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Urban grid prediction can be applied to many classic spatial-temporal prediction tasks such as air quality prediction, crowd

density prediction, and traic low prediction, which is of great importance to smart city building. In light of its practical values,

many methods have been developed for it and have achieved promising results. Despite their successes, two main challenges

remain open: a) how to well capture the global dependencies and b) how to efectively model the multi-scale spatial-temporal

correlations? To address these two challenges, we propose a novel methodÐDeepMeshCity, with a carefully-designed Self-

Attention Citywide Grid Learner (SA-CGL) block comprising of a self-attention unit and a Citywide Grid Learner (CGL) unit.

The self-attention block aims to capture the global spatial dependencies, and the CGL unit is responsible for learning the

spatial-temporal correlations. In particular, a multi-scale memory unit is proposed to traverse all stacked SA-CGL blocks along

a zigzag path to capture the multi-scale spatial-temporal correlations. In addition, we propose to initialize the single-scale

memory units and the multi-scale memory units by using the corresponding ones in the previous fragment stack, so as to

speed up the model training. We evaluate the performance of our proposed model by comparing with several state-of-the-art

methods on four real-world datasets for two urban grid prediction applications. The experimental results verify the superiority

of DeepMeshCity over the existing ones. The code is available at https://github.com/ILoveStudying/DeepMeshCity.

CCS Concepts: · Information systems→ Spatial-temporal systems.

Additional Key Words and Phrases: Spatial-temporal prediction, crowd/traic low prediction, urban computing

1 INTRODUCTION

With the rapid development of sensing technologies, large-scale spatio-temporal data has been produced from

mobile devices with GPS (Global Positioning System), traic sensors, and IoT (Internet of Things) facilities in cities.

Urban prediction employs mobility data to achieve accurate traic forecasting or crowd prediction in a citywide

level through cutting-edge deep learning technologies, which is of great importance for traic management,

public safety, and urban planning. The recorded physical values are distributed in any areas accessible to people

in a city, not just on the road networks. By meshing a large urban area into numerous ine-grained mesh grids,
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we can study and predict a variety of objects, including the density and low of the crowd or traic, in a grid-level

representation.

Urban grid prediction is a general spatial-temporal forecasting framework in which the urban is partitioned

into equally-sized grids and each grid cell represents the physical quantities of interest that change over time.

It takes as input multi-step historical grid observations and produces a next-step prediction over all grid cells.

Many classic spatial-temporal prediction tasks fall into this setting, e.g., air quality prediction, crowd density

and traic low prediction, and taxi demand forecasting. The input data can be represented as a 4D tensor

R
�×�×� ×� in a fashion analogous to video data, where � is the time steps, � ,� denotes the index for entire

urban grids, and � stands for the physical values of interest such as crowd low, taxi demand, and traic accident

[12, 14]. In light of its great practical values, many proposals have been developed for it in the past decades. In

the early stage, traditional statistical approaches such as Auto-Regressive Integrated Moving Average (ARIMA)

[17] and its variants [24] were employed to perform urban prediction. However, these methods study each grid

cell individually regardless of the spatial dependencies between diferent locations. Although the subsequent

research considered the spatial-temporal relations [55ś57] and external context information (e.g., meteorological

data, urban events, and Points-of-Interest (POIs) [28, 35], they often do not well capture the complex non-linear

spatial-temporal correlations. To address this, many deep learning-based methods have been proposed and we

group them into four categories. (1) Many studies [20, 48ś51] treated the citywide mesh grids as a heatmap

image, and adopted Convolutional Neural Networks (CNNs) to model the non-linear spatial dependencies owing

to the natural Euclidean properties of the grid regions. (2) Some studies [6, 52] used Graph Convolutional

Networks (GCNs) to model spatial dependencies by constructing graphs for cities. (3) To further jointly model

both spatial and temporal features, several researches [38, 39] combined Recurrent Neural Networks (RNNs)

with CNNs. (4) There are also some existing approaches getting better in modeling spatial-temporal correlation

with Convolutional Long Short-Term Memory (ConvLSTM) [25] and its variants [10, 12, 13, 46, 59]. Despite their

prevalence in the literature, two challenges remain for an accurate urban grid prediction: (a) the existing methods

struggle to capture the global spatial dependencies and (b) the spatial-temporal correlations from area scale to

grid scale, namely multi-scale spatial-temporal correlations, are not modeled in an efective manner.

The global spatial dependencies mean that a mesh grid cell could be relevant to both neighboring cells and

distant cells, due to the convenience of urban transportation such as subways, buses, and taxis. As shown in

Figure 1, the city is divided into an equal-sized grid map. G1 contains a subway station and G2 includes work

buildings. During working hours, G1 is highly correlated with G2 because people lock to the work buildings

from the subway station. In the meantime, since the subway stations in G3 and G1 are on the same metro line (red

line on the map), they can be reached directly by commuters. Hence, there is also a strong correlation between G1

and G3 even though they are far away from each other. In previous work [20, 48, 49], CNN-based models were

mainly adopted to learn spatial dependencies. However, CNN is more favorable to capture spatial dependencies

in neighboring regions due to its inductive bias of the locality [4]. As for the global spatial relationship, although

these methods stacked a large number of convolutions or utilized larger kernels and strides to handle it, the

efective receptive ield is much smaller than the theoretical receptive ield [23]. Some attempts [6, 52] tried to

construct graphs and leverage GCNs to address the problem. Nevertheless, it is diicult to obtain the accurate

spatial topology relationship after meshing the city, which is non-trivial for graph convolution. Therefore, we

need a better way to capture the global spatial dependencies efectively.

For the second challenge, there often exist multi-scale spatial-temporal correlations in urban regions. The

correlations imply that the distribution of spatial-temporal features at the area scale could provide some prior

knowledge (such as urban mobility and human movement) for the distribution at the grid scale in consecutive

moments. As shown in Figure 1, the multi-scale regions refer to the grid-scale regions, such as G1 and G2, and

area-scale regions, i.e., functional areas composed of spatially contiguous grid cells, such as working area A1 (blue

color) and residential area A2 (orange color). If the outlow of people from A1 increases considerably while the
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Fig. 1. The example of grid representation and multi-scale correlations. G1 ∼ G5 are grid cells, where G1, G3 contains a

subway station, G2 includes work buildings, and G4, G5 covers residential buildings. A1 and A2 are working area and

residential area respectively, both of which consist of partially similar functional grid cells. The red line across the whole map

indicates the subway line, where G1 and G3 can be directly accessible to each other.

inlow of crowd from A2 also rises remarkably, it indicates that the current moment is of-time. Then, the crowd

density of the residential buildings in G4 and G5 within A2 will demonstrate an upward trend at the next moment.

The low transition from A1 to A2 afects not only the movement of the crowds in the area scale but also the

transition pattern in the grid scale (fromA2 to G4 and G5). Wang et al. [32] introduced a hierarchical reinforcement

learning model that utilizes region-level planning to provide high-level guidance for block-level POI planning in

urban land-use planning, yet it does not account for the planning of dynamic lows. Hao et al. [45] proposed a

double-branch residual attention network to model the relations in diferent scales separately regardless of the

inluence of the area scale on the grid scale. Other proposals [12, 59] employed pyramid ConvLSTMs to capture

multi-scale spatial-temporal correlations by exploring the hierarchical features. Unfortunately, some semantic

information of area-scale features could be lost after multiple downsampling operations, and could not propagate

to grid-scale features efectively by the upsampling with the coarse interpolation. Therefore, the multi-scale

spatial-temporal correlations are not captured efectively.

To address the two challenges, we propose a deep learning frameworkÐDeepMeshCityÐfor urban grid

prediction. At its core, we design a novel Self-Attention Citywide Grid Learner (SA-CGL) block comprising a

self-attention unit and a Citywide Grid Learner (CGL) unit. The self-attention unit aims to capture the global

spatial dependencies, and the CGL unit is responsible for learning the spatial-temporal correlations based on the

global spatial feature map yielded by the self-attention unit. To efectively capture the multi-scale spatial-temporal

correlations, we stack multiple SA-CGL blocks and propose a multi-scale memory unit. Speciically, the multi-scale

memory unit travels all SA-CGL blocks in a zigzag path: it lows downwards and across blocks at each time step

to learn multi-scale spatial features, and the area-scale features in the top block at the present step are fused

with the grid-scale information in the bottom block at the next moment, so as to account for the multi-scale

spatial-temporal correlations. Then, we use diferent single-scale memory units and the multi-scale memory unit

of the previous fragment stack as the initialization of the latter in chronological order, to speed up the model

ACM Trans. Knowl. Discov. Data.
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training. Finally, a CNN-based output module is developed to generate the prediction result. In summary, this

paper makes the following contributions:

• We propose a general deep learning framework named DeepMeshCity for urban grid prediction, which can

capture the global spatial dependencies and the multi-scale spatial-temporal correlations in an efective

fashion.

• We design a Self-Attention Citywide Grid Learner (SA-CGL) block which adopts a self-attention unit

to model the global spatial dependencies and employs a Citywide Grid Learner (CGL) unit to learn the

spatial-temporal correlations.

• We propose a multi-scale memory unit that travels stacked SA-CGL blocks in a zigzag path to represent

the multi-scale spatial-temporal correlations.

• Extensive experiments conducted on four real-world datasets verify the eicacy of our proposed method

for two urban grid prediction applications, and DeepMeshCity establishes new state-of-the-art results on

the four datasets.

2 RELATED WORK

Based on how spatial data is handled as input, the urban prediction could be classiied as urban graph prediction

and urban grid prediction. The former represents the spatial region by a graph whereas the latter organizes the

data by meshing the city into regularly sized grid cells.

2.1 Urban Graph Prediction

Urban graph prediction takes the traic road network as a graph and the sensors distributed in the roads as the

graph signals. Notably, it adopts an external topology graph of sensors as input to represent the connectivity of

the whole road network. In this task, GCN-based models [15, 18] are widely adopted to capture both the spatial

dependencies and temporal dynamics of traic data.

