
AirCloud: A Cloud-based Air-Quality Monitoring
System for Everyone

Yun Cheng?, Xiucheng Li?, Zhijun Li?, Shouxu Jiang?, Yilong Li†, Ji Jia†, Xiaofan Jiang
? Harbin Institute of Technology, Harbin, China

† Air Scientific, Beijing, China
{chengyun.hit, xiucheng90}@gmail.com, {lizhijun os, jsx}@hit.edu.cn

{yilong.li, ji.jia}@air-scientific.com, fxjiang@gmail.com

Abstract
We present the design, implementation, and evaluation of

AirCloud – a novel client-cloud system for pervasive and
personal air-quality monitoring at low cost. At the front-
end, we create two types of Internet-connected particulate
matter (PM2.5) monitors – AQM and miniAQM, with care-
fully designed mechanical structures for optimal air-flow. On
the cloud-side, we create an air-quality analytics engine that
learn and create models of air-quality based on a fusion of
sensor data. This engine is used to calibrate AQMs and mini-
AQMs in real-time, and infer PM2.5 concentrations. We eval-
uate AirCloud using 5 months of data and 2 month of contin-
uous deployment, and show that AirCloud is able to achieve
good accuracies at much lower cost than previous solutions.
We also show three real applications built on top of AirCloud
by 3rd party developers to further demonstrate the value of
our system.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscella-

neous

General Terms
Experimentation, Measurement, Algorithm, Performance

Keywords
Air Quality, PM2.5, client-cloud calibration system

1 Introduction
Air is one of the most important shared resources on our

planet. Unfortunately, the quality of air has deteriorated
significantly over the past years, especially for metropoli-
tan cities in developing countries, such as Beijing and New

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

SenSys’14, November 3–6, 2014, Memphis, TN, USA.
Copyright 2014 ACM 978-1-4503-3143-2/14/11 ...$15.00
http://dx.doi.org/10.1145/2668332.2668346

Figure 1. AQM and miniAQM – Internet-connected sens-
ing front-end.

Delhi. Among the various dimensions of air quality, partic-
ulate matter (PM) with diameters less than 2.5 micron, or
PM2.5, has gained a lot of attention recently, partly because
of its significant impact on our respiratory systems, and is
the focus of this paper. Medical studies have shown that
PM2.5 can be easily absorbed by the lung, and high concen-
trations of PM2.5 can lead to respiratory disease [14] or even
blood diseases [25].

As a result, people are looking for better ways to moni-
tor the quality of air in their immediate environment in order
to take appropriate actions such as wearing masks or stay-
ing at home. While there are many smartphone applications
that report publicly-available air quality data at the city or
district-level, they cannot tell the actual air quality people
breath-in, which is much more relevant and valuable. This
is particularly important since we spend most of our time in-
side enclosed spaces such as homes and offices, where the
air quality may deviate significantly from the outside.

Existing particulate matter monitors fall into roughly two
categories: 1) microbalance PM monitoring stations that are
very accurate, but are large and expensive (on the order of
50K-100K dollars) [8]; and 2) portable light-scattering based
PM monitors with varying accuracies and costs between 300-
10K dollars, which are still too expensive for most individ-
uals or for deployment at scale. Over the past year, we start
to see inexpensive monitors based on dust sensors. But they
typically rely on static calibration curve, resulting in large

errors.
Because of the intrinsic accuracy-cost tradeoff of PM sen-

sors, it is challenging to be both accurate and affordable. In
this project, AirCloud takes a novel cloud-based approach to
this problem. Instead of using accurate but expensive stan-
dalone sensors, AirCloud is a client-cloud system consisting
of custom-designed sensor front-ends and air quality analyt-
ics engine in the cloud, as described in more detail in Sec-
tion 3. In addition to using data from our own sensors, we
collect a fusion of data, such as meteorology data, location
data, and etc., which are used by our calibration and infer-
ence algorithms in the analytics engine.

We created two versions of the sensor front-ends, AQM
and miniAQM, as seen in Figure 1. AQM is the station-
ary version, and connects to our backend via Ethernet and
GPRS. AQM can be placed inside offices or outside on light-
poles or other fixtures. We deployed a set of AQMs across
regions of the city to provide baseline data for our air quality
model. miniAQM is the portable version, which connects
to the smartphone via Bluetooth 4.0. Our smartphone app
relays raw dust sensor readings, plus the smartphone’s own
sensor readings such as GPS and IMU, to our cloud via 3G or
WiFi. miniAQM can be easily carried around, used in cars,
cubicles, or cafes, and enables us to collected mobile and
crowd-sourced air quality data from large number of indi-
viduals. The mechanical structure and air-flow inside AQM
and miniAQM are carefully designed based on 5 months of
experimentation, as described in more detail in Section 4.

On the cloud side, we use a number of data analysis and
machine learning techniques for signal conditioning, sen-
sor calibration, and inference. Using data collected over 5
months, we built a analytics engine consisting of calibration
and inference models. In this engine, we use Artificial Neu-
ral Network (ANN) for online sensor calibration; then we
use Gaussian process to further improve the accuracy of sen-
sors and infer the value at locations where sensors are not
available. We consider different classes of sensors as our in-
put, and model their accuracies, such that the more accurate
classes of sensors have greater influence than the less accu-
rate classes of sensors. We describe our cloud-side in more
detail in Section 6.

