
77

Similar Trajectory Search with Spatio-Temporal Deep

Representation Learning

DAVID ALEXANDER TEDJOPURNOMO, RMIT University, Australia

XIUCHENG LI, Nanyang Technological University, Singapore

ZHIFENG BAO, RMIT University, Australia

GAO CONG, Nanyang Technological University, Singapore

FARHANA CHOUDHURY, The University of Melbourne, Australia

A. K. QIN, Swinburne University of Technology, Australia

Similar trajectory search is a crucial task that facilitates many downstream spatial data analytic applications.
Despite its importance, many of the current literature focus solely on the trajectory’s spatial similarity while
neglecting the temporal information. Additionally, the few papers that use both the spatial and temporal fea-
tures based their approach on a traditional point-to-point comparison. These methods model the importance
of the spatial and temporal aspect of the data with only a single, pre-defined balancing factor for all trajecto-
ries, even though the relative spatial and temporal balance can change from trajectory to trajectory. In this ar-
ticle, we propose the first spatio-temporal, deep-representation-learning-based approach to similar trajectory
search. Experiments show that utilizing both features offers significant improvements over existing point-to-
point comparison and deep-representation-learning approach. We also show that our deep neural network
approach is faster and performs more consistently compared to the point-to-point comparison approaches.

CCS Concepts: •Computingmethodologies→Artificial intelligence;Knowledge representation and

reasoning; Spatial and physical reasoning; Temporal reasoning;

Additional Key Words and Phrases: Deep neural networks, spatio-temporal, trajectories, attention model

ACM Reference format:

David Alexander Tedjopurnomo, Xiucheng Li, Zhifeng Bao, Gao Cong, Farhana Choudhury, and A. K. Qin.
2021. Similar Trajectory Search with Spatio-Temporal Deep Representation Learning. ACM Trans. Intell. Syst.

Technol. 12, 6, Article 77 (December 2021), 26 pages.
https://doi.org/10.1145/3466687

This research is supported in part by ARC DP200102611, DP180102050, and LP180100114. Gao Cong acknowledges the

support by Singtel Cognitive and Artificial Intelligence Lab for Enterprises (SCALE@NTU), which is a collaboration be-

tween Singapore Telecommunications Limited (Singtel) and Nanyang Technological University (NTU) that is funded by

the Singapore Government through the Industry Alignment Fund - Industry Collaboration Projects Grant, and a Tier-1

project RG114/19.

Authors’ addresses: D. A. Tedjopurnomo and Z. Bao, RMIT University, 124 La Trobe St, Melbourne, Victoria 3000, Australia;

emails: david.tedjopurnomo@student.rmit.edu.au, zhifeng.bao@rmit.edu.au; X. Li and G. Cong, Nanyang Technological

University, 50 Nanyang Ave, Singapore 639798; emails: {lixiucheng, gaocong}@ntu.edu.sg; F. Choudhury, The University

of Melbourne, Melbourne, Parkville, Victoria 3010, Australia; email: fchoudhury@unimelb.edu.au; A. K. Qin, Swinburne

University of Technology, John Street, Hawthorn, Victoria 3122, Australia; email: kqin@swin.edu.au.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

2157-6904/2021/12-ART77 $15.00

https://doi.org/10.1145/3466687

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 77. Publication date: December 2021.

https://doi.org/10.1145/3466687
mailto:permissions@acm.org
https://doi.org/10.1145/3466687

77:2 D. A. Tedjopurnomo et al.

1 INTRODUCTION

With the proliferation of GPS devices installed on satnavs, trajectory data have become larger and
more easily accessible. This has opened up many trajectory-driven research topics, one of which
is the similar trajectory search. Given a database of trajectories and a query trajectory, similar
trajectory search returns the trajectory in the database that has the highest similarity (or smallest
distance) to the query. Similar trajectory search is one of the fundamental operations for spatial
databases and can be applied to many downstream tasks such as co-movement identification [33],
ride sharing [15], traffic analytics [30], and trajectory clustering [28].

At the heart of the most similar trajectory search is the trajectory similarity metric. Traditional
metrics such as DTW [3], EDR [6], ERP [5], and LCSS [26] try to find the optimal alignment
between two trajectories and calculate the similarity based on the point-to-point distances between
these aligned trajectories. Many recent studies adopt a more advanced point-to-point distance
approach to improve the effectiveness and efficiency of the distance computation. However, most
only utilize the spatial aspect of the data while ignoring the important temporal information.
The lack of temporal information makes trajectory similarity search more rigid, affecting its

downstream tasks. For instance, in traffic analytics, we may use spatial-only trajectory to find traf-
fic hotspots. However, if we use both the spatial and temporal information, we can issue more
useful queries such as finding traffic hotspots during the peak morning or evening hours. Further-
more, spatial-only trajectory search may be hindered when the query trajectory follows a popular
route since too many similar results will be returned. Adding the temporal dimension allows for a
more precise similar trajectory search that takes into account when the trajectory happened and
its duration. Aside from the lack of temporal feature usage, point-to-point distance paradigm suf-
fers from commonly found imperfections of the dataset, which are non-uniform sampling rate and
GPS errors. We formalize these challenges below.

Challenge 1. Temporal differences between trajectories. Intuitively, the similarity between
the two trajectories are based on their spatial coordinates. While generally true, this does not ap-
ply to all cases. For instance, in Figure 1, all trajectories on the left have the same timestamps. In
this scenario, it makes sense to assign trajectory blue as trajectory red’s most similar trajectory
due to the spatial closeness. On the right, trajectory blue starts 1 hour after trajectory red and only
has a 15-minute temporal span compared to red’s 30 minutes even though they’re spatially similar.
On the other hand, trajectory black has identical timestamps but closer spatial coordinates to tra-
jectory red compared to the left red-black pair. In this scenario, it is important to find the correct
balance between the spatial and temporal aspect, which can vary from trajectory to trajectory in
the same dataset and is difficult to be manually defined by users. Both the starting time and the
temporal span of the trajectories are important.

Challenge 2. Non-uniform sampling rate. Due to factors such as GPS malfunctions, missing
data, and different devices’ specifications, different trajectories may be reported at different sam-
pling rates, whichmay change the shape and context significantly. In Figure 2, there are two similar
movements, denoted in red and blue+gray, reported at different sampling rates. However, due to
the lower sampling rate, the blue+gray trajectory recorded the movement as a straight line, miss-
ing the detour portrayed by the grayed-out trajectory points because of the low sampling rate.
Existing point-to-point-based metrics do not have any mechanism to mitigate the impact of miss-
ing trajectory points, e.g., inferring the missing points. Thus, their distance computation under the
non-uniform sampling condition tends to be inaccurate.

Challenge 3. GPS errors.Due to signal interference in urban areas, GPS coordinates may contain
spatial noise. In Figure 3, the red trajectory represents the actual trajectory. Due to GPS errors,

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 77. Publication date: December 2021.

Similar Trajectory Search with Spatio-Temporal Deep Representation Learning 77:3

Fig. 1. Temporal differences between trajectories.

Fig. 2. Non-uniform sampling rate. Fig. 3. GPS errors.

the trajectory may be distorted, which we visualize with the blue trajectory. While the spatial
distortion may be within a certain bound (which we represent using the dashed boxes), these
GPS noises between the two trajectories’ points (which we represent using the dashed lines), are
accumulated if we use existing point-to-point-based metrics. Thus, these metrics will assign a
relatively high distance for the two trajectories even though they record the same movement.
Currently, there are only a few studies that propose a spatio-temporal similaritymetric [9, 21, 37].

However, they calculate the spatial and temporal similarity separately and aggregate them using
a single balancing parameter for the whole dataset, which hinders their performance because the
relative importance of the spatial and temporal aspect of the data can vary from trajectory to tra-
jectory. In addition, current literature mainly use an approach based on comparing two trajectories
point-by-point, which is susceptible to non-uniform sampling rate and GPS errors. The work of
Li et al. [14] addressed these two challenges by using a deep representation learning approach,
but their work considers only the spatial dimension, which cannot address Challenge 1. We will
describe the weaknesses of current approaches in more detail in Section 2.
In this article, we address these three challenges from a deep representation learning perspective.

We utilize a deep neural network structure called GRU Sequence Autoencoder, which consists
of a GRU encoder and decoder, because of its capability in processing sequence data. In tandem
with this model, we utilize a spatio-temporal grid consisting of many cells to represent different
areas of interest on different time periods where each combination of spatial area and time period
is represented with a trainable feature vector. This enables us to learn complex spatio-temporal
correlations between areas and time periods, resulting in a major improvement over using a single
balancing factor. This also helps to address Challenge 1 by reducing the impact of minor temporal
variations as our method assigns timestamps that are close enough into the same temporal cell.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 77. Publication date: December 2021.

77:4 D. A. Tedjopurnomo et al.

Similarly, this also helps to address Challenge 3 since the spatio-temporal grid assigns coordinates
that are sufficiently close into the same spatial cell, reducing the impacts of minor GPS errors.
Furthermore, as our model transforms raw trajectory representation to a trajectory feature vector,
we therefore transform the task of comparing trajectories on a point-to-point basis into the task
of vector distance computation. This accelerates the trajectory similarity computation process and
can be further accelerated using a KD-Tree.
A typical sequence autoencoder employs only one loss function—the reconstruction loss. Us-

ing this default configuration, it is not able to accurately capture the spatio-temporal context of
trajectories and handle the three challenges. Therefore, we design a composite loss that incorpo-
rates three loss functions and use the reconstruction loss as one of its three components. Each
loss function addresses the challenges in different ways, with each operating on different repre-
sentations of the data. The first loss function, the representation loss, operates on the feature vector
representation of trajectories output by the encoder. This helps to address all three challenges. The
second loss function is the reconstruction loss, but in order to reduce ambiguity, we use the term
point-to-point loss. It operates on the predicted trajectory, which is the output from the decoder.
This helps to address all three challenges. Finally, for the third loss function, the pattern loss, we
introduce a novel idea of dividing trajectories to segments based on the timestamp. We then learn
the spatial and temporal pattern for each segment and use this pattern representation in the loss
function. This helps address Challenges 1 and 2. We will describe in detail how these loss functions
address different challenges in Section 4. For the learning process, we inject synthetic noise into
our dataset to simulate data imperfections expressed in the aforementioned three challenges. Our
primary goal is to address Challenge 1 by showing that our method outperforms the traditional
spatio-temporal similarity metric that uses only a single balancing factor, as well as the state-of-
the-art spatial-only deep neural network approach. Our secondary goals are to address Challenges
2 and 3 by showing that our model is robust to non-uniform sampling rates and GPS errors. To the
best of our knowledge, this is the first work that utilizes a deep representation learning approach
for spatio-temporal trajectories. To summarize, here are the contributions of our paper:

—We use a sequence autoencoder model to transform the trajectory distance computation task
into a vector distance computation task, which is much more efficient.