GCNs are often combined with other deep learning models in existing research for urban graph prediction. In

STGCN [43], it uses GCNs to capture spatial features and TCN [44] with a gated mechanism to learn temporal

dependencies. To improve STGCN from the temporal axis, T-GCN [53] substitutes TCN with Gate Recurrent Unit

(GRU). Later, ASTGCN [7] and AM-RGCN [47] augment the input length of temporal feature for capturing the

periodicity and periodic temporal shift. As for the improvement of spatial dependencies learning, the attention

mechanism is considered in model GMAN [54] and MRA-BGCN [3]. Furthermore, Graph WaveNet [36] and

AGCRN [1] both adopt an adaptive graph rather than adopting a static one to model the spatial correlations. Other

methods such as STSGNN [26] and STFGNN [16] try to model spatial-temporal correlations by constructing the

spatial-temporal graph. Recent research applied Transformer to learn the temporal periodicity [2] and long-range

dependencies [37] and capture the dynamic spatial dependencies [27] and semantic features [9].

Despite their promising results, these models are only applicable when spatial topology relationships are

available, greatly limiting their applications beyond the traic domain. In contrast, the framework of urban grid

prediction is more general and covers various spatial-temporal prediction tasks in urban views.

2.2 Urban Grid Prediction

Urban grid prediction is a general spatial-temporal forecasting problem that covers many prediction tasks such

as traic prediction [6, 40, 52, 58], crowd prediction [12, 48, 59], abnormal event prediction [8, 10, 13], and

environment (e.g. air quality and crop yield) prediction [19, 41, 42, 56, 57]. It has been extensively studied in

smart cities and is of great importance to both public safety and city management.

Traditional approaches. The traditional statistical approaches such as ARIMA and its variants can be employed

to predict taxi-passenger demand [24] and urban human mobility [17]. However, these methods study each
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grid cell independently without considering the spatial dependencies between diferent locations. Zheng et al.

[56] proposed a semi-supervised learning approach that adopts an Artiicial Neural Network (ANN) to model

spatial features and a linear-chain Conditional Random Field (CRF) to represent the temporal dependencies for

grid-based air quality prediction. Zhou et al. [58] developed a spatio-temporal Kernel Density Estimation (stKDE)

to provide spatial density predictions for ambulance demand. The method employs Intrinsic Gaussian Markov

Random Field (IGMRF) to learn the change of the seasonal pattern over time and applies a residual Bayesian

network to capture the transition probability among diferent regions. Moreover, other works [28, 35] used extra

context information such as meteorological data, urban events, and POIs to improve the performance of taxi

prediction. Although these approaches model the spatial-temporal relations explicitly, they may not well capture

the complex non-linear spatial-temporal correlations.

Spatial dependencies. Many studies proposed to treat the citywide mesh grids as a heatmap and adopted

CNNs to model the non-linear spatial dependencies by exploring the natural Euclidean properties of the grid

regions. Deep-ST [49] irstly applies a convolutional network to capture spatial relations. ST-ResNet [48] is

the most representative grid-based method that designs a residual convolutional framework for crowd low

prediction. Based on it, DST-ICRL [5] introduces an irregular convolutional network based on ST-ResNet to

capture spatial features, achieving a more accurate urban traic passenger low prediction. Then, in order to

capture long-range spatial dependencies, DeepSTN+ [20] takes the inluence of location function into account

with the use of POIs as auxiliary information, and designs a ResPlus block for this purpose. Comparatively, MDL

[51] leverages a multitask framework to predict the lows at nodes and on edges collectively and simultaneously.

These methods have to rely on stacked layers and larger kernel sizes to capture the global spatial dependencies

since the convolution operation is only capable of exploiting the local correlation. However, as the efective

receptive ields of CNNs are often much smaller than the theoretical values [23], the aforementioned methods

still struggle in modeling the long-range spatial correlations in practice.

Another line of studies applied GCNs to model the spatial dependencies by constructing graphs for cities. Xu

et al. [6] proposed a spatiotemporal Multi-Graph Convolution Network (ST-MGCN) for ride-hailing demand

forecasting. It adopts multi-graph convolution to model the global spatial correlations, introducing three types

of correlations among diferent regions with graphs, including the neighborhood graph, functional similarity

graph, and the transportation connectivity graph. Zhang et al. [52] came up with the Spatial-Temporal Graph

Difusion Network (ST-GDN) for traic low prediction. This solution deines a region graph and develops a graph

attention network [30] to capture both local and global traic dependencies between two regions. Nevertheless,

it is diicult to obtain the accurate spatial topology relationship in many scenarios after meshing the city, which

might severely hinder the performance of graph convolution neural networks.

Spatial-temporal correlations. Prior arts mainly combined CNN-based models with RNN-based models to

capture the spatial-temporal correlations. Deep Multi-View Spatial-Temporal Network (DMVST-Net) [39] is a

typical framework for taxi demand prediction based on CNN and LSTM. The method applies the local CNN

which takes one grid cell and its surrounding cells as input and constructs a weighted graph to capture citywide

spatial dependencies. Then, it employs LSTM to capture temporal dependencies from recent time intervals. On

the basis of DMVST-Net, Spatial-Temporal Dynamic Network (STDN) [38] designs a low gating mechanism to

explicitly model the dynamic spatial similarity. Besides, it introduces a periodically shifted attention mechanism

to address the periodic temporal shift problem. However, these methods could not learn the spatial-temporal

correlations efectively by separately modeling the spatial and temporal features.

Other existing works utilizedConvLSTM [25] and its variants [59] to represent the spatial-temporal correlations.

Hetero-ConvLSTM [46] is the irst work to address spatial heterogeneity based on ConvLSTM for traic accident

prediction. Jiang et al. [10, 13] proposed a Multitask ConvLSTM Encoder-Decoder to model the spatial-temporal

correlations from urban human mobility for predicting citywide big events. Recent studies pay more attention

to the multi-scale spatial-temporal correlations. Yuan et al. [45] proposed a Multi-View Residual Attention
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Network (MV-RANet) which uses a double-branch residual attention network to model the relations in diferent

scales separately regardless of the interaction from the area scale to the grid scale. DeepCrowd [12] employs

pyramid ConvLSTMs to capture multi-scale spatial-temporal correlations from pyramid and hierarchical features.

Unfortunately, some semantic information of area-scale features may be lost after multiple downsampling, and

may not be propagated to grid-scale features eiciently by the upsampling with the coarse interpolation.

3 PRELIMINARY

We present two deinitions and introduce two typical prediction tasks under this general urban grid prediction

framework.

Deinition 3.1 (Urban Grid). We partition the entire urban region into � ×� equally-sized grid cells and denote

the observations at a speciic time slice � by �� ∈ R
�×� ×� where � indicates the number of physical quantities

of interest. We use �
�, �
� ∈ R� to represent the observations of grid cell at the ��ℎ row and the ��ℎ column of �� ,

where 0 ≤ � ≤ � − 1, 0 ≤ � ≤� − 1.

Deinition 3.2 (Urban Grid Prediction). Given the historical observation sequence [��−�+1, ��−�+2, . . . , �� ] over

the past � consecutive steps and external metadata � � , urban grid prediction aims to make the prediction of ��+1

at the � + 1 step.

The input feature dimension � can vary against diferent prediction tasks. In this paper, we instantiate the

urban grid prediction with two speciic tasks, namely, crowd density prediction and traic/crowd low prediction.

In the task of crowd density prediction, � equals 1 as each grid cell only records the crowd density; whereas in

traic/crowd low prediction, � is 2 which corresponds to the inlow and outlow of the grid cell.

4 METHODOLOGY

In this section, we present the details of our proposed methodÐDeepMeshCity. The overall architecture of

DeepMeshCity is depicted in Figure 2. The proposed model has at its core a stack of SA-CGL (Self-Attention

Citywide Grid Learner) blocks, which are designed to better handle the global spatial dependencies and the

multi-scale spatial-temporal correlations. First, we briely discuss how to fuse the historical observations with the

external metadata that is informative to the evolution of urban observations in Section 4.1. Next, we present the

design details of the key moduleÐSA-CGLÐwith an emphasis on its ability in capturing the global spatial depen-

dencies in Section 4.2. Finally, Section 4.3 illustrates how to model the multi-scale spatial-temporal correlations

by stacking a series of SA-CGL blocks.

4.1 Early Fusion for External Metadata

By following the strategy of previous proposals [12, 48], we divide the historical observation sequence into

three fragments, namely, �� ∈ R�ℎ×�×� ×� , �� ∈ R��×�×� ×� , and �� ∈ R��×�×� ×� , which correspond to the

recent hour observations, past day observations, and recent week observations, respectively. �ℎ , �� , and �� are

their lengths, whose selection will be explained in Section 5.4.

Apart from the historical observations, there is also external metadata � � that has a direct impact on urban

mobility, such as the date, weather condition, and holiday. We take them as auxiliary input and fuse them with

historical observations. This is achieved by feeding � � into a two-layered MLP with ReLU as the activation

function, whose output is denoted by �� . More formally,

��
= MLP(� �). (1)
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Fig. 2. The overall framework of DeepMeshCity. �� , �� , and �� represent the historical citywide grid records of three

fragments Hour, Day, and Week, respectively. � � means the manually extracted external metadata, and �� denotes the

abstract representation for � � ater through two-layered MLP networks.Week Stack, Day Stack, and Hour Stack indicate

shared stacked SA-CGL blocks. Week Stack takes as input the fused fragment ��� , initial single-scale memory units

�1, . . . ,�� , and multi-scale memory unit� . Then, the updated memory units �1,� , . . . ,��,� and�� from theWeek Stack

are passed to the Day Stack as input. The same process is operated on the Hour Stack. The structures of the SA-CGL and

stacked SA-CGL blocks are introduced in Figure 3 and Figure 4, respectively. The outcome XO
h
of the Hour Stack is conveyed

to the output module to get the predicted grid map.

Instead of the late-fusion mechanism [48, 59], we adopt the early-fusion mechanism [12, 20] to concatenate the

external metadata with each fragment tensor to yield the fused representations, that is,

���, ���, ���
= �� ∥��, �� ∥��, �� ∥��, (2)

where ∥ is the concatenation operation. Such a fusion allows our model to learn the dynamics by conditioning

on diferent impacting factors and enables sharing the statistical strengths across similar conditions. The fused

output ��� , ��� , and ��� are then passed to the subsequent modules.

4.2 Self-Atention Citywide Grid Learner Block

The Self-Attention Citywide Grid Learner (SA-CGL) block is the core component of our proposed model. It

consists of a self-attention unit and a Citywide Grid Learner (CGL) unit. The former aims to capture the global

spatial dependencies and the latter is responsible for learning the spatial-temporal correlations by conditioning

on the global spatial feature maps. For simplicity, we illustrate its design by only considering a single block in a

given layer at a ixed time step.