By building a model of particulate matter using “big sen-
sor data”, crowd-sourcing data from sensing frond-ends, and
by offloading analytics to the cloud, AirCloud is able to
achieve good accuracies at much lower cost than any pre-
vious solutions. And in addition to accurate particulate mea-
surement for end users, AirCloud also provides a set of APIs
for the third party developers to create applications on top of
our systems, as described in more detail in section 8.

We make the following contributions in this paper:

• Design, implementation, and evaluation of two types of
Internet-connected PM2.5 monitors—AQM and mini-
AQM with carefully designed mechanical structure for
optimal air-flow.

• A cloud-based Air Quality Analytics Engine that takes
in multi-dimensional sensor data, and uses several ma-
chine learning techniques to calibrate sensors, and ac-
curately compute and infer PM2.5 measurement.

• A real deployment over 2 months, which provides valu-
able training and testing data for our models, and help
evaluate our overall system.

• Several useful air-quality related mobile applications
building on top of our AirCloud platform.

2 Related Work
There are generally two approaches to measure PM2.5—

direct monitoring and indirect estimation, each with their ad-
vantages and disadvantages.
2.1 Direct Monitoring

Satellite remote sensing of surface air quality has been
studied intensively in past decades [19]; this method can help
people obtain a general idea of the air quality of the surface.
However, this category of methods are easily influenced by
clouds and would be sensitive to other factors, such as hu-
midity, temperature, and location. In addition, the results
inferred from satellite images only reflect the air quality of
atmosphere rather than the ground air quality that people care
more about.

To get a clear image of air quality, most countries nowa-
days deploy air quality stations. These official air-quality
stations usually use TEOM (Tapered Element Oscillatory
Microbalance) [21] to measure the air quality by weight-
ing PM2.5 concentrations accumulated on a filter over several
hours. This type of devices are large and expensive (on the
order of 300K dollars). A more affordable class of monitors
are based on light-scattering method, and cost between 300-
10K dollars. For example, Dylos [3] is a popular portable
particle counter costing around 300 dollars while the TSI-
3330 [10] is more accurate but costs around 5000 dollars.
While 300 dollars is acceptable for some individuals, it is
still too expensive for most people or for dense deployments.
Over the past year or two, we start to see a number of dust-
sensor based devices aimed at particulate monitoring. These
devices typically cost around 100 to 200 dollars. However,
by empirically evaluating these devices [4] [5], we found that
they rely on a static calibration curve, together with poorly
designed air-flow mechanisms, resulting in completely unus-
able readings under many conditions (with error as large as
300%).
2.2 Estimation and Inference

In the past of years, two major classical ways are mostly
used to calculate the air quality of a location. One is interpo-
lation using reports from nearby air quality monitor stations.
This naive method is usually employed by public websites
releasing the air quality index (AQI). As air quality varies
in locations non-linearly, the inference accuracy is quite low.
In [29], the author claims that, according to the statistics on
the AQI recorded from Jan. 1, 2013 to Jan. 1, 2014, the aver-
age deviation between the maximum and minimum readings
of PM2.5 from the 22 official stations at the same timestamp
can easily exceed 120. In addition, over 50% of time, the
deviation is larger than 100. Since 100 almost denotes a
two-level gap, when the air quality of a location is moder-
ate, another one could be unhealthy. The other is classical
dispersion models, such as Gaussian Plume models, Opera-
tional Street Canyon models, and Computational Fluid Dy-
namics. These models are in most cases a function of mete-

Figure 2. Architecture of the AirCloud system.

orology, street geometry, receptor locations, traffic volumes,
and emission factors (e.g., g/km per single vehicle), based
on a number of empirical assumptions and parameters that
might not be applicable to all urban environments, however,
these parameters are difficult to obtain precisely and the re-
sult is not very accurate either [27].

Recently, big data reflecting city dynamics have become
widely available and a group of researchers seek to infer
the air quality using machine learning and data mining tech-
niques. In the “U-Air” paper by Yu Zheng et al. [30], the
authors infer air quality based on AQIs reported by a few
public air quality stations and meteorological data, taxi tra-
jectories, road networks, and POIs (Point of Interests). How-
ever, because they estimate AQI using a feature set based on
historical data, their model cannot respond quickly enough
to the change in PM2.5 concentration, which often changes
on an hourly basis, leading to large errors at times.

There are also crowdsourcing or participatory sensing ap-
proaches [17][18] to solve the air quality monitoring prob-
lem. This approach has only been applied into detecting
some gasses like CO2. As far as we know, no individuals
or groups adopted this method in monitoring PM2.5 so far as
the devices designed in the past for sensing such kinds of air
pollutants are not easily portable.

We approach this problem using a combination of direct
monitoring, modeling and inference, and crowd-sourcing.

3 System Overview
AirCloud uses a heterogeneous set of data sources as in-

puts. These data are stored and analyzed by the air qual-
ity analytics engine in the cloud, to provide accurate device
calibration and fine-granularity estimation based on GPS-
location. AirCloud further provides a number of web ser-
vices and APIs for third-party applications developers.