—We utilize deep representation learning and propose three novel loss functions to address
the three challenges. They are the representation loss, point-to-point loss, and pattern loss.
The pattern loss utilizes a novel method to capture trajectory movement patterns.

—We conduct extensive experiments to compare our method with several traditional similar-
ity metrics which we extend to the spatio-temporal case and a state-of-the-art spatial-only
deep representation learning approach. The results consistently show the superiority of our
approach over both the traditional metrics and the deep learning–based metrics.

—In our experiments, we also perform exploratory analyses on four spatio-temporal point-to-
point trajectory similarity metrics and show how they may fail in handling one or more of
the aforementioned challenges faced in similar trajectory search scenarios.

2 RELATEDWORK

In this section, we explore the related work from three perspectives: an overview of traditional
similarity metrics, more modern variations of the traditional point-to-point comparison, and deep
representation learning approach. It is worth highlighting that the vast majority of studies in each
of the three perspectives have a focus on spatial-only trajectory. Note that, although we refer to
them as similarity metrics, most calculate the distance between trajectories; a measure of dissimi-
larity. In such cases, the smaller the distance, the more similar the trajectories.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 77. Publication date: December 2021.

Similar Trajectory Search with Spatio-Temporal Deep Representation Learning 77:5

2.1 Traditional Similarity Metrics

Traditional trajectory similarity metrics rely on the pairwise matching of the points between tra-
jectories to compute the distance. These methods are traditionally applied to one-dimensional time
series data rather than the 2D (3D) spatial (spatio-temporal) trajectories. The earliest and simplest
method is the Euclidean distance where every pair of points is sequentially checked, one from each
trajectory. The summation of the Euclidean distances between each such pair is the final distance
between the two trajectories. This simple method suffers from major drawbacks: it can only be
applied to equal-length trajectories, and it is very sensitive to differing sampling rates and align-
ments. To address these drawbacks, the Dynamic TimeWarping (DTW) method is proposed in
[3]. Unlike Euclidean distance, DTW allows each point of a trajectory to be checked against mul-
tiple points in another trajectory to find the optimal pairwise matching, where a point is matched
to the point with the shortest distance. Another trajectory similarity metric, Edit Distance with

real Penalty (ERP), is proposed by Chen and Ng [5]. Unlike DTW, this distance function does
not perform a one-to-many point matching. If a point needs to be re-matched to find the optimal
alignment, ERP instead uses a gap element, defined as a stationary point in the metric space, to be
used as a reference point. Then, it calculates the distance of the current point to the gap element,
a process that substitutes the re-matching process in DTW. This makes ERP a metric as it obeys
the triangle inequality, enabling the use of many indexing structures.
All of the aforementioned distance functions rely on real distances. That is, the trajectory dis-

tance calculation is based on the summation of the actual distance between points. Consequently,
these methods are not robust to outliers. The following two methods, Longest Common Sub-

sequence (LCSS) [26] and Edit Distance on Real sequence (EDR) [6] perform an alternative
computation that sums up the number of matching points between two trajectories, where amatch
occurs when the distance between two points is smaller than a pre-defined parameter ϵ . This ap-
proach is robust to outliers as a non-matching ordinary point and non-matching outlier point
contribute equally to the calculation, no matter how far apart the distances are. The difference
between LCSS and EDR is that LCSS measures the similarity between the two trajectories while
EDR is a measure of dissimilarity. Specifically, given a pair of trajectories X and Y , LCSS measures
the number of matching pairs of trajectory points appearing in the same relative order, but not
necessarily contiguous, while EDR performed a series of insertion, deletion, or replacement oper-
ations to transform X into Y . For further reading regarding these metrics, we refer viewers to the
survey of Wang et al. [27].
Utilizing both the spatial and temporal dimensions of the data is crucial. So far, these meth-

ods perform spatial-only similar trajectory search, but extension to spatio-temporal is possible. To
do this, one can treat the temporal feature as another dimension of the data and transform the
problem from 2D trajectory similarity computation to 3D. One can employ the approach used by
Shokoohi-Yekta et al. [23] for this task, in which they performed a generalization of the traditional
one-dimensional DTW to the multidimensional case and defined two possible approaches: (1) Inde-
pendent, in which DTW is calculated on each dimension separately and the distances are summed
and (2) Dependent, where multidimensional DTW is calculated on all dimensions at once.
While these extensions are possible, a major weakness of this approach is that these methods

cannot dynamically adjust the balance between the spatial and temporal aspect of the data. As
we mentioned in Section 1, the relative importance between these two aspects can change from
trajectory to trajectory. In addition, these traditional trajectory similarity metrics are slow to com-
pute; since these methods rely on finding the optimal alignment between trajectories, they use
a dynamic programming approach that has an O (n2) complexity. Rakthanmanon et al. [19] pro-
posed the UCR suite to accelerate the computation for DTW only. However, the UCR suite is only
applicable for time-series data, which is one-dimensional.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 77. Publication date: December 2021.

77:6 D. A. Tedjopurnomo et al.

In this work, we use DTW, EDR, ERP, and LCSS as the baseline models and assess their perfor-
mance, sensitivity to parameters, and efficiency. In order to perform a fair comparison with our
spatio-temporal approach, we extend DTW, EDR, ERP, and LCSS to the spatio-temporal case. We
will describe such extensions in Section 5.

2.2 Variants of Traditional Approach

Many of the more recent works approached the trajectory similarity computation from a non-
deep-learning perspective, relying on a more optimized point-to-point comparison paradigm akin
to the aforementioned traditional methods. Most of these studies only calculate the spatial dis-
tance between the trajectories. Edit Distance with Projections (EDwP) [20] uses the temporal
feature of trajectory data, but only to facilitate the calculation of the spatial distance. Specifically,
the temporal information is used to calculate the speed of an object moving from one location
to another. When performing a point-to-point match, EDwP may perform an insertion operation
that projects the point of one trajectory to another based on the speed. Su et al. [25] proposed a
method to address the challenge of non-uniform sampling rate. They used an anchor-based cal-
ibration system that aligns trajectory points to a set of pre-defined, dataset-independent anchor
points. Their work utilized the temporal information to perform amore accurate trajectory calibra-
tion. Thus, while these works use temporal information, it is only to facilitate the spatial distance
computation and we consider them to be spatial-only. Chen et al. [7] defined a novel query called k
Best-Connected Trajectories (k-BCT). A k-BCT query allows a spatial-only querying of trajec-
tories by specifying several locations that are not necessarily ordered. The trajectories returned by
k-BCT are trajectories that best connect the provided locations spatially. Wang et al. [29] defined a
novel trajectory similarity function called LORS that operates on map-matched trajectories, unlike
conventional similar trajectory search metrics that are based on trajectory points. Finally, several
other researches have also focused on distributed similar trajectory search [22, 32, 35].

Spatio-temporal, point-to-point similarity metrics are relatively rare. Dan et al. [9] used a two-
level grid index for the temporal and spatial dimension of the data. They also utilized a time-
first searching framework and a triangle inequality approach to prune trajectories, improving the
efficiency. Zhao et al. [37] performed a database grid indexing and a query partitioning approach to
accelerate the computation. These two methods compute spatial and temporal distance separately
and then aggregates them using single balancing factor. As we have mentioned in Section 1, the
importance of the spatial and temporal aspect of a trajectory varies greatly amongst datasets and
even amongst data points within the datasets. Thus, applying the same balancing factor for the
whole dataset is not the right approach.

2.3 Deep Representation Learning for Trajectory Similarity Computation

Representation learning is a task of representing raw data in a way that makes it easier to extract
useful information for classifiers or other predictors. The performance of machine learning meth-
ods is heavily reliant on the data representation—the choice of features that represent the data [2].
As the moniker suggests, deep representation learning concerns the usage of deep neural network
models to perform representation learning. This technique has been applied to research fields such
as Natural Language Processing (NLP) [16, 18] and image recognition [12, 24].

Despite the popularity of deep representation learning, its application in trajectory analysis
is rare. Yuan et al. [36] uses a neural network for origin-destination (OD) travel time estima-
tion. Yao et al. [34] used a Long Short-Term Memory (LSTM) network imbued with a novel
spatial attention memory to approximate existing traditional trajectory similarity metric while
reducing their computational complexity. The work of Li et al. [14] is the most similar to ours
as it performs a similar trajectory search based on deep representation learning. They used an

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 77. Publication date: December 2021.

Similar Trajectory Search with Spatio-Temporal Deep Representation Learning 77:7

Table 1. Important Notations and Definitions

Notation Definition

X Input query trajectory
X Set of query trajectories
Y Ground truth trajectory
Y ∗ Result of a most similar trajectory query
Y A database of ground truth trajectories
xt Query trajectory point at time t
yt Ground truth trajectory point at time t
d An arbitrary trajectory similarity function

NLP-inspired approach to transform raw latitude and longitude information in trajectory points
to feature vectors and utilized a deep neural network to learn the overall trajectory’s vector repre-
sentation. This representation is then used in place of the raw trajectory points. Furthermore, they
used noise contrastive estimation in their loss function for better efficiency. Finally, Wang et al.
[31] addresses the similar subtrajectory search problem using deep representation learning. These
works only consider the spatial information. Extending these models to the spatio-temporal case
is not straightforward because of the complex interactions between different locations at different
times. To the best of our knowledge, ours is the first work that combines spatio-temporal data with
a deep representation learning approach for the similar trajectory search problem.