4.2.1 Self-Atention Unit for Global Spatial Dependencies. The self-attention mechanism [29] enables each

location’s representation to be directly informed by the representations of all locations in the urban region, which

ACM Trans. Knowl. Discov. Data.
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Fig. 3. The pipeline of the SA-CGL block. The let part is the self-atention unit while the other side shows the structure of

the CGL unit. In the self-atention unit, ��−1
� denotes the input feature maps for the ��ℎ block at time step � . �� , �� , and

�� represent query, key, and value based on 1 × 1 convolution on the feature maps, respectively. The output �̂�
� is passed

to the CGL unit. As for the CGL unit, besides �̂�
� , it takes a single-scale memory unit ���−1 at the previous moment, and a

multi-scale memory unit ��−1
� from the previous layer as input. Input modulation gates �� , �̃� and update gates �� , �̃�

control the flow of spatial-temporal information for two memory units. Output gate �� is used to select critical memory for

the outcome. ��
� , �

�
� , and�

�
� are the output for the block.

results in an efective global receptive ield. In light of this property, we propose a self-attention unit to capture

the global spatial dependencies for urban spatial-temporal data.

The left part of Figure 3 shows the pipeline of the proposed self-attention unit. The ��−1
� ∈ R���×�×� denotes

the input feature maps for the ��ℎ block at time step � , where ��� indicates the number of input channels. Firstly,

��−1
� is mapped to query �� , key �� , and value � � by the convolution operation as follows:

��
=� �

� ∗ ��−1
� ∈ R����×�

��
=� �

� ∗ ��−1
� ∈ R����×�

� �
=� �

� ∗ ��−1
� ∈ R�̂���×� ,

(3)

where {��,�� ,��} is a collection of weights for 1 × 1 convolution, ���� and �̂��� are output channels, and

� = � ×� . The purpose of using 1 × 1 convolution is to ensure that the spatial structure of the urban feature

maps can be preserved. The attention maps for pairwise points are further calculated by matrix multiplication

and Sotmax function as:

��
= Sotmax((��)���) ∈ R�×� . (4)

The similarity scores between any two points can be obtained by indexing from the attention maps even if they

are distant. If the similarity scores of two points are higher, their spatial dependencies are stronger, and vice versa.

Then, the attention maps �� are combined with values � � via matrix multiplication and the Reshape operation,

which can be summarized as:

�� = Reshape(� ���) ∈ R�̂���×�×� . (5)
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Each position aggregates its relationships by normalizing all positions in the corresponding row of attention

maps, which allows the global spatial dependencies to be efectively captured. Later, we project the output to the

same dimensions as the input and adopt a residual connection to stable the model training:

�̂�
� =� �

� ∗ �� + ��−1
� ∈ R�̂��×�×� . (6)

Finally, the result �̂�
� is passed to the CGL unit.

For the irst block (� = 1), the self-attention unit learns the global spatial dependencies in the grid scale.

Furthermore, it can obtain the global spatial dependencies in the area scale in the stacked blocks (� > 1), which

will be elaborated on in the following subsection. The attention mechanism involves a � (� 2) computational

complexity, which might become a computation bottleneck when � is large. We will discuss how to reduce the

complexity in Section 5.4.

4.2.2 Citywide Grid Learner Unit for Spatial-temporal Correlations. ConvLSTM [25] has been a popular model

to represent spatial-temporal correlations. It has convolutional structures in both the input-to-state and state-

to-state transitions, and it adopts a temporal memory state to learn the spatial-temporal correlations at the

current scale. Although stacked ConvLSTMs can learn the correlations at diferent scales, they do not consider

the multi-scale spatial-temporal correlations since temporal memory states are only updated along the time inside

each ConvLSTM layer. Inspired by PredRNN [33, 34], our proposed citywide grid learner (CGL) unit employs

a multi-scale memory unit to represent the multi-scale spatial-temporal correlations. Moreover, it can capture

spatial-temporal correlations at diferent scales by the designed single-scale memory units.

As shown in the right part of Figure 3, the inputs of the CGL unit contain �̂�
� from the self-attention unit, a

single-scale memory unit ��
�−1 at the previous moment, and a multi-scale memory unit��−1

� from the previous

layer. The computation of CGL can be summarized as follows:

�� = tanh(��� ∗ �̂
�
� +��� ∗�

�
�−1)

�� = � (��� ∗ �̂�
� +��� ∗��

�−1 + �� )

��
� = (1 −�� ) ⊙ �

�
�−1 +�� ⊙ ��

�̃� = tanh(���̃ ∗ �̂
�
� +��� ∗�

�−1
� )

�̃� = � (���̃ ∗ �̂�
� +��� ∗��−1

� + ��)

��
� = (1 − �̃� ) ⊙ �

�−1
� + �̃� ⊙ �̃�

�� = � (��� ∗�
�
� +��� ∗�

�
� )

��
� = �� ⊙ tanh(���̃ ∗�

�
� +���̃ ∗�

�
� ),

(7)

where��� (� ∈ {�, �,�}, � ∈ {�,�, �̃, �̃, �}) denotes the learnable parameters in theCGL; �� and �� are constants;

� and tanh stand for the activation functions; ∗ represents the convolution operation; ⊙ refers to the element-wise

product. To lessen the computation and avoid overitting, we leverage two activation functions to obtain input

modulation gates �� , �̃� and update gates �� , �̃� . Input modulation gates control the inlow of information

when combining �̂�
� with ��

�−1 and �
�−1
� at the current moment. �� and �̃� manage the dynamic changes of

spatial-temporal information for memory units ��
�−1 and�

�−1
� . If�� or �̃� is close to 0, the memory unit tends

to retain the past memory for urban characteristics. On the contrary, when the update gate is close to 1, it is

more likely to learn the current spatial-temporal features. In this way, it enables an adaptive learning on the

spatial-temporal correlations for ��
� and��

� . In the end, we selectively control the outlow of two memory units

via an output gate �� .
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Fig. 4. The architecture of stacked SA-CGL blocks. The multi-scale memory unit� (red arrows) travels each CGL unit in all

blocks in a zigzag path. Firstly, it flows downwards and across blocks at each time step to learn multi-scale spatial features.

Then,� brings area-scale features in the top block to grid-scale characteristics in the botom block at the next moment, to

represent multi-scale spatial-temporal correlations.

Thus far, we only describe the mechanism of SA-CGL in a particular block at a ixed time step. To better

represent the multi-scale spatial-temporal correlations, we now illustrate how to consecutively pass the ��
� to

the stacked blocks along the time in a zigzag path.

4.3 Stacked SA-CGL Blocks with the Multi-scale Memory Unit

As illustrated in Figure 4, we develop stacked SA-CGL blocks to capture the multi-scale spatial-temporal correla-

tions. The multi-scale memory unit� (red line in Figure 4) traverses each CGL unit of all blocks along the time

dimension. First of all, it lows downwards and across the blocks at each time step to learn multi-scale spatial

features. Then,� brings area-scale features in the top block at the present step to grid-scale characteristics in the

bottom block at the next moment, to represent multi-scale spatial-temporal correlations. In addition, we keep the

grid area size constant to avoid the issue of semantic information loss, which the existing method [12] sufers

when doing the downsampling operation.

Besides the multi-scale spatial-temporal correlations, the architecture could also model comprehensive global

spatial dependencies and multiple single-scale spatial-temporal correlations at diferent scales. First, the self-

attention unit can capture the global spatial dependencies at the grid scale from the urban grid maps� 0
� in the irst

block at the � timestamp. Then, the receptive ields of the output � 1
� are enlarged by 3× 3 convolutions in the irst

CGL unit. Consequently, the subsequent self-attention units can thereby obtain the global spatial dependencies at
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Table 1. The Description of Four Datasets.

Dataset Grid Cell Size Spatial Domain Interval Time Range Data Shape

BousaiTYO Density

450m × 450m

80 × 80 grid cells

30 mins 04/01/2017 - 07/09/2017

(4800,80,80,1)

BousaiOSA Density 60 × 60 grid cells (4800,60,60,1)

BousaiTYO Flow 80 × 80 grid cells (4800,80,80,2)

TaxiBJ Traic Flow 1000m × 1000m 32 × 32 grid cells 30 mins
07/01/2013 - 04/10/2016

(20016,32,32,2)
Four Inconsecutive Parts

an area-level scale. Meanwhile, we assign a single-scale memory unit to learn the spatial-temporal correlations in

each SA-CGL block at the current scale. The stacked SA-CGL blocks include multiple single-scale memory units

for diferent scales. Let �SA−CGL (·) denote the transformation of CGL as shown in Equation 7, the computation of

stacked SA-CGL blocks are presented as follows (for 2 ≤ � ≤ � ):

� 1
� ,�

1
� , �

1
� = �SA−CGL1 (�

0
� ,�

1
�−1, �

�
�−1)

��
� ,�

�
� , �

�
� = �SA−CGL� (�

�−1
� ,��

�−1, �
�−1
� ),

(8)

where � means the ��ℎ block. The single-scale memory units �1
0, . . . ,�

�
0 in each layer and the multi-scale memory

�1
0 are all initialized to zero tensor ∈ R�ℎ×�×� , where �ℎ is the feature dimension. Notably, for the irst block

(� = 1) at each time step, we set��−1
� = ��

�−1.

As shown in Figure 2, the Week Stack, Day Stack, and Hour Stack represent the shared stacked SA-CGL blocks

for diferent inputs in Equation 8. Each stack takes as input multiple single-scale memory units, the multi-scale

memory unit, and the fused fragment in Equation 2. To speed up the model training, the memory units are carried

from the previous fragment stack to the latter in our model. To illustrate that, for Week Stack, we feed the zero

tensor to the memory units �1, . . . ,�� and � to yield the output �1,�, . . . ,��,� and �� by the SA-CGL blocks.

The memory units keep the spatial-temporal features from weekly data ��� . Then, we use �1,�, . . . ,��,� and

�� as the initial memory units for Day Stack. Thus, the memory units are able to obtain prior knowledge from

previous ones. The same process is operated on the Hour Stack. Eventually, the aggregated feature ��
ℎ
will be

generated from the Hour Stack. We use �WS, �DS, and �HS to represent the three fragment stacks, and the whole

process can be summarized as:

��
� ,�

1,�, . . . ,��,�, �� = �WS (�
WE,�1, . . . ,�� , �)

��
� ,�

1,� , . . . ,��,� , �� = �DS (�
DE,�1,�, . . . ,��,�, ��)

��
ℎ ,�

1,ℎ, . . . ,��,ℎ, �ℎ = �HS (�
HE,�1,� , . . . ,��,� , �� ).