3.1 Data Sources
There are various types of data sources in our system.

We collect public weather data to learn the relationships be-
tween weather information such as temperature, humidity,
pressure, wind speed and air quality. In order to train the
calibration and the inference model, the system also has sev-
eral classes of air quality data sources. The public air quality
stations use very expensive instruments and the data is the
most accurate. Thermo [8] is less expensive but almost as

accurate as the public stations. The system also has less ac-
curate air quality sensors such as Dylos. Thermo is used to
train the calibration model and predict the unknown values
in the online calibration and inference algorithm, we also use
it as the ground truth to evaluate the performance of the on-
line calibration model. But to get a more dense coverage of
PM2.5 spatially, we design and implement our own PM2.5 in-
struments (AQM and miniAQM). It is much less expensive
and we can deploy them densely in our city. Using AirCloud
crowd-sourcing and our calibration & inference algorithms,
AirCloud provides accurate, calibrated results for AQMs and
minAQMs.
3.2 Data Representation and Storage

To describe multiple kinds of data sources in an uniform
format, and to store and query this data efficiently, we use
sMAP [16] as the data representation and storage system.
It’s designed as the standard specification for physical sensor
data. sMAP provides an efficient database for time-series
data, plus a powerful query language.

We need to reform the calibration and inference online,
however, we also have to ensure response speed and secu-
rity. According to these specific needs, we add a backend
asynchronous service and authentication module to the sys-
tem.
3.3 Air Quality Analytics Engine

Air Quality Analytics Engine is the data processing and
mining module, which contains the offline training model
and online calibration and inference models, it takes the raw
sensor data and computes the accurate calibration and infer-
ence results.

It can be observed that PM2.5 is heavily influenced by me-
teorology factors [30]. This knowledge inspires us to exploit
the dependencies between the sensor error and these meteo-
rology factors. We collected 5 months of data which contains
AQM sensor data, Thermo ground truth data and meteorol-
ogy data, to train an ANN model. From this model, AirCloud
learns the non-linear relationship between AQM sensor read-
ings and Thermo readings.

As shown in Figure 2, the system first uses the data pre-
processing module to reconstruct the raw sensor data. Next,
using the offline model we have trained using historical data,
AirCloud computes a calibrated PM2.5 reading using real-
time AQM data and weather data. Lastly, an online infer-

ence model based on Gaussian Process is used to infer and
predict PM2.5 concentrations at locations where direct sen-
sors are not available, or to further calibrate AQM sensor.
We describe the details in Section 6.

3.4 APIs and Applications
AirCloud provides several web services and RESTful

APIs for developers. For example, GPS-AIR interface can
help developers get accurate PM2.5 estimation value if the
GPS location data is valid; Device-Calibration interface
can give back the device calibration result; Data-Driver in-
terface can help developers easily add, get or search data
from our database.

During two hackathons we have hosted, several smart-
phone applications have already been developed (some al-
ready online in the Apple App Store) that use our APIs to
get calibrated PM2.5 data. We describe some of them in Sec-
tion 8.

4 AQM and miniAQM PM2.5 Frontends
PM2.5 concentrations vary significantly over space, es-

pecially for metropolitan cities where pollution sources are
multi-faceted [30]. In addition, as we can observe from
official PM2.5 monitoring station data, PM2.5 concentration
changes at an hourly rate. As a result, direct monitoring is
necessary.

However, we find that none of the existing monitors sat-
isfy our needs, they are either overly expensive or not ac-
curate enough. To solve this problem, we designed and built
our own Internet-connected PM2.5 monitors, AQM and mini-
AQM, as shown in Figure 1. The AQM costs about $60 at
10K quantity. We take a novel approach of using inexpensive
sensors at the front-end, but rely on the analytic algorithm in
the cloud to improve the accuracies.

There are three kind of data sources in all:

• Public data: weather data, public PM2.5 data and POIs,
which can be obtained using web crawler;

• Internet-connected monitoring stations: we use
Dylos and Thermo connected with laptop as our highly
accurate data sources;

• AQM and miniAQM: these are our designed low-cost
monitoring devices

We will describe AQM and miniAQM in details in the
following subsections.

4.1 Sensor Selection
Because of own cost constraints, sensors suitable for our

front-ends are typically FIR-based light-reflecting sensor,
commonly called dust sensor, which are used extensively
inside air purifies as a rough indicator of air quality. Sev-
eral choices are available, such as SHINYEI, SHARP, and
etc. We evaluated most of the popular ones over various air
conditions and found that SHINYEI PPD42NJ produced the
most consistent results. We installed two PPD42NJ inside
AQM, on opposite sides and facing opposite directions. This
design choice enables AQM to self-calibrate, and increases
the speed of converging to a usable value. This dust-sensor
arrangement also enables us to automatically detect errors

and sensor failures during long-term deployment. For mini-
AQMs, only one PPD42NJ is used to save space since porta-
bility is a priority for miniAQM.

4.2 Mechanical Design
Over the three months of designing AQM and miniAQM

hardware, we found that the mechanical structure plays a sig-
nificant role on the data accuracies of this type of sensors. In
particular, the air flow determines how long and how fast the
particles pass through the “detection window” of the sensor,
and needs to be carefully controlled. Ideally, an air pump
should be used to maintain constant air flow; but air pumps
are too expensive. Instead, we experimented with many dif-
ferent designs, both passive and active air flow. Our first
design completely exposes the sensors. This worked well
most of the time, but does not cope well with high speed
wind or if large particle become dominant. We then exper-
imented enclosure holes and strain screen, in an attempt to
decrease the effect of wind. But we found that this design of-
ten leads to a self-circulating local environment, and won’t
exchange air with the outside. Our final design is using a
fan running at a low fixed speed to emulate the air pump,
as shown in Figure 1. We install two PPN42NJ sensors in-
side AQM on opposite sides and facing opposite directions.
In PPD42NJ sensor, air is self-aspirated with the current of
air generation mechanism with a built-in heater, so if we
place the fan around AQM device, the fan will affect the air
flow, and we also do experiment to evaluate this hypothe-
sis. Finally, we choose to place the fan on top of the device
to ensure exchanging air with the outside to prevent a self-
circulating local environment. The main evaluation criterion
is whether the PPD42NJ sensor can respond quickly and have
the correct trend.