Summary. Current similar trajectory search literatures suffer from two main deficiencies: they do
not combine the spatial and temporal features, and for the ones that do, they utilize a rigid approach
based on a pre-defined balancing factor for the whole dataset. We address the first problem by
modeling our data in a way that spatial and temporal correlation can be learned together and the
second problem by using a deep neural network that can learn to assign the correct spatial and
temporal balance based on the needs of individual trajectories.

3 PROBLEM DEFINITION AND PRELIMINARIES

In this section, we will first formalize the spatio-temporal similar trajectory search problem. Af-
terward, we will provide some background for the deep neural network model we use for the task
of similar trajectory search.

3.1 Problem Definition

We will first introduce several important concepts used in this section. Frequently used notations
are presented in Table 1. Then, we will formally define the problem statement.

Definition 3.1 (Spatio-temporal Trajectory). A spatio-temporal trajectory is defined as a se-
quence of trajectory points. Each trajectory point is a triplet of latitude, longitude, and timestamp
information.

Definition 3.2 (Spatio-temporal most Similar Trajectory Search Problem). Given a query trajectory
X , a trajectory database Y , and an arbitrary trajectory similarity function d , this search problem
aims to find a trajectory Y ∗ that has the smallest distance (or highest similarity) to X . Formally,

{Y ∗ ∈ Y | d (X ,Y ∗) < d (X ,Y),∀Y ∈ Y \ {Y ∗}}. (1)

Problem Statement. Given a collection of query trajectories and a collection of database trajec-
toriesY, our aim is to learn a similarity function d that can accurately answer the spatio-temporal

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 77. Publication date: December 2021.

77:8 D. A. Tedjopurnomo et al.

most similar trajectory search queries. We use the mean rank to measure the accuracy, which will
be elaborated in Section 5.

3.2 Preliminaries

The similar trajectory search problem relies on the similarity function d . This function calculates
the distance between the trajectories, where smaller distancemeans greater similarity. In this work,
we explore the usage of deep representation learning combined with spatio-temporal features.
There is a wide array of deep neural network models that can be employed for deep representation
learning of trajectory data. In our work, we use a sequence autoencoder. Sequence autoencoder is
a deep neural network structure that combines two Recurrent Neural Networks (RNNs); one
acts as an encoder and the other acts as the decoder. The encoder takes an input sequence and
learns a vector representation of that input, while the decoder takes this vector representation and
produces a prediction in the form of an output sequence. This sequence autoencoder is trained
using the backpropagation algorithm, which is computed using the gradient of the loss. The loss
function is a measure of the model’s performance, where a smaller loss equals better performance.
A standard sequence autoencoder is trained to reconstruct a ground truth sequence. Thus, a typical
loss function for sequence autoencoder is the reconstruction loss, which captures how well the
decoder part of the model reconstructs the ground truth sequence.
Sequence autoencoders are commonly applied to NLP tasks such as neural machine translation

[1] because it is a sequence-to-sequence problem. Similar trajectory search can also be modeled as
a sequence-to-sequence problem. In the context of similar trajectory search, each GPS recording
is treated as one part of the input sequence. Thus, using sequence autoencoders, we can train
our model to reconstruct the target trajectory. We will describe this process in more detail in
Section 4.4.
While the vanilla RNN structure can be used, it can suffer from the vanishing and exploding

gradient problem. These two problems severely diminish the model’s learning capability for very
long sequences. In order to address these problems, two approaches, the LSTM [10, 11] and Gated
Recurrent Unit (GRU) [8] were proposed. We use the latter for our work as it contains fewer
parameters to train. GRU has two gates: a reset gate and an update gate. These gates control the
balance between keeping the information from the previous part of a sequence and incorporating
new information. Essentially, these gates imbue the model with the ability to not only learn and
retain new information, but also to forget old information that is no longer relevant and can be
harmful for the learning process. Using these information gates, GRU can avoid the vanishing and
exploding gradient problem, allowing it to be effective even for very long sequences.

4 OUR METHODOLOGY

We use the GRU Sequence Autoencoder model with Attention in our work, which can be seen in
Figure 4. This model takes two inputs, the input trajectory X and target trajectory Y , which in
this example contain t triplets of latitude, longitude, and timestamp values; i.e., {xlat ,xlon,xtime}
and {ylat ,ylon,ytime}, respectively. The model will then output a reconstruction Y ′ of the target
trajectory Y . The more similar Y ′ is to Y , the better our model performs.

Each input trajectory point x ∈ X is first transformed into a vector embedding. This process
is described in Section 4.1. Afterward, they are fed to the encoder, which consists of the encoder
GRU cells represented as h, to produce a feature vector representation VX of the input. This pro-
cess transforms the trajectory similarity computation task into the simpler vector distance calcula-
tion. Given two trajectories, the distance between them is simply the Euclidean distance between
their vector representations. While a point-to-point trajectory similarity computation using raw

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 77. Publication date: December 2021.

Similar Trajectory Search with Spatio-Temporal Deep Representation Learning 77:9

Fig. 4. The full architecture of our model.

trajectory data has a computational complexity of O (n2), Euclidean distance computation is only
O (n). In addition to VX , the state of each encoder GRU cell h is fed to the attention layer.
For the model training, we utilize an attention layer in our work. This layer takes two inputs, the

encoder statesh and the target trajectoryY , and incorporates them together. At every timestep, the
attention layer determines which parts of the input sequence, as processed by the encoder,
are the most salient for the reconstruction process in the decoder. The decoder part of the network
has two inputs and one output. The first is the vector representation VX of the input trajectory
from the encoder. From this vector, we seek to output a reconstructionY ′ of the target trajectoryY .
The second input to the decoder is the output of the attention layer. This output helps the decoder
to improve the reconstruction accuracy by focusing on the important parts of the input. The out-
put of the decoder undergoes a final embedding process to produce Y k ′ with the points [yk1

′, yk2
′,

yk3
′, . . . ,yk

T
′]. This reconstruction and embedding process will be presented in detail in Section 4.4.

To train our model, we use the backpropagation algorithm that will adjust the parameters of
the model. A standard sequence autoencoder uses only one loss function—the reconstruction loss.
However, a standard sequence autoencoder loss cannot address the three challenges wementioned
in Section 1. We explain our reasoning in Section 4.4. Thus, we propose three loss functions that
each update different parts of the model. Before we describe the loss functions, We will first de-
scribe how we perform data modeling; from the raw latitude, longitude, and timestamp triplet, to
a vector representation. We will then describe our three loss functions. These loss functions con-
tribute to the backpropagation separately in this ordering: representation loss, point-to-point loss,
and pattern loss. They are described in detail in Sections 4.3, 4.4, and 4.5, respectively.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 77. Publication date: December 2021.

77:10 D. A. Tedjopurnomo et al.

Fig. 5. Performing a lookup using the 3D spatio-temporal grid.

4.1 From Raw Data to Vector Representation

Raw latitude, longitude, and timestamp information can be used for the similarity search task. How-
ever, these raw data do not contain important contextual information such as the definition of spa-
tial regions, time periods, and the interaction between the spatial and temporal aspect of the data.
To address this problem, we use the idea of spatio-temporal grids. We first divide the spatial area

(e.g., a city) into a 2D grid of square-shaped cells. Then, we divide the 24-hour time range into equal-
length time periods. We then combine the two to create a 3D spatio-temporal grid. Given a raw
trajectory point, we perform a lookup on this grid to find which cell it belongs to. Each cell is then
represented with a feature vector that contains its spatio-temporal context, which captures the
proximity of the spatial areas and time periods, and the relationship between them. For instance,
neighboring cells may be represented with similar feature vectors (e.g., adjacent city area, both
during morning rush hours). For clarification, a grid is the collection of all spatio-temporal cells.
When we refer to a grid, we refer to the entire collection of cells and when we refer to a cell, we
refer to a single cell within the grid.
We display two examples in Figure 5. The first trajectory point has a latitude, longitude, and

timestamp of {41.37, −8.65, 03:00}. After performing a lookup on the 3D grid, we find the cell
colored in red which contains the point. For instance, the red cell may cover the latitude range
from 41.30 to 41.40, the longitude range from −8.70 to −8.60, and the time range from 00:00 to
06:00. We do the same for the second point to find the blue cell, which covers the latitude range
from 41.40 to 41.50, the longitude range from −8.50 to −8.40, and the time range from 06:00 to 12:00.

The lookup process matches the raw trajectory point to a spatio-temporal cell. Each cell is rep-
resented with a feature vector that contains the spatio-temporal context. For instance, the red and
blue cells are represented with {0.4, 0.1, 0.9} and {0.3, 0.2, 0.6}, respectively. We initially random-
ize the vector of the cells. In the training process, the values are adjusted so that they can more
accurately reflect the context of the cells. Cells that are closer to each other spatially and tempo-
rally tend to have similar context and thus their vector should to be similar. This is similar to the
training process ofWord2Vec [16, 17], which is a technique used in NLP applications. It transforms
words in a corpora to a feature vector representation, which can be trained to capture the semantic
context of the words. The closer two words are in the vector space, the more similar their context.
When training a Word2Vec corpus from scratch, each word is assigned a feature vector of ran-
dom values. As the corpus is trained, these vectors are adjusted considering the co-occurrence of
neighboring words in a sentence such that semantically similar words are placed closer in the vec-
tor space. Comparatively, our context relates to the spatio-temporal rather than vocabulary. With
these steps, we transform the raw trajectory coordinates into a vector representation that can be
fed to the model. This process is called “embedding.”

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 77. Publication date: December 2021.

Similar Trajectory Search with Spatio-Temporal Deep Representation Learning 77:11

A drawback of this approach is that the number of cells can grow very large. In order to maintain
satisfactory model efficiency while losing as little information as possible, we only keep cells that
are hit by a certain number of trajectory points. These cells are referred to as hot cells and the
minimum number of hits is referred to as the hot-cell threshold.
This new data representation addresses the “temporal differences between trajectories” chal-

lenge and “GPS errors” challenge (Challenges 1 and 3 in Section 1) in the following way:

—Challenge 1. Temporal differences between trajectories. Each spatio-temporal cell covers a
pre-defined temporal span (i.e., a 15-minute time span). Thus, two trajectory points that are
only a few minutes apart are still treated as the same trajectory point because they are still
in the same time span and thus will be represented with the same vector embedding.