(9)

In Equation 9, ��
ℎ

is the only result being passed to the next module. In the last step, we adopt an output module

based on convolutions to obtain the outcome �̂ as:

�̂ =��2 ∗ LeakyReLU(��1 ∗ �
�
ℎ ), (10)

where��1 and��2 are learnable parameters of the convolution operation, and LeakyReLU is the activation

function.
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5 EXPERIMENT

In this section, we evaluate the ability of DeepMeshCity for urban grid prediction on two typical tasks: crowd

density prediction and low prediction. The experiments are conducted on four real-world urban datasetsÐ

BousaiTYO and BousaiOSA crowd density datasets, BousaiTYO crowd low dataset, and TaxiBJ traic low dataset.

The details of datasets are summarized in Table 1.

5.1 Dataset

TaxiBJ is one of the most widely used traic low datasets in the literature [48]. The dataset records the GPS

coordinates of the taxicab in Beijing during four time periods, 07/01/2013-10/30/2013, 03/01/2014/-06/30/2014,

03/01/2015-06/30/2015, and 11/01/2015-04/10/2016. The sampling time interval is 30 minutes and the entire period

covers 18 months. We partition the city into 32 × 32 grid cells with each grid cell size 1000m × 1000m, which

yields a tensor of size 20016 × 32 × 32 × 2.

BousaiTYO and BousaiOSA. Bousai datasets are released by Yahoo Japan Corporation [11]. The dataset records

the location information of millions of users in Japan with a sampling interval of 30 minutes. The records of two

big cities (Tokyo and Osaka) from 1 April 2017 to 9 July 2017 (100 days) are selected in our experiments. We refer

to the corresponding datasets as BousaiTYO and BousaiOSA, respectively. The two cities are partitioned into

80 × 80 and 60 × 60 grid cells, respectively, with a grid cell size 450m × 450m. Consequently, the BousaiTYO

dataset contains a crowd density tensor of size 4800× 80× 80× 1 and a crowd low tensor of size 4800× 80× 80× 2,

whereas the BousaiOSA dataset only contains a crowd density tensor of size 4800 × 60 × 60 × 1.

5.2 Baseline Methods

We evaluate the performance of our proposed method by comparing it with the grid-based baseline methods:

• HistoricalAverage. We use the average of the historical values from the corresponding timestamp.

• CopyYesterday. We directly copy the value of the corresponding timestamp in the last day as the predicted

value.

• CopyLastFrame. We adopt the most recent observation as the predicted value.

• CNN is the vanilla convolutional neural network. The input tensor is concatenated along the time dimension

to yield a tensor of shape (�,� ,� ∗ � ). The model employs four convolutional layers with 32 ilters of 3×3

kernel size.

• ConvLSTM is a spatial-temporal forecasting model proposed by [25]. The network utilizes four ConvLSTM

layers with 32 ilters of 3 × 3 kernel size.

• ST-ResNet [48]. Deep Spatio-Temporal Residual Network (ST-ResNet) is the most representative grid-based

method which designs a residual convolutional framework for crowd low prediction. In the study, two

residual units are adopted.

• DMVST-Net [39]. Deep Multi-View Spatial-Temporal Network (DMVST-Net) is a typical deep learning

framework for taxi demand prediction based on CNN and LSTM. It adopts 9 neighbor grid cells as the

input of local CNN. The graph embedding is 32 and the temporal output is 512 for LSTM.

• PCRN [59]. Convolutional Recurrent Network with Periodic Representation (PCRN) is a ConvGRU-based

model for taxi density prediction. It builds a pyramidal architecture with three stacked ConvGRU layers.

• STDN [38]. Spatial-Temporal Dynamic Network (STDN) is an improved version of DMVST-Net. It adopts a

low gating mechanism to fuse low information of 9 local grid cells. The hidden output of the periodically

shifted attention mechanism is 128.

• DeepSTN+ [20]. Context-aware Spatial-Temporal Neural Network (DeepSTN+) is an improved version of

ST-ResNet for crowd low prediction. We use 2 ResPlus units and the ConvPlus channel, and the separated

channels are set as 32 and 8, respectively.
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• DeepCrowd [12] is a crowd density prediction model based on ConvLSTM, which is equipped with the

pyramid architecture and attention mechanism. It consists of three bottom-up ConvLSTM layers with {32,

64, 128} ilters of 3×3 kernel size and three top-down ConvLSTM layers with {128, 128, 128} ilters of 1×1

kernel size.

5.3 Experimental Setup

All experiments are conducted on a GeForce GTX 1080 Ti GPU. We use the Adamw optimizer with a learning rate

of 0.001 and weight decay of 5 × 10−4, and the cosine annealing strategy [22] is adopted to decay the learning

rate. We adopt the Min-Max normalization method to scale the data into the range [0, 1] before feeding it into

the model, and then rescale the predicted value back to the original value. The training process is carried out

for 155 epochs, with a batch size of 4 samples. Early stopping is used on the validation dataset to select the best

model. The sub-scaling factor for each self-attention unit is 2. In this paper, we apply a mean square error (MSE)

between the estimator and the ground truth as the loss function. Each fragment stack contains two SA-CGL

blocks with {64,64} ilters for the self-attention units and CGL units. The stacked SA-CGL blocks are shared

among the fragment stacks.

TaxiBJ. The observation steps are set as follows: �ℎ = 6, �� = 1, and �� = 1. It means if we aim to predict the

traic low of Beijing from 6:30 p.m. to 7:00 p.m. on 03/30/2016, then the input is �� : 03/30/2016 4:00 p.m. ∼ 6:30

p.m., �� : 03/29/2016 6:30 p.m. ∼ 7:00 p.m., and �� : 03/23/2016 6:30 p.m. ∼ 7:00 p.m.. The data ratio for training,

validation, and testing is set as 7:1:2. External data� � include holidays (1 feature), meteorology data (19 features),

and meta-date (8 features).

BousaiTYO and BousaiOSA. We select data from the irst 80% as training data (20% of which are taken as

validation data), and the remaining 20% are set as testing data. The observation step � is 6. It indicates that if

we want to forecast the crowd density of Tokyo from 6:30 p.m. to 7:00 p.m. on 04/30/2017, then the input is �� :

03/30/2017 4:00 p.m. ∼ 6:30 p.m., �� : 03/29/2016 4:00 p.m. ∼ 6:30 p.m., and �� : 03/23/2016 4:00 p.m. ∼ 6:30 p.m.

Only meta-date will be used as external information, which contains the time of the day (48 features), days of the

week (7 features), weekday or not (1 feature), and holiday or not (1 feature).

5.4 Preprocessing

We design two preprocessing strategies to tackle the problems of input selection and the complexity of self-

attention.

Input selection. It aims to select the lengths of �� , �� , and �� mentioned in Section 4.1. The selection of

the three fragments is diferent for Bousai datasets and TaxiBJ. We follow the setups from DeepCrowd [12] for

Bousai-related datasets. Intuitively, the three parts of the historical observations can be represented as:

��
= [��−� , ��−(�−1) , . . . , ��−1]

��
= [� (�−�� )−� , � (�−�� )−(�−1) , . . . , � (�−�� )−1]

��
= [� (�−�� )−� , � (�−�� )−(�−1) , . . . , � (�−�� )−1],

(11)

where � is the observation step in each fragment, �� and �� are sampling frequencies during a day and a week,

which are 48 and 7 × 48 respectively since the time interval of Bousai datasets is 30 minutes. As for TaxiBJ, we

adopt the setting from ST-ResNet [48]. Then, the selection of three fragments can be expressed as:

��
= [��−�ℎ , ��−(�ℎ−1) , . . . , ��−1]

��
= [��−��×�� , ��−(��−1)×�� , . . . , ��−�� ]

��
= [��−��×�� , ��−(��−1)×�� , . . . , ��−�� ],

(12)
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where �ℎ , �� , and �� stand for the lengths of the most recent observations, daily periodicity, and weekly trend

separately, �� and �� are 48 and 7 × 48 too because their time interval is also 30 minutes. It is notable that our

model is capable of performing predictions at various time granularity.

Sub-scaling for self-attention unit. The self-attention mechanism sufers from high computational complexity

given the largemesh-grid number since it calculates the similarity among all points [21]. Inspired by the sub-scaling

method [25, 33], we propose to transform the spatial-temporal input from � ×� ×� to (� ·� ·�) × (�/�) × (� /�)

for each self-attention unit, where � is the sub-scaling factor. It will be reshaped to the original shape before

passing to the CGL unit. In such a manner, we can reduce both the computational and memory complexity

without compromising the accuracy.

5.5 Evaluation Metric

Mean Square Error(MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE) are evaluation

metrics:

MSE =

1

�

�︁

�=1

(�� − �̂� )
2

RMSE =

√√
1

�

�︁

�=1

(�� − �̂� )2

MAE =

1

�

�︁

�=1

| �� − �̂� |,

(13)

where �� and �̂� represent the ground truth and predicted grid map, respectively, and � is the number of all

predicted values. We select MSE and MAE for Bousai dataset, and the RMSE and MAE for TaxiBJ, for a fair

comparison in evaluation protocols with the previous works.

5.6 Results and Analysis on Crowd Density Prediction

For the crowd density prediction task, the performance of our proposed model is compared with the relevant

baseline methods on BousaiTYO and BousaiOSA datasets. Table 2 summarizes the results, with benchmarking

the MSE and MAE results of ST-ResNet, which are indicated by the relative increments, Δ MSE and Δ MAE. We

observe that our DeepMeshCity achieves the best performance on both MSE and MAE metrics when a relatively

small number of parameters are used.

Among all baseline methods, the simple statistical methods (HistoricalAverage and CopyYesterday) perform

worst. The naive CNN reduces the MSE and MAE errors by approximately 44.72% and 20.92% in comparison

to the HistoricalAverage. Because the former has the ability to learn the non-linear features from the data,

while traditional methods are limited to capturing spatial-temporal characteristics from complex urban data.