4.3 Data Communication

Figure 3. Communication between front-ends.

We use different communication approaches to connect
AQM and miniAQM with cloud server. AQM, shown on the
bottom of Figure 3, is the stationary version, that connects
to the cloud via Ethernet or GPRS. miniAQM, shown on the
top of Figure 3, is the portable version, which connects to the
smartphone over Bluetooth 3.0 or 4.0 (both supported), and
to the cloud via the mobile phone’s data connection, such as
3G or WiFi.

Figure 4. The hardware calibration process. (A) the
hardware calibration procedure; (B) standard sensor
board; (C) fitting result.

Figure 5. The air chamber used for hardware calibra-
tion. Pollution source and air purifier are used to change
PM2.5 concentration, while air conditioning is used to
change the temperature and humidity, we use the sensor
readings across a wide range to do the hardware calibra-
tion.

4.4 Hardware Calibration
From our experimental data, we find that while the

PPD42NJ sensors we used exhibit the same trends, there
are still significant variations between them, and require
calibrating them against a reference sensor, at various
PM2.5 concentrations. In order to calibrate them, we built
an 10 m3 air chamber with full internal climate control, as
shown in Figure 5. Using this air chamber, we can manu-
ally vary the PM2.5 concentrations across a wide range, and
calibrate all the sensors together. Figure 4(a) shows the hard-
ware calibration procedure. We use two order polynomial fit
to calibrate error between different PPD42NJ sensors. Fig-
ure 4(c) shows the fitting result of one PPD42NJ sensor with
the standard one. We use the average PM2.5 concentration

of a sensor board which contains 16 PPD42NJ sensors as the
standard sensor reading, as shown in Figure 4(b). When we
obtain the hardware calibration parameters, then it will be
stored in a database. Before each deployment, we calibrate
each PPD42NJ sensor to this standard board to remove initial
hardware variations.
5 Cloud-side System Design

To store and query data efficiently, we use sMAP [16] to
define the data format and store the data. In the following
subsections, we will first describe sMAP, then details of our
data exchange framework.
5.1 sMAP

sMAP [16] is a simple measurement and actuation profile
for physical information, which enables the simple and effi-
cient exchange of sensor data. It’s a specification for trans-
mitting physical data and describing its contents, which also
provides tools for building, organizing, and querying large
repositories of physical data. sMAP allows instruments and
other producers of physical information to directly publish
their data, and it provides powerful RESTful service to get
the data from sMAP archiver. The repository gives a place
for instruments to send their data. It supports the following
features:

• Efficient storage and retrieval of time-series data

• Maintenance of metadata using structured key-value
pairs

• Metadata querying using ArdQuery [7] language
The core object in sMAP is timeseries, a single progres-

sion of (time, value) tuples. Each timeseries in sMAP is
identified by a UUID, and can be tagged with metadata; all
grouping of timeseries occurs using these tags. These objects
are exchanged among all components in this ecosystem.

sMAP has been online for at least three years and has
proven to be robust; all the above features make it an ideal
choice for our system.
5.2 Data Format, Authentication, Storage and

Web Services
Figure 6 shows the system data exchange framework,

which contains three parts: 1) data sources exchange frame-
work. We define the data format according to sMAP spec-
ification and add authentication module; 2) system internal
data exchange framework. We mainly use JSON format to
exchange data among different system components; 3) API
data exchange framework. To improve efficiency, we store
result in RAM and use authentication module to verify the
user. We will describe these in details in the following sec-
tion.

We use sMAP as our storage scheme, so we define the
source data format, as shown in Figure 7. According to
sMAP specification, each timeseries is globally identified
by a Universal Unique Identifier (UUID), which is a 128-
bit name. Together with time-series readings, which con-
tains UNIX timestamp and value, system can easily store the
data. Time series are uniquely identified by UUID. How-
ever, these identifiers are unpleasant to use in practice. We
add additional metadata to be attached as tags: structured
key-value pairs, as shown in Figure 7. We add detailed and

Figure 6. Data Exchange Framework.

Figure 7. The Hardware Data Representation.

hierarchical metadata, such as instrumentID and location, to
make it easier and natural to retrieve data in the future. The
detailed location and InOut status also provide information
to the backend algorithm and the visualization service. To
make the system more secure and stable, we add authenti-
cation module and data schema check module in the data
processing framework. In Figure 6, all uploading data in 1©
have the same data format and use specified key as authenti-
cation token.

Figure 8. InstrumentID definition.

InstrumentID uniquely identifies an instrument, such as

AQM or miniAQM, and can be associated with multiple
UUIDs - an instrument may have more than one data stream.
Because an user may manually enter the InstrumentID to as-
sociate the device to his/her account, we designed the format
for InstrumentID in a way that enables (trained) humans to
read out useful information visually, while preventing acci-
dental input errors via CRC check, as shown in Figure 8.

When the backend server receives the data stream, it will
use the cloud analytics engine to process the sensor data, pro-
duce the calibrated result and send to sMAP archiver. To
improve the response speed, we choose asynchronous cel-
ery [1] workers to do the jobs in the backend and use tor-
nado [9] web server as the frontend to deal with basic con-
nection jobs. The system use JSON format to exchange data
among various system components.

