in 2018. Before he
joined the University of Auckland, he worked
as a postdoctoral research fellow in the Singtel
Cognitive and Artificial Intelligence Lab for En-
terprises at Nanyang Technological University.
His research interests include big data analytics,
geo-textual data management, and data mining.

Gao Cong is a professor in the School of
Computer Science and Engineering at Nanyang
Technological University (NTU). He is the direc-
tor of Singtel Cognitive and Artificial Intelligence
Lab for Enterprises at NTU. Prior to joining NTU,
he worked with Aalborg University, Microsoft Re-
search Asia, and the University of Edinburgh. His
current research interests include geospatial and
textual data management, mining social network
and social media, data mining, and large scale
data analytics.

Xiucheng Li is a PhD candidate in the School of
Computer Science and Engineering at Nanyang
Technological University. He received the MSc
and BEng degrees from Harbin Institute of Tech-
nology and Harbin Engineering University, re-
spectively. His current research interests include
spatial data analytics and deep probabilistic
methods.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on February 18,2021 at 08:45:23 UTC from IEEE Xplore. Restrictions apply.