Another deep learning model, ConvLSTM is better than CNN since it can capture both the spatial and temporal

information rather than merely considering the spatial features, by extending the fully connected LSTM to the

convolutional structures. However, the aforementioned deep learning approaches are not good to model complex

spatial-temporal correlations.

As for other deep learning approaches, even though they manage to capture more comprehensive spatial-

temporal correlations, their performance is still under-expected. ST-ResNet fails to capture the global spatial

dependencies and spatial-temporal correlations eiciently, although it achieves a decent result with the superiority

of parameter eiciency. The ineiciency results from its stacked CNN-based residual units and the way to

concatenate the channel dimension with the time dimension. The updated version Deep-STN+, aiming at

eiciency improvement on global spatial dependency capture, performs poorly too. Because the loss of POIs
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Table 2. Performance comparison of various models on BousaiTYO and BousaiOSA crowd density datasets for crowd density

prediction.

Bousai Tokyo Crowd Density Bousai Osaka Crowd Density

Models #Params MSE ↓ ΔMSE MAE ↓ Δ MAE MSE ↓ Δ MSE MAE ↓ Δ MAE

CopyYesterday - 1304.393 2394.63% 11.804 166.09% 274.857 1195.15% 7.264 150.48%

HistoricalAverage - 225.501 323.62% 7.715 61.74% 79.557 274.88% 4.864 67.73%

CNN - 124.657 138.40% 6.101 37.53% 35.325 66.45% 3.203 10.44%

ConvLSTM [25] 0.18M 81.778 56.40% 4.335 -2.27% 26.939 26.94% 2.940 1.38%

ST-ResNet [48] 0.20M 52.288 0.00% 4.336 0.00% 21.222 0.00% 2.900 0.00%

DMVST-Net [39] 1.58M 42.726 -18.28% 3.918 -11.67% 17.852 -15.88% 2.613 -9.89%

PCRN [59] 1.28M 55.676 6.48% 4.653 4.89% 21.064 -0.74% 2.898 -0.07%

STDN [38] 6.18M 39.492 -24.47% 3.713 -16.30% 22.791 7.39% 2.884 -0.55%

DeepSTN+ [20] 327.82M 89.775 71.69% 4.907 10.61% 32.962 55.32% 3.230 11.38%

DeepCrowd [12] 7.88M 33.138 -36.62% 3.394 -23.49% 16.743 -21.10% 2.458 -15.24%

DeepMeshCity 0.98M 29.670 -43.25% 3.228 -27.23% 15.445 -27.22% 2.383 -17.83%

information on Bousai datasets leads to its weak efect on capturing long-range spatial dependencies in the whole

city. In particular, the fully-connected operation in its ConvPlus block results in huge numbers of parameters in

BousaiTYO, afecting the model eiciency.

To better represent the spatial-temporal correlations, DMVST-Net and STDN are developed and achieve better

results than ST-ResNet, by adopting the local CNN and LSTMmodels. However, these trials neglect the multi-scale

spatial-temporal correlations, preventing them from higher achievements. In contrast, PCRN and DeepCrowd

both employ a pyramidal ConvLSTM-based model for these correlations. PCRN achieves better results on

BousaiOSA but is worse on BousaiTYO than ST-ResNet. Because the BousaiTYO dataset has a much larger

mesh-grid number, this makes PCRN very ineicient in dynamically saving the updated periodic representation

for each step. In contrast, DeepCrowd attains the second-best results on both datasets owing to its upsampling

operation which fuses area-scale representation with grid-scale features. However, as we mentioned in Section 1

the area-scale semantic information might not propagate to grid-scale features efectively by upsampling due to

its coarse interpolation.

Our DeepMeshCity demonstrates its superiority in comparison to the baselines in terms of both MSE and

MAE on both datasets with a relatively small model scale. It introduces the SA-CGL block to capture the global

spatial dependencies and uses stacked SA-CGL blocks with a multi-scale memory unit to represent the multi-scale

spatial-temporal correlations. Compared with ST-ResNet, DeepMeshCity contributes to the considerable decrease

of MSE and MAE by 43.25% and 27.23% on BousaiTYO, and 27.22% and 17.83% on BousaiOSA. Besides, it surpasses

the state-of-the-art method DeepCrowd by 10.46% in terms of MSE and 4.89% in terms of MAE (7.75%, 3.05%)

on BousaiTYO (BousaiOSA). These results show that our model has more advantages in expressing the global

spatial dependencies and the multi-scale spatial-temporal correlations of crowd density.

5.6.1 Eficiency and Scalability. In addition to the comparison of model parameter, we also provide a comparison

of diferent models in terms of computational time and memory usage on the BousaiTYO and BousaiOSA datasets,

as these metrics are crucial for practical deployment. First, we plot the training time for one epoch in minutes

and memory usage for the typical models in Figure 5(a) and Figure 5(b), respectively. From the igures, we can
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observe that: (1) ST-ResNet has a signiicant advantage in computational eiciency and memory usage compared

to other models on both datasets. However, the manner of concatenating feature and temporal dimensions (to

apply CNN) hinders its real-time dependency capturing ability, thus limiting scalability; (2) STDN employs local

CNN to treat each grid cell as a computational unit, resulting in the low eiciency on training time (nearly 5 days

on BousaiTYO). Nevertheless, it only involves neighboring � ∗ � grids in the computation, leading to a relatively

small memory usage that does not vary with urban size. (3) DeepCrowd stacks three botom-up ConvLSTM

layers and three top-down ConvLSTM layers by the proposed Prmarid ConvLSTM, consequently leading to

larger memory usage and longer computation time. (4) Our model performs well in terms of computational

eiciency and scalability, mainly due to the eicient design of the CGL module and the sub-scaling method

which signiicantly reduces the memory usage of the self-attention module. In summary, we can recommend

DeepMeshCity as a viable solution to the real-world prediction tasks of urban crowds and traic with a good

balance of eiciency and scalability.

Fig. 5. The training time for each epoch in minutes and memory usage for diferent models on BousaiTYO and BousaiOSA.

5.6.2 Ablation Experiments. To verify the efectiveness of diferent components proposed in DeepMeshCity,

we conduct ablation experiments on the BousaiTYO crowd density dataset in this section. To this end, six

variants of DeepMeshCity are designed in these experiments, namely, 1) DeepMeshCity-noSA: it removes

the self-attention unit for each SA-CGL block; 2) DeepMeshCity-noM: it eliminates the multi-scale memory

unit; 3) DeepMeshCity-noM-noSA: it excludes both the self-attention unit and the multi-scale memory unit;

4) DeepMeshCity-CGLtoSTLSTM: it replaces the CGL unit with the ST-LSTM unit [33]; 5) DeepMeshCity-

SeparateStack: it substitutes three shared fragment stacks with three separated stacks. All other components

remain ixed except the aforementioned modules.

As shown in Table 3, DeepMeshCity-noSA and DeepMeshCity-noM perform worse than DeepMeshCity.

It indicates that the proposed self-attention unit and the multi-scale memory unit are critical, and the global

spatial dependencies and multi-scale spatial-temporal correlations are conducive to the overall performance. The

weaker prediction efect of DeepMeshCity-noM-noSA further supports the conclusion. The DeepMeshCity-

CGLtoSTLSTM gives rise to the worst results. We hypothesize that this is due to the ST-LSTM unit being much

more complex than our CGL unit, it is prone to overitting and sufering from the gradient vanishing problem.

The last model in the table DeepMeshCity-SeparateStack demonstrates a competitive performance, but it uses

more parameters than ours. It implies that our proposed model possesses the ability in learning spatial-temporal

features with the shared SA-CGL blocks. The experiments demonstrate both the efectiveness and reliability of

every module of our proposed model.

ACM Trans. Knowl. Discov. Data.



DeepMeshCity: A Deep Learning Model for Urban Grid Prediction • 17

Table 3. Performance comparison of various components of DeepMeshCity on BousaiTYO crowd density.

Bousai Tokyo Crowd Density

Variant Models #Params MSE ↓ MAE↓

DeepMeshCity-noSA 0.91M 30.077 3.250

DeepMeshCity-noM 0.83M 31.359 3.377

DeepMeshCity-noM-noSA 0.76M 31.956 3.378

DeepMeshCity-CGLtoSTLSTM 1.37M 32.584 3.373

DeepMeshCity-SeparateStack 1.95M 29.861 3.228

DeepMeshCity 0.98M 29.670 3.228

5.6.3 Efect of Diferent Network Configurations. Figure 6 presents the inluence of the diferent network conigu-

rations on BousaiTYO crowd density. Next, we study the impact of two hyper-parameters: output channel size

and block depth.

Channel of the SA-CGL. The model performance increases when the output channel size of SA-CGL block

grows from 16 to 64, and it drops when the channel size increases to 128. This shows that a larger model owns

more capacity in learning the spatial-temporal patterns but can be overitting if the model is too large.

Depth of the SA-CGL. In Figure 6, network depth 2 is the turning point of the model performance. When

the network depth is 1, the model performance is not as competitive as 2, since the model only considers the

spatial-temporal correlations of the grid scale regardless of the area scale. No performance gain is observed when

the depth is larger than 2. We hypothesize that it is caused by the training diiculty of deep architecture. Thus,

our selection of network conigurations is reasonable with an output channel size of 64 and block depth of 2.

Fig. 6. The performance of diferent network configurations on BousaiTYO crowd density, including the channel size of

the SA-CGL block (let part) and the depth of SA-CGL blocks (right part). The MAE is expanded by ten times for a beter

presentation.
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Table 4. Performance comparison of various models on BousaiTYO crowd flow.

Bousai Tokyo Crowd Flow

Models MSE ↓ Δ MSE MAE ↓ Δ MAE

CopyYesterday 148.604 592.18% 4.156 68.46%

HistoricalAverage 47.433 120.94% 3.090 25.25%

CNN 49.070 128.56% 3.812 54.52%

ConvLSTM [25] 24.237 12.89% 2.540 2.96%

ST-ResNet [48] 21.469 0.00% 2.467 0.00%

DMVST-Net [39] 34.795 62.07% 2.985 20.99%

PCRN [59] 22.710 5.78% 2.491 0.97%

STDN [38] 19.654 -8.45% 2.468 0.04%

DeepSTN+ [20] 19.062 -11.21% 2.387 -3.24%

DeepCrowd [12] 18.697 -12.91% 2.203 -10.70%

DeepMeshCity 17.999 -16.16% 2.185 -11.43%

Table 5. Performance comparison of various models on TaxiBJ trafic flow.