In Figure 6, 3©, 4© and 5© represent the system API ser-
vices. We have three different kinds of APIs:
• Device Calibration API: each AQM, miniAQM or

other supported devices will use this API to get the cali-
bration parameters. A key is required for authentication
and JSON is the data format;

• Time-series Data API: developers can use this API
to get time-series data. All data are presented in JSON
format and use the authentication module;

• GPS-AIR Quality API: developers can use this API to
get accurate PM2.5 concentrations of the current loca-
tion. To improve efficiency, we store the heatmap result
in RAM once it’s produced.

6 Air-Quality Analytics Engine
The cloud-based Air-Quality Analytics Engine mainly

consists of three components: 1) a signal reconstruction
module designed to denoise and smooth the corrupted origi-
nal sensor signal; 2) an ANN based calibration model aiming
to enhance the accuracy of AQM and miniAQM in real time;
3) an online inference model based on Gaussian Process that
encompasses various source data to further improve the ac-
curacies and to provide PM2.5 estimation for places where
sensors are not available. The overall framework is shown in
Figure 9.
6.1 Signal Reconstruction

Due to the instability of the sensor itself and the extra
noise added in transmission, the original signal is extremely
unstable as shown in Figure 10. Therefore eliminating the
noise and reconstructing the real signal is the first step . For-
mally, we represent the signal as x∈ Rn (n is the length of the
signal) and assume that signal x is corrupted by an additive
noise v:

xcor = x+ v

in which xcor is the original corrupted signal uploaded by the
sensor and we simply assume that the noise v is an unknown,
small, and rapidly varying random variable. The goal here
is to form an estimate x̂ of the original signal x, given the
corrupted signal xcor.

The signal reconstruction could then be formulated as the
bi-criterion problem [15]

minimize (w.r.t. R2
+) (‖x̂− xcor‖2,φ(x̂)) (1)

Figure 9. Framework of the Air-Quality Analytics En-
gine. The Data Preprocessing module will smooth the
data flow before feeding it to ANN or GP inference
model; ANN is trained offline and updated online; The
GP model fuses multiple source data to make inference.

Figure 10. The original signal of PPD42NJ during about
five days where the signal is sampled every 5 minutes.

where x̂ is the optimization variable and xcor is the parameter
of the optimization problem. The function φ : Rn → R is a
convex function and can be treated as smoothing objective.
It is normally meant to measure the roughness of the estimate
x̂. The optimization problem (1) seeks signal that are close
to the corrupted signal, that are smooth, for which φ(x̂) is
small.

There are multiple choices for the smooth objective func-
tion φ and the simplest one is a quadratic smoothing function

φ(x) =
n−1

∑
i=1

(xi+1− xi)
2 = ‖Dx‖2

2

where D ∈ R(n−1)×n is a banded matrix (and n is the length

of the signal)

D =


−1 1 0 · · · 0 0 0
0 −1 1 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · −1 1 0
0 0 0 · · · 0 −1 1


The optimal estimate x̂ can be obtained by solving a con-

vex optimization problem [15]

minimize ‖x̂− xcor‖2
2 +δ‖Dx̂‖2

2 (2)

where δ > 0 is a trade-off parameter trading between ‖x̂−
xcor‖2

2 and δ‖Dx̂‖2
2. A large δ typically implies a high penalty

in δ‖Dx̂‖2
2. Therefore a larger δ normally leads to a smoother

estimate x̂ while a smaller δ makes x̂ more consistent to the
observed signal xcor.

The solution of this quadratic problem can be obtained
analytically as

x̂ = (I +δDT D)−1xcor

in which I is an identity matrix and (I+δDT D) is tridiagonal.
Therefore the solution can be computed very efficiently. Ac-
tually, since (I+δDT D) is symmetric and positive definite it
can be factorized via Cholesky factorization, the complexity
of computing x̂ is Θ(nk2 + 4nk) [15] where k is the band-
width of (I + δDT D), k is 3 in our case, and n is the length
of the signal we handle in response to each request.

In theory, a larger n tends to provide a smoother recon-
struction signal x̂ but requires much more computing re-
source. In our scenario the sensor data is coming in real
time and we have to handle them dynamically. Therefore the
choice of n is a compromise between the smoothness and ef-
ficiency. The effectiveness of the signal reconstruction will
be shown in Section 7.
6.2 Calibration Model Based on Neural Net-

work
In the Air-Quality Analytics Engine, the prediction is

made based on the data acquired by the sensors. Thus the
precision of sensors is critical to the prediction accuracy. Un-
fortunately, there is usually an error in the data acquired by
AQM due to the inherent randomness in particulates through
the sensor’s focusing window and noises in the devices. Fig-
ure 11 shows the concentration of PM2.5 given by AQM
(PPD42NJ, after signal reconstruction) and the standard de-
vice (Thermo) at the same place, and there are obvious er-
rors between them. Therefore, it is necessary to eliminate
such errors to improve the accuracy of our engine, i.e., to
estimate each h(x) from its observation ĥ(x).