—Challenge 3. GPS errors. Each spatio-temporal cell covers a pre-defined spatial area (i.e., a
500 meters × 500 meters area). When a trajectory recording is subject to spatial noise, which
is minor relative to the spatial area, it is unlikely that the distorted point will move to another
cell. Thus, even with the noise, the distorted trajectory points will still be represented with
the same vector embedding as the original.

4.2 Training Data Modeling

One of the main challenges of the similar trajectory search problem is the lack of dataset with
well-defined query and ground truth trajectory pairs. As a workaround, we adapt the approach
used by Li et al. [14] to produce synthetic query and ground truth pairs. However, we also add one
more type of distortion, the temporal distortion, to this approach. For a “ground truth” trajectory
Y , we create a copy of it called the “query” trajectory X and apply several distortions to that copy.
This process contributes to the solving of the three challenges by introducing synthetic distortions
and downsampling that reflect the real-life data imperfections. These distortions are as follows:

—Trajectory downsampling.We randomly remove some points from the copy. The number
of points removed is controlled by the parameter downsampling rate dr . The purpose of this
distortion is to simulate the non-uniform sampling rate in real data, relevant to Challenge 2.

—Spatial distortion. We randomly select some points from the copy and shift the spatial
coordinates to a random location within 30 meters from the original. The number of points
to be selected is controlled by the parameter spatial distortion rate ds . The purpose of this
distortion is to simulate real GPS errors, relevant to Challenge 3.

—Temporal distortion. For all points in a trajectory, we add or subtract a random number
of minutes. All points will receive the same temporal distortion to ensure that the travel
speed and point ordering do not change. The maximum number of minutes is controlled by
the parameter temporal distortion de . The purpose of this distortion is to simulate temporal
variation between trajectories, relevant to Challenge 1.

Finally, to improve the training process, for each trajectory, we sample a different, random trajec-
tory from the dataset and apply the same distortions as Y . We call this trajectory as the “negative”
trajectoryN , whichwill be used in the representation loss. Next, wewill introduce how to train our
model, where three loss functions are proposed to make our model robust to the three challenges
mentioned in Section 1.

4.3 Representation Loss

This loss function operates directly on the vector representation.We perform the token embedding
lookup shown in Figure 5 for the three trajectories X , Y , and N . Then, we feed the trajectories to
the encoder, shown in the bottom part of Figure 4, to produce their vector representations VX ,

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 77. Publication date: December 2021.

77:12 D. A. Tedjopurnomo et al.

VY , and VN . Training the model to produce VX and VY , which are similar to each other, makes
it more robust to the three distortions mentioned before. This is because the query trajectory X is
derived from the ground truth trajectory Y . Intuitively, they should have similar representations.
By introducing some distortions toX and downsampling it, we are training the model to recognize
that trajectory X and Y are similar despite the distortions and non-uniform sampling rate.

While we can use only X and Y for the training, it is not an optimal approach because simply
training the model to learn similar VX and VY allows the model to understand the concept of
spatio-temporal trajectory similarity, but not spatio-temporal trajectory dissimilarity. That is, it
can learn which spatio-temporal cells are close to which, but cannot learn to assign a large distance
(or small similarity value) to cells that are far apart. To address this problem, we implement the
triplet loss function [4] with negative sampling. The triplet loss function takes three inputs: the
anchor sample, the positive sample, and a negative sample. Here, we use the query trajectory X as
the anchor sample, ground truth trajectory Y as the positive sample, and N as the negative sample.
We use the three samples’ vector representation for the equation below.

L1 (VX ,VY ,VN) =max (‖VX −VY ‖2 − ‖VX −VN ‖2 + γ , 0), (2)

where VX , VY , and VN are the vector representation of the query, ground truth, and negative
trajectory, respectively, and γ is a hyperparameter that defines the margin between the anchor-
positive pair and anchor-negative pair. This loss function helps our model to identify that the
anchor-positive pairing is more similar compared to anchor-negative, which enables our model to
learn both the concept of spatio-temporal similarity and dissimilarity for both the trajectories and
the spatio-temporal cells. This loss function addresses the challenges mentioned in Section 1 in
the following way:

—Challenge 1. Temporal differences between trajectories. We apply the temporal distortion to
the query trajectory and train ourmodel to identify the query and the ground truth as similar
trajectories despite the distortion, making our model more robust to these temporal differ-
ences. In addition, the negative sampling approach improves the training by introducing the
concept of dissimilarity for the different spatio-temporal cells.

—Challenge 2. Non-uniform sampling rate. We train our model to produce similar representa-
tions for the query and ground truth trajectories. Since the query trajectory is a copy of the
ground truth trajectory after the trajectory downsampling, we make our model more robust
to this downsampling and thus, robust to differing sampling rate between trajectories.

—Challenge 3. GPS errors. Since we apply the spatial distortion to the trajectories, training
our model to produce similar representations for the query and ground truth will increase its
robustness to GPS errors. Also, using the triplet function and negative sampling, we train our
model to identify dissimilar trajectories, consequently training our model to assign different
vector representations for different spatio-temporal cells.

4.4 Point-to-Point Loss

Defining the similarity of two vector representations solely by the Euclidean distance between
them is not enough. In order to improve the training performance, we also test the vector rep-
resentation’s performance in reconstructing the ground truth by using the decoder. As seen in
Figure 4, we feed the vector representation VX to the decoder, producing an output prediction
sequence. In this subsection, we refer to a “point” as the contents of the ground truth trajectory
Y (e.g., y1, y2) and predicted trajectory Y ′ (e.g., y ′1, y

′
2). These points are called the ground truth

point and predicted point, respectively. We will then compare Y ′ to Y to see how well our model
recreates the input.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 77. Publication date: December 2021.

Similar Trajectory Search with Spatio-Temporal Deep Representation Learning 77:13

The typical way tomeasure the reconstruction accuracy is to calculate the similarity between the
original and reconstructed sequence. A common, NLP-inspired approach is to model the decoding
accuracy by how well the model predicts the correct cell ID (or in the context of NLP, predicting
the correct word). This step requires a softmax layer on top of the decoder which outputs one
probability for each cell. For instance, if there are five spatio-temporal cells and the predicted
point at time t has a cell ID of 3, then the ideal softmax output probability will be [0, 0, 1.0, 0, 0].
Unfortunately, this approach has two major flaws:

—Since the number of cells can be very large, a softmax output needs to be generated for every
cell, making the model unwieldy and slow to operate. For instance, if there are 100,000 cell
IDs, which is a reasonable number for this task, for a ground truth trajectory of length 30,
we need to output 3 million softmax probabilities.

—The training does not take into account the spatio-temporal proximity of each cell. This
means that two wrong predictions may be penalized equally even if one of them should be
penalized heavier than the other. For instance, if a target cell ID has a time range of 00:00 to
00:15 and the two wrong predictions have a time range of 00:15 to 00:30 and 11:15 to 11:30,
both wrong predictionsmay be penalized equally even though the second prediction is much
further from the target. This is because softmax does not take into account the spatial and
temporal properties of the data; it only identifies when a prediction is right or wrong.

In order to address this problem,we adapt a sampling-based approach. For every spatio-temporal
cell, we find its k-nearest cells and calculate a “weight” value for each. The closer the cells are,
the greater the weight. Then, we replace the task of predicting the correct cell ID to the task of
predicting these k weights. For instance, if the ground truth point has a cell ID of 7 and we set k to
be 5, we may find that the nearest cells of cell ID 7 have the IDs [11,13,2,6,10]. We then calculate
the weight of cell 7 and these five cells and find the values [0.45, 0.33, 0.2, 0.15, 0.09]. Thus, instead
of using the softmax prediction to output probabilities for all cell IDs, we only predict these five
values. In our experiments, we set k to be 10. Using this setting, if we have 100,000 spatio-temporal
cells and an output trajectory of length 30, instead of predicting 3 million softmax outputs, we only
predict 300 cell weights. The spatio-temporal weight generation process is detailed in Algorithm 1.

ALGORITHM 1: k-nearest spatio-temporal cell lookup

1: Input

2: C List of all spatio-temporal cells
3: θ Spatial scaling parameter

4: Output

5: Ck A dictionary of all spatio-temporal k-nearest cells

6: Ck ← {}
7: for c ∈ C do

8: W ← []
9: G ← f ind_k_nearest_cells (c)
10: for д ∈ G do

11: d ← �
�c .centroid − д.centroid��2

12: w ← exp (−d × θ)
13: W .append (w)

14: forw ∈W do

15: w ← w/sum(W)

16: Ck [c .id]←W

17: return Ck

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 77. Publication date: December 2021.

77:14 D. A. Tedjopurnomo et al.

For every cell in the dictionary, we first find its k-nearest cells and then we calculate the weight
of allk cells in lines 10–15. The closer the centroids of two cells are, the higher theweight. The expo-
nential function and the θ parameter are adapted from [14]. The exponential function encourages
the model to assign a greater weight to closer cells and θ further controls the distance-to-weight
conversion. A small value penalizes far away cells and vice versa. We use a θ value of 0.8. Using
this new representation, we calculate the loss function between the target trajectory Y and the
predicted trajectory Y ′. With the dictionary Ck defined, we can use it to transform our target tra-
jectory Y . Initially, it is a sequence Y of spatio-temporal cell IDs. Now, we can use these IDs to
look up Ck and find the k weights of each ID, resulting in the sequence Y k , consisting of points
ykt . The output from the model Y k ′ will be compared with Y k using the loss function defined be-

low. To get Y k ′ , consisting of points ykt
′, we utilize the fully connected layer in our GRU Sequence

Autoencoder that is connected to the preceding hidden layer. The loss is then calculated as below:

L2 (Y
k ,Y k ′) =

T∑
t=1

�
�
�
ykt − ykt ′���2 , (3)

where Y k is the transformed ground truth trajectory, Y k ′ is the predicted trajectory, and T is
the length of Y k and Y k ′. Using this new representation addresses both of the aforementioned
problems with using the softmax output. Unlike the softmax function that requires calculating the
probability of every cell, we are only concerned with each cell’s k-nearest neighbors and we also
penalize further cells greater than closer ones. Additionally, this loss function addresses the three
challenges mentioned in Section 1 in the following way:

—Challenge 1. Temporal differences between trajectories. Using this representation, we avoid
calculating the raw timestamp differences. Also, if two trajectory points are close enough in
both the space and time dimension, they will be represented with the same k-cell weights.