TaxiBJ Traic Flow

Models RMSE ↓ ΔRMSE MAE ↓ Δ MAE

HistoricalAverage 45.004 140.63% 24.475 133.25%

CopyLastFrame 23.609 26.23% 13.372 27.43%

CNN 23.550 25.92% 13.797 31.48%

ConvLSTM [25] 19.247 2.91% 10.816 3.08%

ST-ResNet [48] 18.702 0.00% 10.493 0.00%

DMVST-Net [39] 20.389 9.02% 11.832 12.76%

PCRN [59] 18.629 -0.39% 10.432 -0.58%

DeepSTN+ [20] 18.141 -3.00% 10.126 -3.49%

STDN [38] 17.826 -4.68% 9.901 -5.64%

DeepMeshCity 16.895 -9.66% 9.627 -8.25%

5.7 Results and Analysis on Flow Prediction

For low prediction, we conduct comparative experiments of our model on BousaiTYO crowd low and TaxiBJ

traic low datasets. DeepMeshCity maintains its dominance in all metrics on both datasets with the proposed

SA-CGL blocks.

As shown in Table 4, most models on BousaiTYO crowd low intuitively have similar comparison results as

those of BousaiTYO crowd density. However, DeepSTN+ and DMVST-Net show a reverse tendency on BousaiTYO

crowd low when compared to ST-ResNet. Compared with static crowd density, the crowd in-out low is dynamic

and sparse. To illustrate that, considering the midnight, the crowd density maps keep a relatively high density

while the crowd in-out low heatmap might be very sparse since few people are walking around. Thus, DeepSTN+
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shows better performance on the crowd low task whereas DMVST-Net sufers when the input data becomes

sparser. Because the former model is able to capture the long-range spatial dependencies more easily with its

ConvPlus block, while the latter only takes local grid cells as input rather than global grid cells. When the data is

sparse, there will be no low on most local grid cells, which has a negative efect on the model training.

In the TaxiBJ traic low dataset depicted in Table 5, there is little diference in the performance of the deep

learning methods (ConvSTM ∼ STDN), but the overall performance is much worse than the BousaiTYO crowd

low. We conjecture the underlying reason is that the accurate spatial correlations are hard to capture on TaxiBJ

traic low, with its smaller spatial domain with 32 × 32 grid cells than BousaiTYO crowd low. However, even in

this case, our approach outperforms other models and outperforms STDN (ST-ResNet) by 5.22% in RMSE, and

2.76% in MAE (9.66%, 8.25%). In summary, the experimental results show that our proposed DeepMeshCity is

applicable to both large and small mesh-grid number datasets for low prediction.

5.8 Case Study

In this section, we analyze the spatial attention weight map learned by the proposed self-attention mechanism

on BousaiTYO crowd density to demonstrate the efectiveness of capturing global spatial patterns.

We select the Tokyo Station grid cell (35, 53), which contains the largest station in Tokyo, as our case study.

Figure 8 is the normalized attention map of the Tokyo Station grid in the top layer of the SA-CGL from 6:00

p.m. to 6:30 p.m. We can observe that there is an expected high correlation between the Tokyo Station and the

surrounding vicinity of area S. It is due to the likelihood of individuals commuting to work, taking leisurely

strolls, having dinner, or preparing to return home from nearby places. The region A exhibits a notably high level

of correlation. The speciic area corresponds to the Shin-Yokohama Station grid cell (77, 25) and the encompassing

grid cells form a residential area. Despite the considerable distance from the Tokyo Station, it remains closely

connected due to direct access. Similarly, the region B contains the Kawasaki Station grid cell (72, 39) and

demonstrates the same pattern. The region C corresponds to the Tokyo International Airport grid cell (67, 57), a

common destination for individuals commuting via the subway. Hence, this grid area indicates a distinctive and

heightened correlation with the Tokyo Station. The above analysis of the attention map for the Tokyo Station

grid shows the eicacy of the proposed self-attention module in capturing comprehensive spatial patterns in

urban areas.

5.9 Visualization Analysis

We briely demonstrate the prediction results and corresponding error histogram of DeepMeshCity for the above

four datasets. We only present the partial recent input sequence instead of all inputs due to the limited space.

Figures 7 and 9 back up the superiority of our model. In Figure 7, our model produces a very accurate prediction

over the whole grid cells of Tokyo and Osaka during working time and of time, especially for the changes in the

hot area. Additionally, the prediction error of most grid cells for these two cities in Figure 9 is less than 10 on

Bousai datasets but is much larger in TaxiBJ traic low. The underlying reason could be that the low variation

within a time interval is larger and it is more diicult to predict precisely in TaxiBJ, whose spatial region is

downtown. The diferences between ConvLSTM and our model are visualized in Figure 10. It can be seen that

our model obtains better achievement. Therefore, DeepMeshCity is a general framework not only suitable for

crowd density prediction but also excels at low prediction.
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Fig. 7. Prediction visualization of DeepMeshCity on four datasets. We select the inflow for crowd/trafic flow prediction.
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Fig. 8. Case study of the spatial atention map. The Tokyo Station grid cell (35, 53) is selected.
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Fig. 9. Error histogram of DeepMeshCity for ground truth and prediction on four datasets. We present the rightmost

predictions in Figure 7.

Fig. 10. Visualization of the prediction diference for ConvLSTM and DeepMeshCity on TaxiBJ. PConvLSTM and PDeepMeshCity

indicate the predictions of ConvLSTM and DeepMeshCity respectively.
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6 CONCLUSION

In this paper, we propose a deep learning framework DeepMeshCity for urban grid prediction. DeepMeshCity

can capture the global spatial dependencies and the multi-scale spatial-temporal correlations efectively with

the proposed SA-CGL block and the multi-scale memory unit. The experimental results on four real-world

datasets validate that our method is applicable to both crowd density prediction and crowd/traic low prediction

regardless of the grid scale and cell size. In addition to traic management, our model could also contribute to

citywide development by guiding the placement of new residential, commercial, and public facilities through low

distribution analysis to ensure high accessibility for residents. Moreover, in community vitality assessment [31],

it leverages social interaction data from crowd low shifts to optimize the layout of POIs such as commercial

areas and transportation stations around communities to enhance their vibrancy. However, we notice that the

multi-scale memory unit may sufer from gradient propagation problems with the deep architecture, which

requires further exploration in the future.

ACKNOWLEDGMENTS

The authors would like to thank Yahoo Japan Corporation for providing the Bousai crowd data. This work is

supported by the National Natural Science Foundation of China under Grant No.:~62206074 and the Shenzhen

College Stability Support Plan under Grant No.:~GXWD20220811173233001.

REFERENCES

[1] Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. 2020. Adaptive graph convolutional recurrent network for traic forecasting.

In Proceedings of the 34th International Conference on Neural Information Processing Systems (Vancouver, BC, Canada) (NIPS’20). Curran

Associates Inc., Red Hook, NY, USA, Article 1494, 12 pages.

[2] Ling Cai, Krzysztof Janowicz, Gengchen Mai, Bo Yan, and Rui Zhu. 2020. Traic transformer: Capturing the continuity and

periodicity of time series for traic forecasting. Transactions in GIS 24, 3 (2020), 736ś755. https://doi.org/10.1111/tgis.12644

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/tgis.12644

[3] Weiqi Chen, Ling Chen, Yu Xie, Wei Cao, Yusong Gao, and Xiaojie Feng. 2020. Multi-Range Attentive Bicomponent Graph Convolutional

Network for Traic Forecasting. Proceedings of the AAAI Conference on Artiicial Intelligence 34, 04 (Apr. 2020), 3529ś3536. https:

//doi.org/10.1609/aaai.v34i04.5758

[4] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,

Matthias Minderer, Georg Heigold, and Sylvain Gelly. 2020. An Image Is Worth 16x16 Words: Transformers for Image Recognition at

Scale. arXiv preprint arXiv:2010.11929 (2020).

[5] Bowen Du, Hao Peng, Senzhang Wang, Md Zakirul Alam Bhuiyan, Lihong Wang, Qiran Gong, Lin Liu, and Jing Li. 2019. Deep Irregular

Convolutional Residual LSTM for Urban Traic Passenger Flows Prediction. IEEE Transactions on Intelligent Transportation Systems 21, 3

(2019), 972ś985. https://doi.org/10.1109/TITS.2019.2900481

[6] Xu Geng, Yaguang Li, Leye Wang, Lingyu Zhang, Qiang Yang, Jieping Ye, and Yan Liu. 2019. Spatiotemporal Multi-Graph Convolution

Network for Ride-Hailing Demand Forecasting. In Proceedings of the AAAI conference on artiicial intelligence, Vol. 33. 3656ś3663.

https://doi.org/10.1609/aaai.v33i01.33013656

[7] Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. 2019. Attention Based Spatial-Temporal Graph Convolutional

Networks for Traic Flow Forecasting. In Proceedings of the AAAI Conference on Artiicial Intelligence, Vol. 33. 922ś929.

[8] Chao Huang, Chuxu Zhang, Jiashu Zhao, Xian Wu, Dawei Yin, and Nitesh Chawla. 2019. MiST: A Multiview and Multimodal Spatial-

Temporal Learning Framework for Citywide Abnormal Event Forecasting. In The World Wide Web Conference (San Francisco, CA, USA)

(WWW ’19). Association for Computing Machinery, New York, NY, USA, 717ś728. https://doi.org/10.1145/3308558.3313730

[9] Jiawei Jiang, Chengkai Han, Wayne Xin Zhao, and Jingyuan Wang. 2023. PDFormer: propagation delay-aware dynamic long-range

transformer for traic low prediction. , Article 487 (2023), 9 pages. https://doi.org/10.1609/aaai.v37i4.25556

[10] Renhe Jiang, Zekun Cai, Zhaonan Wang, Chuang Yang, Zipei Fan, Quanjun Chen, Xuan Song, and Ryosuke Shibasaki. 2022. Predicting

Citywide Crowd Dynamics at Big Events: A Deep Learning System. 13, 2, Article 21 (mar 2022), 24 pages. https://doi.org/10.1145/3472300

[11] Renhe Jiang, Zekun Cai, Zhaonan Wang, Chuang Yang, Zipei Fan, Quanjun Chen, Kota Tsubouchi, Xuan Song, and Ryosuke Shibasaki.