There are two observations from Figure 11 that inspire us
to design the calibrator. 1) Each PPD42NJ reading may cor-
respond to multiple Thermo readings, and thus more infor-
mation is required to calibrate PPD42NJ. According to pre-
vious work [30], the concentration of PM2.5 is heavily in-
fluenced by meteorology factors, such as temperature, hu-
midity, pressure, and etc. This empirical knowledge in-
spires us to exploit these meteorology factors to help cal-
ibrate the AQM (PPD42NJ); 2) The relationship between

Figure 11. Thermo VS PPD42NJ. A large deviation ex-
ists between PPD42NJ’s readings and Thermo’s read-
ings which we take as ground truth.

PPD42NJ readings and Thermo readings is complex and non-
linear, which makes it difficult to design the calibrator di-
rectly, and thus we resort to the learning based method.

Based on these observations, we select to simulate cal-
ibrator with a neural network which takes the readings of
PPD42NJ with co-located temperature and humidity readings
as inputs and the groundtruth value (given by Thermo) as
output since the neural network is capable of well fitting
an arbitrary function. Many types of neural networks have
been investigated and extensively used in practice, among
which the deep network architectures are becoming increas-
ingly prevalent recently [12]. But in our application the
widely-used back-propagation (BP) network is chosen due
to its simplicity and generality [13]. Denoting the readings
of PPD42NJand Thermo as ĥ(x) and h(x) respectively, the cal-
ibration function can be formulated as h(x) = g(z(x)), where
z(x) = [ĥ(x), H, T]T , and H, T represents the humidity and
temperature respectively.

In the training process, we adopt the stochastic gradient
descent algorithm [28] rather than the batch methods like
L-BFGS for the following two reasons: 1) computing the
cost and gradient for the entire training set is very slow;
2) stochastic gradient descent allows us to incorporate new
training data online as the relationship between the input and
output is not constantly invariable due to the aging of device
and the change of environment. In our Analytics Engine, we
keep updating the calibrator by retraining it using online data
collected at locations where both a AQM and a Thermo exist.

Once the parameters of the BP network are learned, the
prediction can be obtained in O(1) which takes only some
simple calculations. Using this model, we effectively cali-
brated the AQM, which is shown in Section 7.4.
6.3 Online Inference Model

The Neural Network calibration model attempts to im-
prove the accuracy of the sensor by using only local point
features. In the online inference model, we seek to incor-
porate various data sources with different confidence levels,

such as the official public monitor station data, Thermo data
and Dylos data, to further improve the accuracy of AQM and
miniAQM in open areas spatially. And meanwhile it could
also provide PM2.5 estimation values for the places where
the sensors are unavailable.

In [30], Yu Zheng et al. proposed a framework named U-
Air to infer the real-time and fine-grained air quality in urban
area. The U-Air model takes as input the data with same con-
fidence from a small number of existing monitor stations and
is based on co-training learning which is designed to resolve
the data sparsity issue. In our scenario, there are a variety of
source data with different confidence levels, and as a dense
deployment, we can collect a relatively large amount of data
for meaningful inference. Therefore, it is not wise to directly
apply the U-Air model. In contrast, as [30] has pointed out,
the urban quality varies by location non-linearly and depends
on multiple factors, such as meteorology, land use, and urban
structures. We turn to one of widely used Bayesian methods-
Gaussian Process, which can naturally bring these prior in-
formation and adaptively integrate the multiple source data
into the model.

Gaussian Process: A Gaussian Process is a stochastic
process such that any finite subcollection of random vari-
ables follow a multivariate Gaussian distribution [24]. For-
mally, a collection of random variables {h(x) : x ∈ Rn} is
said to be drawn from a Gaussian Process with mean func-
tion m(·) and covariance function k(·, ·) if for any finite set of
elements x(1),x(2), . . . ,x(m) ∈ Rn, the associated finite set of
random variables h(x(1)),h(x(2)), . . . ,h(x(m)) follow the dis-
tribution,

h(x(1))
...

h(x(m))

∼N


m(x(1))

...
m(x(m))

 ,
k(x(1),x(1)) · · · k(x(1),x(m))

...
. . .

...
k(x(m),x(1)) · · · k(x(m),x(m))




For simplicity, we denote this as:

h(·) = GP (m(·),k(·, ·))
m(·) is the mean function which can be any real-valued func-
tion and k(·, ·) is the kernel function which must satisfy the
Mercer’s condition. In our implementation, squared expo-
nential function is chosen as the kernel function which is de-
fined as

kSE(x,x
′
) = exp(−

n

∑
i=1

‖xi− x
′
i‖2)

2ω2
i

in which x,x
′ ∈ Rn, xi is the i-th dimension of feature vector

x, n is the number of dimension and ωi is used to control the
importance of i-th feature, the kernel function can be treated
as a measurement of how similar two feature vectors are, and
hence ωi plays a significantly important role in characteriz-
ing the similarity of two feature vectors.

Gaussian Process regression: Given a training set of
i.i.d.(independent and identically distributed) examples, S =
{(x(i),y(i))}N

i=1, from some unobserved distribution. The
Gaussian Process regression model can be written as

y(i) = h(x(i))+ ε
(i), i = 1, . . . ,N

where the ε(i) are i.i.d. noise variables (which might be gen-
erated by our sensors) with independent N (0,δ2

i) distribu-
tions.