—Challenge 2. Non-uniform sampling rate. This loss function trains the sequence autoencoder
to reproduce the original trajectory input given the downsampled query trajectories. This
process can be seen as a trajectory imputation, which addresses this challenge by implicitly
upsampling the trajectories and then performing the point-to-point comparison.

—Challenge 3. GPS errors. We predict a cell’s k-nearest cells weight for every output as op-
posed to comparing the raw geographical distances directly. This means that if a trajectory
point of the query is close enough to the ground truth, they will be classified as the same
cell. Thus, we do not allow the spatial noise to factor into the loss computation.

4.5 Pattern Loss

To the best of our knowledge, there is no prior work that has explored the concept of trajectory
movement patterns; they rely solely on point-to-point comparisons. Here, we define a trajectory
pattern as a sequence of trajectory points that together represent a short-term movement pattern.
To assign the sequence of trajectory points to sequences, we use their timestamps. We first divide
the full 24-hour range into equal-length and equal-spaced temporal segments. The length of the
temporal segments is referred to as the “span” and is controlled by the parameter δp . The space
between the temporal segments is referred to as the “stride” and is controlled by the parameter δt
. As an example, setting δp to be 30 minutes and δt to be 15 minutes, the temporal segments are
[00:00-00:30, 00:15-00:45, 00:30-01:00, ...].
We illustrate the process of generating temporal segments using an example trajectory in Fig-

ure 6 and setting δp to be 30 minutes and δt to be 15 minutes. With this setting, there are four
temporal segments ts displayed in Table 2. We then generate a trajectory pattern for each segment
by calculating the total traveled distance and elapsed time within the segment. The spatial pattern

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 77. Publication date: December 2021.

Similar Trajectory Search with Spatio-Temporal Deep Representation Learning 77:15

Fig. 6. Example trajectory for the time span division.

Table 2. Assignment of Points to Time Spans

Time span Points Timestamp

ts1 00:00–00:30
x1 00:10
x2 00:20

ts2 00:15–00:45
x2 00:20
x3 00:40

ts3 00:30–01:00
x3 00:40
x4 00:50

ts4 00:45–01:15
x4 00:50
x5 01:10
x6 01:15

is defined in Equation (4).

ps = 0 +
T∑
t=2

�
�x

s
t − xst−1��2 , (4)

where ps is the spatial pattern of a temporal span ts , T is the number of points in the temporal
span ts , and xst is the spatial coordinates of the t-th point of ts . To produce the temporal pattern,
we transform the raw timestamp (minutes in a day) to cyclical features. If we do not use the cycli-
cal features and model the timestamps linearly, timestamps going past midnight (e.g., 23.58 and
00.01) will be given a very large distance even though they are only minutes apart. This process
requires transforming the raw timestamp xe into sin and cos features, which are calculated using
Equation (5).

xe .sin =

(
sin

(
xe × 2π
1,440

)
+ 1

)
× 1

2
,

xe .cos =

(
cos

(
xe × 2π
1,440

)
+ 1

)
× 1

2
.

(5)

The value 1,440 is used as it is the number of minutes in a day. Using this transformation, all
sin and cos values will be between 0 and 1. We use these new features as the cyclical timestamp
features xe ′ in place of the raw timestamp xe , and define the temporal pattern below.

pe = 0 +
T∑
t=2

�
�
�
xet
′ − xet−1 ′���, (6)

where pe is the temporal pattern of a temporal span ts , T is the number of points in the temporal
span ts , and xet

′ is the temporal features of the t-th point of ts . We combine the spatial pattern ps
and temporal pattern pe into a combined pattern feature p. We apply this pattern transformation
for the ground truth trajectory Y to produce a sequence of patterns PY . To output the predicted
trajectory pattern PY ′, we feed the feature vector representation VX into a small fully connected

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 77. Publication date: December 2021.

77:16 D. A. Tedjopurnomo et al.

layer. The pattern loss compares PY and PY ′ as below.

L3 (PY , PY
′) =

T∑
t=1

�
�
�
pyt − py ′t ���1, (7)

where PY is the ground truth trajectory’s pattern features, PY ′ is the predicted trajectory pattern
features, T is the number of trajectory patterns in PY and PY ′, pyt is the t-th pattern of PY , and
py ′t is the t-th pattern of PY ′. This loss function addresses the challenges of temporal differences
between trajectories and non-uniform sampling rate in the following way:

—Challenge 1. Temporal differences between trajectories. The division of trajectory points to
patterns rely on the timestamp. Intuitively, trajectories that are similar to each other also
have a similar temporal span. Thus, even if two trajectories start at a slightly different time,
as long as they span the similar duration, they will be treated as being similar.

—Challenge 2. Non-uniform sampling rate. Since we use the timestamp to divide trajectories
to patterns, regardless of the difference in the number of points, similar trajectories will be
represented with the same number of patterns. Additionally, if we consider trajectories as
patterns instead of points, no matter how different the number of points are, the spatial and
temporal movement pattern are still preserved.

These three losses are used to update the network.We use the backpropagation algorithm,which
utilizes the gradient of the loss functions. The representation loss and the pattern loss updates
the encoder while the point-to-point loss updates both the encoder and the decoder. By using
a vector representation, we transformed the task of similar trajectory search into a task of com-
puting Euclidean distance between vectors, reducing the computational complexity from O (n2)
to O (n).
Summary. In this section, we first described our data modeling. We then show, step-by-step, how
our model performs a similar trajectory search. Finally, we showed the the representation loss,
point-to-point loss, and the pattern loss that each contribute differently for the training.

5 EXPERIMENTS

In this section, we will first describe our experimental setup, including the dataset used, the
baseline models used for comparison, and our model’s hyperparameters. Afterward, we will
show and analyze the results of three sets of experiments, which answer the following research
questions:
RQ1. How much of an improvement does our model achieve over existing models?

To answer this question, we compare our method with two classes of models: spatial-only deep
neural network model, and traditional spatio-temporal similarity metric. More details and results
are available in Section 5.2.
RQ2. How efficient is our model? To answer this question, we analyze the time taken for

our model to complete a similar trajectory search query and compare it with the baseline models.
More details and results are available in Section 5.3.
RQ3. What are the impacts of different hyperparameters, the three loss functions we

developed, and the usage of both spatial and temporal aspects of the data? To answer this
question, we perform a comprehensive ablation test on our model and assess the performance of
each permutation. More details and results are available in Section 5.4.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 77. Publication date: December 2021.

Similar Trajectory Search with Spatio-Temporal Deep Representation Learning 77:17

Table 3. Porto and Chengdu Dataset Details

Porto Chengdu
Time range July 2013–June 2014 1 Nov 2016–7 Nov 2016

Sampling rate 15 seconds 2–4 seconds

of trajectory 1.2 million 720,000
Avg. # of points in trajectory 57 points 273 points

5.1 Experimental Setup

Dataset.We use two datasets: the Porto taxi dataset1 same as [14], and the Didi Chengdu dataset.2

For both datasets, we prune trajectories that are overly short or long because they are likely to be
erroneous recordings. For the Porto data, we prune trajectories that are shorter than 30 and then
remove the 1% longest trajectory, resulting in the removal of trajectories longer than 206. Since the
Chengdu dataset is sampled at about five times the rate of Porto, we multiply the minimum and
maximum trajectory length by 5, thus removing trajectories shorter than 150 and longer than 1,030.
We use a span δp of 30 minutes and stride δt of 15 minutes for both. More details are in Table 3. For
the Chengdu data, we only report the efficiency experiments and some effectiveness experiments
due to space limits and due to how all models perform similarly. The similar performance is due
to the Chengdu data being more concentrated, with many trajectories covering the same roads
compared to Porto’s more balanced distribution. This can be seen in the two datasets’ heat maps
in Figures 7 and 8.

Preparation of test data. As there is no ground truth data for similar trajectory search, we have
to synthetically generate it. For this task, we adopt the setup used in the state-of-the-art [14]. We
select a number of trajectories as the set of query trajectories Q . For the Porto data, this value is
10,000. For the Chengdu data, we reduce this value to 1,000 due to its more granular sampling rate
and longer trajectories. We then select a set ofm (parameter to be evaluated) trajectories denoted
by P . For each trajectory Tb ∈ Q , we create two subtrajectories Ta and T ′a by alternatively taking
points from it. To simulate noisy trajectory data, we apply the downsampling, spatial distortion,
or temporal distortion, described in Section 4.2, to Ta . We collect both sets of subtrajectories into
two datasetsDQ = {Ta } and D ′Q = {T ′a }. We use the same process on P to produce two datasets,DP

and D ′P . Finally, we use DQ as the final set of query trajectories and D ′Q ∪ D ′P as the final set of

database trajectories Y. We assess the model’s performance on different downsampling, spatial
distortion, and temporal distortion rate in Section 5.2. The intuition is to simulate performing a
similar trajectory search over a trajectory database. For each query trajectory Ta ∈ DQ , its other
half T ′a resides in the database Y and is a synthetic ground truth that should be ranked highly
when we perform a similar trajectory search. The three distortions introduced to Ta simulate the
noisiness of real trajectory data. The greater the three distortions and the larger the database size
(controlled bym), the more difficult this task becomes.

Preparation of training data. For the training of our model, we select 500,000 trajectories as
the set of query trajectories Q . For every trajectory Tb ∈ Q , we apply the downsampling with
rates [0, 0.2, 0.4, 0.6], spatial distortion with rates [0, 0.2, 0.4, 0.6], and a temporal distortion rate of
15 minutes. Thus, for every Tb , we generate 16 matching distorted trajectories T ′

b
.