2022. Yahoo! Bousai Crowd Data: A Large-Scale Crowd Density and Flow Dataset in Tokyo and Osaka. In 2022 IEEE International

Conference on Big Data (Big Data). IEEE, 6676ś6677. https://doi.org/10.1109/BigData55660.2022.10020886

ACM Trans. Knowl. Discov. Data.

https://doi.org/10.1111/tgis.12644
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/tgis.12644
https://doi.org/10.1609/aaai.v34i04.5758
https://doi.org/10.1609/aaai.v34i04.5758
https://doi.org/10.1109/TITS.2019.2900481
https://doi.org/10.1609/aaai.v33i01.33013656
https://doi.org/10.1145/3308558.3313730
https://doi.org/10.1609/aaai.v37i4.25556
https://doi.org/10.1145/3472300
https://doi.org/10.1109/BigData55660.2022.10020886


24 • C. Zhang, et al.

[12] Renhe Jiang, Zekun Cai, Zhaonan Wang, Chuang Yang, Zipei Fan, Quanjun Chen, Kota Tsubouchi, Xuan Song, and Ryosuke Shibasaki.

2023. DeepCrowd: A Deep Model for Large-Scale Citywide Crowd Density and Flow Prediction. IEEE Transactions on Knowledge & Data

Engineering 35, 1 (2023), 276ś290. https://doi.org/10.1109/TKDE.2021.3077056

[13] Renhe Jiang, Xuan Song, Dou Huang, Xiaoya Song, Tianqi Xia, Zekun Cai, Zhaonan Wang, Kyoung-Sook Kim, and Ryosuke Shibasaki.

2019. DeepUrbanEvent: A System for Predicting Citywide Crowd Dynamics at Big Events. In Proceedings of the 25th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining (Anchorage, AK, USA) (KDD ’19). Association for Computing Machinery,

New York, NY, USA, 2114ś2122. https://doi.org/10.1145/3292500.3330654

[14] Renhe Jiang, Du Yin, Zhaonan Wang, Yizhuo Wang, Jiewen Deng, Hangchen Liu, Zekun Cai, Jinliang Deng, Xuan Song, and Ryosuke

Shibasaki. 2021. DL-Traf: Survey and Benchmark of Deep Learning Models for Urban Traic Prediction. In Proceedings of the 30th ACM

International Conference on Information & Knowledge Management (Virtual Event, Queensland, Australia) (CIKM ’21). Association for

Computing Machinery, New York, NY, USA, 4515ś4525. https://doi.org/10.1145/3459637.3482000

[15] Thomas N Kipf and Max Welling. 2016. Semi-Supervised Classiication with Graph Convolutional Networks. arXiv preprint

arXiv:1609.02907 (2016).

[16] Mengzhang Li and Zhanxing Zhu. 2021. Spatial-Temporal Fusion Graph Neural Networks for Traic Flow Forecasting. Proceedings of

the AAAI Conference on Artiicial Intelligence 35, 5 (May 2021), 4189ś4196. https://doi.org/10.1609/aaai.v35i5.16542

[17] Xiaolong Li, Gang Pan, Zhaohui Wu, Guande Qi, Shijian Li, Daqing Zhang, Wangsheng Zhang, and Zonghui Wang. 2012. Prediction of

Urban Human Mobility Using Large-Scale Taxi Traces and Its Applications. Frontiers of Computer Science 6, 1 (2012), 111ś121.

[18] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Difusion Convolutional Recurrent Neural Network: Data-Driven Traic

Forecasting. In International Conference on Learning Representations. https://openreview.net/forum?id=SJiHXGWAZ

[19] Yijun Lin, Nikhit Mago, Yu Gao, Yaguang Li, Yao-Yi Chiang, Cyrus Shahabi, and José Luis Ambite. 2018. Exploiting spatiotemporal

patterns for accurate air quality forecasting using deep learning. In Proceedings of the 26th ACM SIGSPATIAL International Conference on

Advances in Geographic Information Systems (Seattle, Washington) (SIGSPATIAL ’18). Association for Computing Machinery, New York,

NY, USA, 359ś368. https://doi.org/10.1145/3274895.3274907

[20] Ziqian Lin, Jie Feng, Ziyang Lu, Yong Li, and Depeng Jin. 2019. DeepSTN+: Context-Aware Spatial-Temporal Neural Network for Crowd

Flow Prediction in Metropolis. Proceedings of the AAAI Conference on Artiicial Intelligence 33, 01, 1020ś1027. https://doi.org/10.1609/

aaai.v33i01.33011020

[21] Zhihui Lin, Maomao Li, Zhuobin Zheng, Yangyang Cheng, and Chun Yuan. 2020. Self-Attention ConvLSTM for Spatiotemporal

Prediction. Proceedings of the AAAI Conference on Artiicial Intelligence 34, 07, 11531ś11538. https://doi.org/10.1609/aaai.v34i07.6819

[22] Ilya Loshchilov and Frank Hutter. 2016. SGDR: Stochastic Gradient Descent with Warm Restarts. arXiv preprint arXiv:1608.03983 (2016).

[23] Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard Zemel. 2016. Understanding the Efective Receptive Field in Deep Convolutional

Neural Networks. 29 (2016). https://proceedings.neurips.cc/paper_iles/paper/2016/ile/c8067ad1937f728f51288b3eb986afaa-Paper.pdf

[24] Luis Moreira-Matias, Joao Gama, Michel Ferreira, Joao Mendes-Moreira, and Luis Damas. 2013. Predicting Taxi-Passenger Demand

Using Streaming Data. IEEE Transactions on Intelligent Transportation Systems 14, 3 (2013), 1393ś1402.

[25] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-kin Wong, and Wang-chun Woo. 2015. Convolutional LSTM Network: A

Machine Learning Approach for Precipitation Nowcasting. In Proceedings of the 28th International Conference on Neural Information

Processing Systems-Volume 1. 802ś810.

[26] Chao Song, Youfang Lin, Shengnan Guo, and Huaiyu Wan. 2020. Spatial-Temporal Synchronous Graph Convolutional Networks: A New

Framework for Spatial-Temporal Network Data Forecasting. Proceedings of the AAAI Conference on Artiicial Intelligence 34, 01 (Apr.

2020), 914ś921. https://doi.org/10.1609/aaai.v34i01.5438

[27] Yanshen Sun, Kaiqun Fu, and Chang-Tien Lu. 2023. DG-Trans: Dual-level Graph Transformer for Spatiotemporal Incident Impact

Prediction on Traic Networks. arXiv preprint arXiv:2303.12238 (2023).

[28] Yongxin Tong, Yuqiang Chen, Zimu Zhou, Lei Chen, Jie Wang, Qiang Yang, Jieping Ye, and Weifeng Lv. 2017. The Simpler The Better:

A Uniied Approach to Predicting Original Taxi Demands based on Large-Scale Online Platforms. In Proceedings of the 23rd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining (Halifax, NS, Canada) (KDD ’17). Association for Computing

Machinery, New York, NY, USA, 1653ś1662. https://doi.org/10.1145/3097983.3098018

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017.

Attention is All you Need. 30 (2017). https://proceedings.neurips.cc/paper_iles/paper/2017/ile/3f5ee243547dee91fbd053c1c4a845aa-

Paper.pdf

[30] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. 2018. Graph Attention Networks.

(2018). https://openreview.net/forum?id=rJXMpikCZ

[31] Pengyang Wang, Kunpeng Liu, Dongjie Wang, and Yanjie Fu. 2021. Measuring Urban Vibrancy of Residential Communities Using Big

Crowdsourced Geotagged Data. Frontiers in Big Data 4 (2021), 690970. https://doi.org/10.3389/fdata.2021.690970

[32] Pengfei Wang, Daniel Wang, Kunpeng Liu, Dongjie Wang, Yuanchun Zhou, Leilei Sun, and Yanjie Fu. 2023. Hierarchical Reinforced

Urban Planning: Jointly Steering Region and Block Conigurations. In Proceedings of the 2023 SIAM International Conference on Data

Mining (SDM). SIAM, 343ś351. https://doi.org/10.1137/1.9781611977653.ch39

ACM Trans. Knowl. Discov. Data.

https://doi.org/10.1109/TKDE.2021.3077056
https://doi.org/10.1145/3292500.3330654
https://doi.org/10.1145/3459637.3482000
https://doi.org/10.1609/aaai.v35i5.16542
https://openreview.net/forum?id=SJiHXGWAZ
https://doi.org/10.1145/3274895.3274907
https://doi.org/10.1609/aaai.v33i01.33011020
https://doi.org/10.1609/aaai.v33i01.33011020
https://doi.org/10.1609/aaai.v34i07.6819
https://proceedings.neurips.cc/paper_files/paper/2016/file/c8067ad1937f728f51288b3eb986afaa-Paper.pdf
https://doi.org/10.1609/aaai.v34i01.5438
https://doi.org/10.1145/3097983.3098018
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.3389/fdata.2021.690970
https://doi.org/10.1137/1.9781611977653.ch39


DeepMeshCity: A Deep Learning Model for Urban Grid Prediction • 25

[33] Yunbo Wang, Mingsheng Long, Jianmin Wang, Zhifeng Gao, and Philip S Yu. 2017. PredRNN: Recurrent Neural Networks for Predictive

Learning using Spatiotemporal LSTMs. In Advances in Neural Information Processing Systems, I. Guyon, U. Von Luxburg, S. Bengio,

H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_

iles/paper/2017/ile/e5f6ad6ce374177eef023bf5d0c018b6-Paper.pdf

[34] Yunbo Wang, Haixu Wu, Jianjin Zhang, Zhifeng Gao, Jianmin Wang, Philip S. Yu, and Mingsheng Long. 2023. PredRNN: A Recurrent

Neural Network for Spatiotemporal Predictive Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 45, 2 (2023),

2208ś2225. https://doi.org/10.1109/TPAMI.2022.3165153

[35] Fei Wu, Hongjian Wang, and Zhenhui Li. 2016. Interpreting traic dynamics using ubiquitous urban data. In Proceedings of the 24th

ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (Burlingame, California) (SIGSPACIAL ’16).

Association for Computing Machinery, New York, NY, USA, Article 69, 4 pages. https://doi.org/10.1145/2996913.2996962

[36] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. 2019. Graph WaveNet for Deep Spatial-Temporal Graph

Modeling. arXiv preprint arXiv:1906.00121 (2019).