The GP representation is very powerful. Given a set of
test points, T = {(x(i)∗ ,y(i)∗)}N∗

i=1, drawn from the same un-
known distribution as S. We could then derive equation to
compute the posterior predictive distribution over the testing
outputs y∗ by using the properties of multivariate Gaussian
distribution and Bayesian approach as [20][

y
y∗

]∣∣∣∣X ,X∗ =
[

h
h∗

]
+

[
ε

ε∗

]
∼N

(
0,
[

Ky K∗
KT
∗ K∗∗

])
where Ky = K(X ,X)+ diag(δ2

i) is N×N, K∗ = K(X ,X∗) is
N ×N∗, and K∗∗ = K(X∗,X∗)+ diag(δ2

i) is N∗×N∗. Each
entry of this matrix is computed as

K(X ,X)i j = kSE(x(i),x(j)),K(X ,X∗)i j = kSE(x(i),x
(j)
∗)

By the standard rules of conditional Gaussians, the pos-
terior distribution has the following form (y∗|y,X ,X∗) ∼
N (µ∗,Σ∗)

µ∗ = KT
∗ K−1

y y (3)

Σ∗ = K∗∗−KT
∗ K−1

y K∗ (4)

The Gaussian Process is non-parametric which is able to
model essentially arbitrary functions of the input points, and
thus if we take the distribution of PM2.5 value of a city as
an random distribution, the Gaussian Process would enable
us to model this distribution at any given time dynamically.
Equation (3) guides us to compute the predictions of PM2.5
value in a specific place and Equation (4) indicates the un-
certainty of the predictions.

In the spatial inference model, we divide the region into
grids and collect air quality related features for each grid.
The features consist of the GPS coordinates, location-related
humidity, temperature, POI (points of interest, Table 1 indi-
cates the category of POIs which we studied in our exper-
iment). Intuitively, a grid tends to show similar air quality
with its neighbors and the grids, just as [30] has pointed out
that the similar meteorology and POI normally take the same
air quality level. However, since these features do not have
the same impact on the PM2.5 treating them equally is not
a smart way, and it is necessary to select different ωi in the
kernel function to distinguish these features. Here, we con-
sider an empirical Bayes approach, which allows us to use
continuous optimization methods. In particular, we try to
maximize the marginal likelihood function [20]

log p(y|X) =−1
2

yK−1
y y− 1

2
log |Ky|−

N
2

log(2π) (5)

The kernel parameters learned by maximizing the marginal
likelihood could adaptively adjust their magnitude which in-
dicates the importance of each feature and also reflect the
influence of the urban structure to PM2.5.

Considering that the various data sources reported by
different kinds of devices have different confidence levels,
this reflects the different noise levels of the observed data.
Specifically, the more reliable the device is, the lower noise it

Table 1. Category of POIs
C1: Culture & education C5: Shopping malls and Supermarkets
C2: Parks C6: Entertainment
C3: Sports C7: Decoration and furniture markets
C4: Hotels C8: Vehicle Services(pas station, repair)

owns. Therefore we use a diagonal matrix diag(δ2
i) in Equa-

tion (3) (contained in Ky term) to represent the noise. In this
fashion, the ultimate value of a device depends on not only
itself but the values of its nearby devices.

Since both computing µ∗ in Equation (3) and maximiz-
ing the marginal likelihood function in Equation (5) involve
computing K−1

y , the complexity of our inference model is
Θ(N3) [24]. For the present scale of our deployment, the
number of sensors N is targeted within 1000, so the exact
computation is still our best choice but if N is larger than
1000, the approximation methods would be more appropri-
ate. In an effort to overcome scaling problems, a range
of sparse Gaussian Process approximations have been pro-
posed [26] [22] [23]. The paper [23] stated that these approx-
imation methods can give a satisfactory performance while
only takes O(M2N) time, where M is a user-specifiable pa-
rameter. The approximation approaches will be considered
in our future work.

7 Evaluation and Results
In this section, we present our evaluation methodology

and experimental results. First, we describe the deployment
setup and the definition for PM2.5 levels. Next, we evaluate
the effectiveness and performance of the signal reconstruc-
tion and the neural network calibration model using histori-
cal dataset collected over 5 months. Finally, the online infer-
ence model and the overall online analytics engine are eval-
uated through a real deployment over two months, followed
by a detailed heatmap of our deployment.

7.1 Experiment Setup and Datasets
To collect sufficient data to train our ANN calibration

model, we set up a data collection module. Figure 12(a)
shows the training data collection setup, Thermo and sev-
eral PPD42NJ sensors are placed at the same location near an
opened window. Thermo is our most accurate device, and is
used as ground truth. Thermo readings, PPD42NJ readings,
temperature and humidity data are recorded every minute
over 5 months. This historical dataset is used to train and
evaluate the neural network calibration model.

A real deployment of 10 AQMs, 2 miniAQMs, 3
Dylos and 2 Thermo over two months is used to evaluate
the performance of the calibration and inference algorithms.
We select an area of 4km × 4km which covers all kinds of
environments. Figure 12(b) and Figure 12(c) show the loca-
tions we selected to deploy and the photos of the deployment
environments.

We try to deploy AQM stations evenly inside the deploy-
ment area, but also include a wide range of environments,
such as school, park, residential area, and commercial area.
Each location corresponds to a particular GPS coordinate,
POI, and sensor readings, which will be detailed in the fol-
lowing subsections. Apart from the fixed AQM sensors, we

Figure 12. AQM experimental environment and deployment. (A) is the setup for collecting training data. We use
Raspberry Pi to collect and transfer data of standard sensor board and Thermo, while AQM use internal GPRS module
to interact with backend server. They are all placed near opened window. (B) is map of the deployment, it’s an web
service, we can minitor each device’s condition in real-time. (C) includes photo of the deployment-(1) shows miniAQM
with accompaning mobile app; (2) shows how we transfer Dylos data using AQM’s serial port; (3) is a real deployment
environment.

also have 3 mobile miniAQM sensors. minAQMs are car-
ried by humans and transmit sensor readings together with
real-time GPS information from the paired smartphone.