Evaluation metric. To compare our model with all baselines, we use the mean rank as the evalu-
ation metric. Specifically, we use every trajectoryTa ∈ DQ to query the database and find the rank

1http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html.
2https://outreach.didichuxing.com/appEn-vue/personal?id=2.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 77. Publication date: December 2021.

http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html
https://outreach.didichuxing.com/appEn-vue/personal?id=2

77:18 D. A. Tedjopurnomo et al.

Fig. 7. Heat map of the Porto data. Fig. 8. Heat map of the Chengdu data.

of every matching trajectory T ′a ∈ Y . We then calculate the mean of these ranks. This metric is
also used in [14] and is useful as it directly reports the model performance in real applications.

Baselines. We categorize the baseline models into two categories: spatial-only deep neural net-
work and spatio-temporal traditional.

(1) Spatial-only deep neural network.We use the state-of-the-art t2vec model [14] as a base-
line. Similar to our work, t2vec first transforms input trajectories to a vector representation and
performs similarity search using this new representation. t2vec uses a Sequence Autoencoder with
three GRU layers for the encoder and three GRU layers for the decoder. These GRU layers have a
hidden unit size of 256 and are trained using the Adam optimizer with an initial learning rate of
0.001.
(2) Spatio-temporal traditional. We use several traditional trajectory similarity metrics for

comparison, which are DTW [3], EDR [6], ERP [5], and LCSS [26]. Since they were designed for
a 1D time series, we extend them for spatio-temporal data by performing two separate distance
calculations on the spatial and temporal features, and then combine the score by using a balancing
factor α . More specifically, we use the following formula: d (ta , tb) = α × ds (ta , tb) + (1 − α) ×
de (ta , tb). Here, d is the combined distance function, (ta , tb) is a pair of input trajectories, α is the
balancing factor, ds is the spatial trajectory similarity function, and de is the temporal trajectory
similarity function. The spatial and temporal trajectory similarity function can be any one of the
four traditional similarity metrics we mentioned. For instance, if we are using DTW, the formula is
DTW (ta , tb) = α ×DTWs (ta , tb)+ (1−α)×DTWe (ta , tb), where DTWs (DTWe) is the DTW applied
to the spatial (temporal) features of the input trajectory pairs. We refer to the spatio-temporal
extensions of these four methods as ST-DTW, ST-EDR, ST-ERP, and ST-LCSS. We also Z-normalize
all three dimensions of the data. Finally, we set the hyperparameter ϵ for the matching threshold in
ST-EDR and ST-LCSS to a quarter of the maximum standard deviation, as recommended by Chen
et al. [6].

Hyperparameters. We categorize our model’s hyperparameters and describe them each below:
(1) Sequence autoencoder parameters. Our GRU Sequence Autoencoder model with atten-

tion uses a stack of three GRU layers for the encoder and another stack of three for the decoder.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 77. Publication date: December 2021.

Similar Trajectory Search with Spatio-Temporal Deep Representation Learning 77:19

Table 4. Mean Rank on Different Database Sizes

Database size 20k 40k 60k 80k 100k

t2vec 2.1294 3.1695 4.2832 5.5080 6.5470
ST-DTW 1.3122 1.4988 1.5824 1.5918 1.6854
ST-EDR 1.0281 1.0478 1.0528 1.0518 1.0611
ST-ERP 1.0050 1.0104 1.0124 1.0187 1.0245
ST-LCSS 1.0318 1.0488 1.0637 1.0751 1.0812

Our model 1.0132 1.0193 1.0230 1.0262 1.0278

All GRUs have a cell size of 256. The output vector representation for the trajectories have a size
of 512.
(2) Spatio-temporal cells. Every spatio-temporal cell has a spatial coverage of 500× 500meters

and a temporal coverage of 30 minutes. We use a hot-cell threshold value of 10, i.e., cells that are
hit by fewer than 10 trajectory points are removed. This leaves 73,310 remaining hot cells for the
Porto data and 13,872 for Chengdu. The Chengdu dataset’s smaller number of cells is due to the
much smaller spatial region compared to Porto.
(3) Model training. We train our model for one epoch through the dataset and use the Adam

optimizer [13] with the recommended setting: initial learning rate = 0.001, β1 = 0.9, β2 = 0.999.
We also employ a learning rate decay that linearly shrinks the learning rate after every training
sample to a minimum of 0.0001. With these parameter settings, it takes our model about 12.5 hours
to train for the Porto data and 51 hours for the Chengdu data.

5.2 Evaluation of Model Effectiveness

In this section, we perform four sets of experiments with two main purposes. Firstly, we would
like to assess the performance improvements when using both the spatial and temporal feature
of trajectory data. To answer this question, we compare our model with a state-of-the-art model
t2vec [14], which also uses a deep representation learning approach, but only the spatial feature of
the data. Secondly, we would like to assess the performance improvements of using a deep repre-
sentation learning approach over the traditional point-to-point approach. To answer this question,
we compare our model with our four spatio-temporal baselines: ST-DTW, ST-EDR, ST-ERP, and
ST-LCSS. For all ST models, we iterate through an α value of {0.5, 0.6, 0.7, 0.8, 0.9, 1}. We present
an analysis on the impact of α in Section 5.5.

The four experiments evaluate the effectiveness of our model w.r.t. the varying database size,
downsampling rates, spatial distortion rates, and temporal distortion rates, respectively. For the
Chengdu data, we only report the downsampling experiment results due to space constraints. For
the database size experiment, we vary the database sizem with the values {20k, 40k, 60k, 80k, 100k}
while for the remaining experiments, we keepm as 100k. For the downsampling experiment, we
vary the rate dr to {20%, 30%, 40%, 50%}. For the spatial distortion experiment, we vary the rate ds
to {20%, 30%, 40%, 50%}. Finally, for the temporal distortion experiment, we vary the rate de to {5
minutes, 10 minutes}. We only use small de because the further apart in time two trajectories are,
the less likely they are to be similar. A small value of 5 and 10 minutes are still close enough to
treat two trajectories as being similar.

5.2.1 Experiment Results.

Database size experiment. From the results shown in Table 4, we find our model scales much
better compared to t2vec. It confirms that including the temporal information adds another

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 77. Publication date: December 2021.

77:20 D. A. Tedjopurnomo et al.

Table 5. Mean Rank on Different

Downsampling Rates (Porto)

Downsampling
rate

20% 30% 40% 50%

t2vec 6.8838 7.3831 8.0531 10.0292
ST-DTW 1.4487 1.3956 1.4122 1.5696
ST-EDR 2.6815 4.6804 12.1010 23.2293
ST-ERP 2.2195 3.3803 6.3838 14.1944
ST-LCSS 2.2051 2.7106 3.1864 4.0918

Our model 1.1140 1.2984 1.5510 1.9802

Table 6. Mean Rank on Different

Downsampling Rates (Chengdu)

Downsampling
rate

20% 30% 40% 50%

t2vec 10.0820 10.1650 10.3720 10.6300
ST-DTW 1.0000 1.0000 1.0010 1.0000
ST-EDR 1.1820 1.4620 1.6570 2.1430
ST-ERP 1.0350 1.1190 1.3570 1.7160
ST-LCSS 1.4310 1.6190 1.9340 2.0560

Our model 1.0020 1.0030 1.0060 1.0270

Table 7. Mean Rank on Different Spatial

Distortions

Spatial
distortion rate

20% 30% 40% 50%

t2vec 6.9866 7.0486 6.6526 6.3305
ST-DTW 1.8391 1.8375 1.8353 1.8350
ST-EDR 1.0683 1.0697 1.0681 1.0680
ST-ERP 1.0146 1.0143 1.0136 1.0150
ST-LCSS 1.0940 1.0944 1.0952 1.0955

Our model 1.0359 1.0312 1.0298 1.0324

Table 8. Mean Rank on Different

Temporal Distortions

Temporal
distortion rate

5 minutes 10 minutes

t2vec - -
ST-DTW 3.1974 12.3873
ST-EDR 1.5072 5.2892
ST-ERP 3.4112 14.8540
ST-LCSS 1.6871 3.6839

Our model 1.6746 3.8275

dimension to the data, which helps it distinguish between trajectories that are only spatially sim-
ilar, but have significantly different timestamp. Compared to the four spatio-temporal baselines,
we managed to outperform ST-DTW, ST-EDR, and ST-LCSS while losing slightly to ST-ERP.

Downsampling rate experiment. This experiment assesses each model’s performance in ad-
dressing Challenge 2 outlined in Section 1, non-uniform sampling rate. The results are displayed
in Tables 5 and 6. Our model managed to outperform t2vec on all experiments. Our model also
managed to greatly outperform ST-EDR and ST-ERP on the Porto data. In the 50% drop rate exper-
iment, the most difficult task of the experiments, they achieved a mean rank about 12 times and
7 times worse than our model, respectively. On the Chengdu dataset, all spatio-temporal models
perform relatively well.

Spatial distortion experiment. This experiment assesses each model’s performance in address-
ing Challenge 3 outlined in Section 1, GPS errors. The results are displayed in Table 7. Our model
manages to outperform t2vec, showing the importance of using temporal features of the data.
Amongst the other baselines, ST-DTW performed the worst.

Temporal distortion experiment. This experiment assesses each model’s performance in ad-
dressing Challenge 1 outlined in Section 1, temporal differences. We exclude t2vec as it is spatial
only. Table 8 shows the results. Our model slightly loses to ST-EDR in the 5-minute experiment
and ST-LCSS in the 10-minute experiment, but performed better than the other models in the
remaining experiments, with ST-DTW and ST-ERP lagging behind in performance.

5.2.2 Experimental Analysis on Effectiveness. From the results of these four sets of experiments,
we can see that even though ourmodel did not outperform the baselines on all experiments, it offers
by far the most consistent performance. The state-of-the-art model t2vec uses only the spatial

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 77. Publication date: December 2021.

Similar Trajectory Search with Spatio-Temporal Deep Representation Learning 77:21

feature of the data and thus its performance lags behind the other spatio-temporal baselines. Next,
we conduct a further analysis on the pros and cons of each spatio-temporal baseline.