[37] Mingxing Xu, Wenrui Dai, Chunmiao Liu, Xing Gao, Weiyao Lin, Guo-Jun Qi, and Hongkai Xiong. 2020. Spatial-temporal transformer

networks for traic low forecasting. arXiv preprint arXiv:2001.02908 (2020).

[38] Huaxiu Yao, Xianfeng Tang, Hua Wei, Guanjie Zheng, and Zhenhui Li. 2019. Revisiting spatial-temporal similarity: a deep learning

framework for traic prediction. In Proceedings of the Thirty-Third AAAI Conference on Artiicial Intelligence and Thirty-First Innovative

Applications of Artiicial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artiicial Intelligence (Honolulu,

Hawaii, USA) (AAAI’19/IAAI’19/EAAI’19). AAAI Press, Article 695, 8 pages. https://doi.org/10.1609/aaai.v33i01.33015668

[39] Huaxiu Yao, Fei Wu, Jintao Ke, Xianfeng Tang, Yitian Jia, Siyu Lu, Pinghua Gong, Jieping Ye, Didi Chuxing, and Zhenhui Li. 2018. Deep

multi-view spatial-temporal network for taxi demand prediction. In Proceedings of the Thirty-Second AAAI Conference on Artiicial

Intelligence and Thirtieth Innovative Applications of Artiicial Intelligence Conference and Eighth AAAI Symposium on Educational Advances

in Artiicial Intelligence (New Orleans, Louisiana, USA) (AAAI’18/IAAI’18/EAAI’18). AAAI Press, Article 316, 8 pages.

[40] Junchen Ye, Leilei Sun, Bowen Du, Yanjie Fu, Xinran Tong, and Hui Xiong. 2019. Co-Prediction of Multiple Transportation Demands

Based on Deep Spatio-Temporal Neural Network. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining (Anchorage, AK, USA) (KDD ’19). Association for Computing Machinery, New York, NY, USA, 305ś313.

https://doi.org/10.1145/3292500.3330887

[41] Xiuwen Yi, Junbo Zhang, Zhaoyuan Wang, Tianrui Li, and Yu Zheng. 2018. Deep Distributed Fusion Network for Air Quality Prediction.

In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (London, United Kingdom)

(KDD ’18). Association for Computing Machinery, New York, NY, USA, 965ś973. https://doi.org/10.1145/3219819.3219822

[42] Jiaxuan You, Xiaocheng Li, Melvin Low, David Lobell, and Stefano Ermon. 2017. Deep Gaussian process for crop yield prediction based

on remote sensing data. In Proceedings of the Thirty-First AAAI Conference on Artiicial Intelligence (San Francisco, California, USA)

(AAAI’17). AAAI Press, 4559ś4565.

[43] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2018. Spatio-temporal graph convolutional networks: a deep learning framework for traic

forecasting. In Proceedings of the 27th International Joint Conference on Artiicial Intelligence (Stockholm, Sweden) (IJCAI’18). AAAI Press,

3634ś3640.

[44] Fisher Yu and Vladlen Koltun. 2015. Multi-Scale Context Aggregation by Dilated Convolutions. arXiv preprint arXiv:1511.07122 (2015).

[45] Hao Yuan, Xinning Zhu, Zheng Hu, and Chunhong Zhang. 2020. Deep Multi-View Residual Attention Network for Crowd Flows

Prediction. Neurocomputing 404 (2020), 198ś212. https://doi.org/10.1016/j.neucom.2020.04.124

[46] Zhuoning Yuan, Xun Zhou, and Tianbao Yang. 2018. Hetero-ConvLSTM: A Deep Learning Approach to Traic Accident Prediction

on Heterogeneous Spatio-Temporal Data. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery

& Data Mining (London, United Kingdom) (KDD ’18). Association for Computing Machinery, New York, NY, USA, 984ś992. https:

//doi.org/10.1145/3219819.3219922

[47] Chi Zhang, Hong-Yu Zhou, Qiang Qiu, Zhichun Jian, Daoye Zhu, Chengqi Cheng, Liesong He, Guoping Liu, Xiang Wen, and Runbo Hu.

2022. Augmented Multi-Component Recurrent Graph Convolutional Network for Traic Flow Forecasting. ISPRS International Journal

of Geo-Information 11, 2 (2022), 88.

[48] Junbo Zhang, Yu Zheng, and Dekang Qi. 2017. Deep spatio-temporal residual networks for citywide crowd lows prediction. In

Proceedings of the Thirty-First AAAI Conference on Artiicial Intelligence (, San Francisco, California, USA,) (AAAI’17). AAAI Press,

1655ś1661.

[49] Junbo Zhang, Yu Zheng, Dekang Qi, Ruiyuan Li, and Xiuwen Yi. 2016. DNN-based prediction model for spatio-temporal data. In

Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (Burlingame, California)

(SIGSPACIAL ’16). Association for ComputingMachinery, New York, NY, USA, Article 92, 4 pages. https://doi.org/10.1145/2996913.2997016

[50] Junbo Zhang, Yu Zheng, Dekang Qi, Ruiyuan Li, Xiuwen Yi, and Tianrui Li. 2018. Predicting Citywide Crowd Flows Using Deep

Spatio-Temporal Residual Networks. Artiicial Intelligence 259 (2018), 147ś166.

[51] Junbo Zhang, Yu Zheng, Junkai Sun, and Dekang Qi. 2020. Flow Prediction in Spatio-Temporal Networks Based on Multitask Deep

Learning. IEEE Transactions on Knowledge & Data Engineering 32, 03 (2020), 468ś478.

ACM Trans. Knowl. Discov. Data.

https://proceedings.neurips.cc/paper_files/paper/2017/file/e5f6ad6ce374177eef023bf5d0c018b6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/e5f6ad6ce374177eef023bf5d0c018b6-Paper.pdf
https://doi.org/10.1109/TPAMI.2022.3165153
https://doi.org/10.1145/2996913.2996962
https://doi.org/10.1609/aaai.v33i01.33015668
https://doi.org/10.1145/3292500.3330887
https://doi.org/10.1145/3219819.3219822
https://doi.org/10.1016/j.neucom.2020.04.124
https://doi.org/10.1145/3219819.3219922
https://doi.org/10.1145/3219819.3219922
https://doi.org/10.1145/2996913.2997016


26 • C. Zhang, et al.

[52] Xiyue Zhang, Chao Huang, Yong Xu, Lianghao Xia, Peng Dai, Liefeng Bo, Junbo Zhang, and Yu Zheng. 2021. Traic Flow Forecasting with

Spatial-Temporal Graph Difusion Network. Proceedings of the AAAI Conference on Artiicial Intelligence 35, 17 (May 2021), 15008ś15015.

https://doi.org/10.1609/aaai.v35i17.17761

[53] Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and Haifeng Li. 2020. T-GCN: A Temporal Graph

Convolutional Network for Traic Prediction. IEEE Transactions on Intelligent Transportation Systems 21, 9 (2020), 3848ś3858. https:

//doi.org/10.1109/TITS.2019.2935152

[54] Chuanpan Zheng, Xiaoliang Fan, Cheng Wang, and Jianzhong Qi. 2020. GMAN: A Graph Multi-Attention Network for Traic Prediction.

Proceedings of the AAAI Conference on Artiicial Intelligence 34, 01 (Apr. 2020), 1234ś1241. https://doi.org/10.1609/aaai.v34i01.5477

[55] Jiangchuan Zheng and Lionel M. Ni. 2013. Time-dependent trajectory regression on road networks via multi-task learning. In Proceedings

of the Twenty-Seventh AAAI Conference on Artiicial Intelligence (Bellevue, Washington) (AAAI’13). AAAI Press, 1048ś1055.

[56] Yu Zheng, Furui Liu, and Hsun-Ping Hsieh. 2013. U-Air: when urban air quality inference meets big data. In Proceedings of the 19th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Chicago, Illinois, USA) (KDD ’13). Association for

Computing Machinery, New York, NY, USA, 1436ś1444. https://doi.org/10.1145/2487575.2488188

[57] Yu Zheng, Xiuwen Yi, Ming Li, Ruiyuan Li, Zhangqing Shan, Eric Chang, and Tianrui Li. 2015. Forecasting Fine-Grained Air Quality Based

on Big Data. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Sydney, NSW,

Australia) (KDD ’15). Association for Computing Machinery, New York, NY, USA, 2267ś2276. https://doi.org/10.1145/2783258.2788573

[58] Zhengyi Zhou and David S. Matteson. 2015. Predicting Ambulance Demand: a Spatio-Temporal Kernel Approach. In Proceedings of the

21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Sydney, NSW, Australia) (KDD ’15). Association

for Computing Machinery, New York, NY, USA, 2297ś2303. https://doi.org/10.1145/2783258.2788570

[59] Ali Zonoozi, Jung-Jae Kim, Xiaoli Li, and Gao Cong. 2018. Periodic-CRN: a convolutional recurrent model for crowd density prediction

with recurring periodic patterns. In Proceedings of the 27th International Joint Conference on Artiicial Intelligence (Stockholm, Sweden)

(IJCAI’18). AAAI Press, 3732ś3738.

ACM Trans. Knowl. Discov. Data.

https://doi.org/10.1609/aaai.v35i17.17761
https://doi.org/10.1109/TITS.2019.2935152
https://doi.org/10.1109/TITS.2019.2935152
https://doi.org/10.1609/aaai.v34i01.5477
https://doi.org/10.1145/2487575.2488188
https://doi.org/10.1145/2783258.2788573
https://doi.org/10.1145/2783258.2788570

	Abstract
	1 Introduction
	2 Related Work
	2.1 Urban Graph Prediction
	2.2 Urban Grid Prediction

	3 Preliminary
	4 Methodology
	4.1 Early Fusion for External Metadata
	4.2 Self-Attention Citywide Grid Learner Block
	4.3 Stacked SA-CGL Blocks with the Multi-scale Memory Unit

	5 Experiment
	5.1 Dataset
	5.2 Baseline Methods
	5.3 Experimental Setup
	5.4 Preprocessing
	5.5 Evaluation Metric
	5.6 Results and Analysis on Crowd Density Prediction
	5.7 Results and Analysis on Flow Prediction
	5.8 Case Study
	5.9 Visualization Analysis

	6 Conclusion
	Acknowledgments
	References