ST-DTW Evaluation. ST-DTW is robust to non-uniform sampling rates, but amongst the spatio-
temporal methods, it performed relatively poorly on the remaining experiments. ST-DTW’s rela-
tively poor performance on the spatial and temporal distortion experiments is caused by its usage
of the actual distance between the trajectory points. Thus, the distance computation takes into
account the spatial noise and the temporal differences between the trajectories, meaning it is not
robust to these noises. It is also not very scalable to large datasets relative to the other models.

ST-EDR Evaluation. ST-EDR is robust to spatial distortions, scales well, and has decent robust-
ness to temporal distortions, but it performs poorly w.r.t. non-uniform sampling rate because of
the edit distance calculation. Recall that given a pair of query and ground truth trajectoryX and Y ,
EDR performs a set of insertion, deletion, and replacement operations to transform X to Y . As the
number of points removed from both trajectories increases, the number of operations to do this
transformation from X to Y dramatically increases. Even if Y is the ground truth trajectory for X ,
EDR can mistakenly assign a very high edit distance for this pair of trajectories. As can be seen
from the result, the performance rapidly degrades as the downsampling rate increases.

ST-ERP Evaluation. ST-ERP has good scalability and handles spatial distortion well, but it does
not handle non-uniform sampling rate and temporal distortion well. At its core, ERP is a metric
that is still based on edit distance, similar to EDR. The difference is that instead of counting the
number of operations to match the two trajectories, ERP compared the distance of a point to a gap
element if the matching point is not close enough. In the case of the downsampling experiment,
when the number of non-matching points increases due to a large number of points being removed
from a matching X and Y , the performance rapidly degrades as the distances between the gap
element to both trajectories are accumulated, even though this Y might be the ground truth for X .
Additionally, ST-ERP performed the best in the spatial distortion experiment, but the worst in the
temporal distortion experiment, showing that the method of using gap element does not perform
well on the 1D temporal feature relative to the 2D spatial feature.

ST-LCSS Evaluation. ST-LCSS has decent scalability and robustness to spatial and temporal
noises, but it is not particularly robust non-uniform sampling rates. The performance improve-
ments of ST-LCSS relative to the edit-distance-based functions on the downsampling experiment
can be attributed to the fact that LCSS counts the number of matching points in X and Y in the
same relative order, but not necessarily contiguous. Edit-distance-based functions incur a large
penalty if there is a significant gap between two matching points’ position in the trajectory, e.g.,
if x and y is a match where x ∈ X is in the 5-th position while y ∈ Y is in the 11-th position.
LCSS ignores this gap, which means that the downsampling rate has a much reduced impact to its
performance. However, LCSS can still falter when a non-matching trajectory has more matching
points compared to the ground truth due to the trajectory length. For instance, consider a pair of
trajectories X and Y both with a length of 5 and LCSS assigns a value (recall that LCSS measures
trajectory similarity, so the larger the better) of 4, which is large relative to the trajectory length.
An arbitrary trajectory Y ′ with a length of 25 can still be counted as X ’s most similar trajectory if
the LCSS value between them is 5 even though only 20% of the points inY ′ arematched, as opposed
to Y where there is an 80% match. To summarize, the performance of edit-distance-based meth-
ods degrade because it assigns a disproportionately large distance/dissimilarity value for matching
trajectories while LCSS degrades because it assigns a disproportionately large similarity value for
non-matching trajectories.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 77. Publication date: December 2021.

77:22 D. A. Tedjopurnomo et al.

Fig. 9. Efficiency evaluation (Porto). Fig. 10. Efficiency evaluation (Chengdu).

Chengdu result. For the Chengdu downsampling experiment, the performance of all models
does not degrade as much as Porto when we increase the downsampling rate. The reason is that
Chengdu does not have as many spatio-temporal cells as Porto due to the relatively small area. In
addition, the Chengdu data has a more granular sampling rate, making it more robust to down-
sampling. t2vec performs worse compared to the other models because of the concentrated tra-
jectories, as can be seen in Figure 8. Consequently, there are many trajectories traveling the same
route.Without the timestamp information to distinguish the different trajectories, this spatial-only
method falters.

Summary. As can be seen from the discussion of these four baselines, each of the four point-to-
point based comparisons suffers from unique flaws on different experiments. Thus, in the presence
of noisy real data, they do not adapt well. In contrast, our deep-neural-network-based, spatio-
temporal model adapts very well to all circumstances and thus is more useful in real application
scenarios.

5.3 Evaluation of Model Efficiency

In this section, we evaluate all models’ evaluation efficiency. To do this, we report the average
time taken to query a database whose sizem we vary from 20k to 100k The results are displayed in
Figures 9 and 10. The most efficient model is t2vec, followed by our model. Both models use a deep
neural network model to transform trajectories from a raw representation to a vector representa-
tion and then use a KD-Tree to facilitate faster querying. t2vec is more efficient compared to our
model because it uses only the 2D spatial factors while ours uses the 3D spatio-temporal factors.
The traditional point-to-point-based models are significantly slower since they have a computa-

tional complexity of O (n2). Additionally, we need to perform one computation each for the spatial
and temporal aspect. To the best of our knowledge, there is no efficiency optimization for mul-
tidimensional trajectory distance computations. In the case of DTW, Rakthanmanon et al. [19]
proposed the UCR suite to improve its efficiency, but this is only applicable for 1D time series data.
Both the Porto and Chengdu data exhibit similar trends.

5.4 Ablation Test

Here, we will explore the impact of each loss function and also test our model’s performance
given different hyperparameter values. We use the Porto data and perform the downsampling
experiment with the rate dr set to {40%,50%}. We use these two experiments because amongst all
experiments, it is the most difficult to improve performance for them. For all the tables in this

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 77. Publication date: December 2021.

Similar Trajectory Search with Spatio-Temporal Deep Representation Learning 77:23

Table 9. Our Model’s Performance with

Different Loss Functions

Losses Training time
Drop rate
40% 50%

L1 44,820 1.49 2.17
L2 43,196 1,118.33 1,929.04
L3 44,320 3,456.34 5,777.53
LAll 43,492 1.55 1.98

Table 10. Our Model’s Performance with

Different Spatial Cell Sizes

Spatial
cell size

of
cells

Training
time

Drop rate
40% 50%

100 521,954 69,140 41.40 87.25
500 73,310 43,492 1.55 1.98

1,000 27,735 40,165 1.67 2.19

Table 11. Our Model’s Performance with

Different Temporal Cell Sizes

Temporal
cell size

of
cells

Training
time

Drop rate
40% 50%

5 min 294,388 48,640 2.48 4.35
10 min 175,790 47,795 2.15 4.38
15 min 127,828 46,315 1.53 2.74
30 min 73,310 43,492 1.55 1.98

Table 12. Our Model’s Performance with

Different Hot-Cell Thresholds

Hot-cells
threshold

of
cells

Training
time

Drop rate
40% 50%

10 73,310 43,492 1.55 1.98

50 51,924 43,011 1.73 2.77
100 41,970 41,652 1.93 3.41

Table 13. Comparison of Our Spatio-Temporal and

Spatial-Only Models

Model # of cells Training time
Drop rate

40% 50%

Spatio-temporal 73,310 43,492 1.55 1.98

Spatial only 3,727 39,377 13.89 23.92

section, the rows that are bolded signify the default setting we used for all prior experiments. The
training time is measured in seconds.

Effectiveness of different loss functions. Table 9 shows our model’s performance when using
different loss functions. The losses in the table refer to the following: L1 that uses only the repre-
sentation loss; L2 that uses only the point-to-point loss; L3 that uses only the pattern loss; LAll

that uses all losses. The representation loss operates directly on the feature vector representation,
directly impacting the evaluation performance and reaching a performance close to our default
setting. The point-to-point loss and pattern loss are intended to be supplementary losses and thus,
performed very poorly when used on their own. The default setting uses all loss functions, which
showed that these supplementary losses indeed help the main representation loss.

Effectiveness of different spatial cell sizes. Table 10 shows the performance of our model on
different spatial cell sizes. We can see that using a small cell size results in longer training time
yet with worse performance. This is because a large number of cells require a lot more training
to properly adjust the vector values of all spatio-temporal cells. This problem is compounded by
the fact that for each cell, there are significantly fewer number trajectory points that are hit by it.
This means that there is insufficient data to train each cell properly. On the contrary, if the size of
the cell becomes too large, the performance may degrade because points that are further away are
now grouped together in the same cell and are represented with the same feature vector, creating

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 77. Publication date: December 2021.

77:24 D. A. Tedjopurnomo et al.

a lot of false-positive cases where dissimilar cells are treated the same. Thus, the task of finding a
proper spatial cell size depends greatly on the dataset and must be done with care.

Effectiveness of different temporal cell sizes. Table 11 shows our model’s performance using
different temporal cell sizes. We observe the same trend as the spatial cell experiment, in that
using a cell size that is too small results in a larger number of cells, longer training time, and
worse performance. This value also greatly depends on the dataset. Thus, this feature must also
be explored carefully.

Effectiveness of different hot-cell thresholds. Here, we evaluate the impact of different hot-
cell thresholds δ . Recall that δ defines how many times a cell must be hit in order for it to be
treated as a hot cell. Non-hot cells are then removed from the list of all spatio-temporal cells. The
results are displayed in Table 12. The larger the threshold, the fewer the remaining cells, resulting
in a shorter training time. The performance worsens as we increase the threshold because when
we remove too many points, the trajectories become lossier. As a result, relatively uncommon
trajectory points that represent the uniqueness of a particular trajectory may be removed, making
it less distinguishable from the other similar trajectories.

Comparison between spatio-temporal and spatial-only model. Finally, we evaluate the ef-
fectiveness of using both the spatial and temporal aspects of the data. For this experiment, we
modified our data so that it only contains the spatial cells. We do this by increasing the temporal
cell size to 1,440, which ensures that there is only one temporal cell for all trajectory points. The
result is displayed in Table 13. As can be seen, when we only use the spatial aspect of the data, the
performance degrades significantly, showing that we need both aspects.

5.5 Importance of Spatial and Temporal Factors

In this section, we perform a set of exploratory analyses on the four spatio-temporal, point-to-
point baseline models ST-DTW, ST-EDR, ST-ERP, and ST-LCSS. The purpose is to demonstrate
the importance of utilizing both spatial and temporal factors, as well as to show the sensitivity of
these models to the balancing factor α . We use an α value from 0.5 to 1, where a larger α value
puts more weight on the spatial aspect of the data. We conduct this experiment on all database
size, downsampling rate, spatial distortion, and temporal distortion experiments, but due to space
limitations, we only display the results from the 50% drop rate experiments in Table 14. From these
experiments, we observe several trends.
Firstly, we find that different models respond differently to increasing amounts of α . The per-

formance of ST-DTW, ST-EDR, and ST-LCSS tend to worsen as we increase α , while ST-ERP’s
performance tends to improve. In addition, for some models, even a 0.1 increase can result in sig-
nificant changes; for ST-ERP, the performance improves greatly when α goes from 0.5 to 0.6. We
can see that these four baselines are quite sensitive to α . Thus, when using methods that use a
balancing factor, we need to iterate over a range of α values to find the best one, adding more
overhead to the already time-consuming point-to-point comparisons.
A constant observation from these results is that for all methods, increasing α from 0.9 to

1 dramatically worsens performance. Additionally, with the exception of ERP, this value achieved
by far the worst performance out of the remaining α values. When α is 1, the temporal aspect of
the data is ignored. Thus, from this observation, we can see that for all models, both the spatial
and temporal information is important. For this particular experiment, the best performance tends
to be when we use an equal balance between the spatial and temporal aspects of the data, except
for ST-ERP which favors a relatively more spatial-oriented α .

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 77. Publication date: December 2021.

Similar Trajectory Search with Spatio-Temporal Deep Representation Learning 77:25

Table 14. Experiment Results of All Baselines on

Different Choices of α

α ST-DTW ST-EDR ST-ERP ST-LCSS

0.5 1.5696 23.2293 29.7937 4.0918
0.6 1.6254 22.9506 20.6814 4.1011
0.7 1.6830 23.8497 16.1187 4.1194
0.8 1.7300 26.4362 14.1944 4.1997
0.9 1.7947 32.2287 14.7551 4.6906
1 2.6350 41.5255 19.1225 6.4034

Mean 1.8396 28.3700 19.1110 4.6010

6 CONCLUSION

In this article, we propose a novel spatio-temporal deep representation learning model for simi-
lar trajectory search. Our model manages to address the weaknesses of two types of trajectory
similarity search methods. Compared to the state-of-the-art deep neural network solution, we
utilize both spatio-temporal aspects of the data rather than spatial-only and managed to show sig-
nificant improvements. Compared to the traditional methods that we extend to handle the spatio-
temporal case, we show that our model offers significantly better consistency for all experiments.
We also show that these traditional methods are slow and require tuning to find the best spatio-
temporal balancing factor α which is unrealistic for end users. On the contrary, our deep repre-
sentation learning approach can dynamically find the balance between the spatial and temporal
aspects.

REFERENCES

[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine translation by jointly learning to

align and translate. CoRR abs/1409.0473. https://arxiv.org/abs/1409.0473.

[2] Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. 2012. Unsupervised feature learning and deep learning: A

review and new perspectives. CoRR abs/1206.5538. https://arxiv.org/abs/1206.5538.

[3] Donald J. Berndt and James Clifford. 1994. Using dynamic time warping to find patterns in time series. In KDD.

359–370.

[4] Gal Chechik, Varun Sharma, Uri Shalit, and Samy Bengio. 2010. Large scale online learning of image similarity through

ranking. Journal of Machine Learning Research 11 (2010), 1109–1135.

[5] Lei Chen and Raymond Ng. 2004. On the marriage of Lp-norms and edit distance. In VLDB, Vol. 30. 792–803.

[6] Lei Chen, M. Tamer Özsu, and Vincent Oria. 2005. Robust and fast similarity search for moving object trajectories. In

SIGMOD. 491-502.

[7] Zaiben Chen, Heng Tao Shen, Xiaofang Zhou, Yu Zheng, and Xing Xie. 2010. Searching trajectories by locations: An

efficiency study. In SIGMOD. 255–266.

[8] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014.

Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078.

https://arxiv.org/abs/1406.1078.

[9] Tangpeng Dan, Changyin Luo, Yanhong Li, Bolong Zheng, and Guohui Li. 2019. Spatial temporal trajectory similarity

join. In APWeb-WAIM, Vol. 11642. 251–259.

[10] Felix A. Gers, Fred Cummins, and Jürgen Schmidhuber. 2000. Learning to forget: Continual prediction with LSTM.

Neural Computation 12 (2000), 2451–2471.

[11] Sepp Hochreiter and Jurgen Schmidhuber. 1997. Long short-term memory. Neural Computation 9, 8 (1997), 1735–1780.

[12] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray Kavukcuoglu. 2015. Spatial transformer networks. In

NIPS 28. 2017–2025.

[13] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. CoRR abs/1412.6980. https:

//arxiv.org/abs/1412.6980.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 77. Publication date: December 2021.

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1206.5538
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1412.6980

77:26 D. A. Tedjopurnomo et al.

[14] Xiucheng Li, Kaiqi Zhao, GaoCong, Christian S. Jensen, andWeiWei. 2018. Deep representation learning for trajectory

similarity computation. In ICDE 34. 617–628.

[15] Hui Luo, Zhifeng Bao, Farhana Choudhury, and J. Shane Culpepper. 2019. Dynamic ridesharing in peak travel periods.

IEEE Transactions on Knowledge and Data Engineering 33, 7 (2021), 2888–2902. https://doi.org/10.1109/TKDE.2019.

2961341

[16] TomasMikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in vector

space. arXiv:1301.3781. https://arxiv.org/abs/1301.3781.

[17] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Distributed representations of words

and phrases and their Compositionality. arXiv:1310.4546. https://arxiv.org/abs/1310.4546.

[18] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer.

2018. Deep contextualized word representations. arXiv:1802.05365. https://arxiv.org/abs/1802.05365.

[19] Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gustavo Batista, Brandon Westover, Qiang Zhu, Jesin

Zakaria, and Eamonn Keogh. 2012. Searching and mining trillions of time series subsequences under dynamic time

warping. In KDD. 262–270.

[20] Sayan Ranu, Deepak Padmanabhan, Aditya D. Telang, Prasad Deshpande, and Sriram Raghavan. 2015. Indexing and

matching trajectories under inconsistent sampling rates. In ICDE. 999–1010.

[21] Shuo Shang, RuoguDing, Kai Zheng, Christian Jensen, Panos Kalnis, and Xiaofang Zhou. 2014. Personalized trajectory

matching in spatial networks. The VLDB Journal 23 (2014), 449–468.

[22] Zeyuan Shang, Guoliang Li, and Zhifeng Bao. 2018. DITA: Distributed in-memory trajectory analytics. In SIGMOD.

725–740.

[23] Mohammad Shokoohi-Yekta, Bing Hu, Hongxia Jin, Jun Wang, and Eamonn Keogh. 2016. Generalizing DTW to the

multi-dimensional case requires an adaptive approach. Data Mining and Knowledge Discovery 31 (2016), 1–31.

[24] Karen Simonyan and Andrew Zisserman. 2015. Very deep convolutional networks for large-scale image recognition.

arXiv:1409.1556. https://arxiv.org/abs/1409.1556.

[25] Han Su, Kai Zheng, HaozhouWang, Jiamin Huang, and Xiaofang Zhou. 2013. Calibrating trajectory data for similarity-

based analysis. In SIGMOD. 833–844.

[26] Michail Vlachos, George Kollios, and Dimitrios Gunopulos. 2002. Discovering similar multidimensional trajectories.

In ICDE. 673–684.

[27] Sheng Wang, Zhifeng Bao, J. Shane Culpepper, and Gao Cong. 2020. A survey on trajectory data management, ana-

lytics, and learning. arXiv:2003.11547. https://arxiv.org/abs/2003.11547.

[28] Sheng Wang, Zhifeng Bao, J. Shane Culpepper, Timos Sellis, and Xiaolin Qin. 2019. Fast large-scale trajectory cluster-

ing. Proceedings of the VLDB Endowment 13, 1 (2019), 29–42.

[29] Sheng Wang, Zhifeng Bao, J. Shane Culpepper, Zizhe Xie, Qizhi Liu, and Xiaolin Qin. 2018. Torch: A search engine

for trajectory data. In SIGIR. 535–544.

[30] Sheng Wang, Yunzhuang Shen, Zhifeng Bao, and Xiaolin Qin. 2019. Intelligent traffic analytics: From monitoring to

controlling. In WSDM. 778–781.

[31] Zheng Wang, Cheng Long, Gao Cong, and Yiding Liu. 2020. Efficient and effective similar subtrajectory search with

deep reinforcement learning. arXiv:2003.02542. https://arxiv.org/abs/2003.02542.

[32] Dong Xie, Feifei Li, and Jeff M. Phillips. 2017. Distributed trajectory similarity search. Proceedings of the VLDB Endow-

ment 10, 11 (2017), 1478–1489.

[33] Munkh-Erdene Yadamjav, Zhifeng Bao, Baihua Zheng, Farhana M. Choudhury, and Hanan Samet. 2020. Querying

recurrent convoys over trajectory data. ACM TIST 11, 5 (2020), 1–24.

[34] D. Yao, G. Cong, C. Zhang, and J. Bi. 2019. Computing trajectory similarity in linear time: A generic seed-guided

neural metric learning approach. In ICDE. 1358–1369.

[35] Haitao Yuan and Guoliang Li. 2019. Distributed in-memory trajectory similarity search and join on road network. In

ICDE. 1262–1273.

[36] Haitao Yuan, Guoliang Li, Zhifeng Bao, and Ling Feng. 2020. Effective travel time estimation: When historical trajec-

tories over road networks matter. In SIGMOD. 2135–2149.

[37] Peng Zhao, Weixiong Rao, Chengxi Zhang, Gong Su, and Qi Zhang. 2020. SST: Synchronized spatial-temporal trajec-

tory similarity search. GeoInformatica (2020), 1–24.

Received November 2020; revised March 2021; accepted May 2021

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 77. Publication date: December 2021.

https://doi.org/10.1109/TKDE.2019.2961341
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/2003.11547
https://arxiv.org/abs/2003.02542