In summary, the collected dataset can be divided into two
parts:
• Historical dataset: This dataset is collected over 5

months (from August 1, 2013 to December 31, 2013)
in the laboratory for the purpose of offline training and
verifying the neural network calibration model. It is
composed of more than 210,000 tuples (we sample once
a minute over four months). Each tuple includes the
value of PPD42NJ, Thermo, humidity and temperature.
We divided it into training dataset (70%) and testing
dataset (30%).

• The deployment dataset: This dataset is composed
of continuous data from 10 AQMs, 2 miniAQMs, 3
Dylos and 2 Thermo data for about two months(from
January 31, 2014 to March 31, 2014).

7.2 Definition of the PM2.5 Levels
For end users, dividing the range of PM2.5 values into dis-

crete levels may be more useful, as indicated by the official
definition of PM2.5 levels [6]. Discrete levels also enable
better ways for evaluation. However, since the official def-
inition has levels spanning wide range on some levels, we
define PM2.5 levels in the following ways (level 1-4 is the
same as the official one; 5 and 6 equal to official level 5; 7-8
equal to official level 6). We show PM2.5 levels in real time
on AQM and miniAQM devices via rows of LEDs.

7.3 Evaluation of the Signal Reconstruction
Module

The signal reconstruction module aims at recovering a
smooth signal x̂ from the original noisy signal xcor. As we
stated in Subsection 6.1, a larger δ in equation (2) tends to
generate a smoother signal while a smaller one gives a rela-
tively rougher signal. If we take Thermo’s value as ground
truth x with length n, the performance of the signal recon-
struction can be evaluated using the Root Mean Square Er-

Table 2. PM2.5 levels definition
PM2.5(ug/m3) Levels Values Levels of Health Concern

0-35 1 Good
35-75 2 Moderate

75-115 3 Unhealthy for sensitive groups
115-150 4 Unhealthy
150-200 5 Highly unhealthy
200-250 6 Very unhealthy
250-350 7 Hazardous
>350 8 Severely Hazardous

ror,

RMSE =

√
‖x− x̂‖2

2
n

Figure 13 presents a piece of signal with length n = 600
and the smooth effectiveness of different choice of δ. The
RMSE of the original with δ = 0 is as large as 208.59, when
the δ increases to 25 the RMSE falls down to 96.98 and the
RMSE ceases to decrease largely even if we continue in-
creasing δ. We also evaluate the signal reconstruction via
confusion matrix in section 7.4 using historical data. When
mapping the numerical data into the PM2.5 levels defined in
2, we could obtain the corresponding confusion matrix. Ta-
ble 3 shows the raw data confusion matrix and Table 4 shows
the reconstructed data confusion matrix. The total accuracy
of the former is 0.558 while the latter achieve an accuracy
with 0.591, a slight increase of 5.9% .
7.4 Evaluation of the ANN Calibration Model

The ANN calibration model is estimated using histor-
ical dataset collected in our laboratory. Before we train
our model, we firstly reconstruct the signal over the whole
dataset. The reconstructed sensor data and Thermo’s value
(ground truth) are used to fit the neural network as input and
output respectively. The calibration model is trained by us-
ing 70 percent of the historical dataset; a regularization tech-
nique is used to regularize the weight W and improve the
ability of generalization.

Figure 13. Three reconstructed signal(sampled every
five minutes) x̂. The top one corresponds to δ = 0 with
RMSE = 208.59, the middle one to δ = 25 with RMSE =
96.98, and the bottom one to δ = 50 with RMSE = 96.69.

After the signal reconstruction and mapping the
PM2.5 readings in testing dataset into the eight PM2.5 levels
as defined in Table 2, we obtain a reconstructed data con-
fusion matrix [2] shown in Table 4. We then feed the re-
constructed data into the calibration model and map the cal-
ibrated output data into the same eight PM2.5 levels, a cal-
ibrated data confusion matrix can be generated, as shown
in Table 5. The overall accuracy after signal reconstruction
is 0.591; after the calibration model, the overall accuracy
is 0.639 - an increase of 7.9% over reconstructed signal, or
14.5% over raw data.

It can be observed that both the reconstructed data con-
fusion matrix and the calibrated data confusion matrix are
banded which implies that the data is most likely misclassi-
fied among neighbouring levels. The precision of Level 2,
Level 3 and Level 4 in Table 4 improved only slightly from
Table 3. This indicates that the effectiveness of signal recon-
struction is very limited. On the other hand, the precision of
Level 2, Level 3 and Level 4 in Table 5 shows a significant
improvement from Table 4. This indicates that by incorpo-
rating temperature and humidity, our ANN-based calibration
is able to meaningfully improve the accuracy. However, the
accuracy numbers are far from ideal, motivating the need for
an online inference based calibration, described in more de-
tail in next section.

Table 3. Raw data confusion matrix
Ground Predictions
Truth Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8

Level 1 11013 2730 858 179 0 0 0 0 0.75

R
ec

al
l

Level 2 2761 1331 1337 391 117 2 0 0 0.22
Level 3 47 887 357 197 74 0 0 0 0.23
Level 4 2 8 342 299 28 3 1 0 0.39
Level 5 0 3 37 103 393 84 55 2 0.58
Level 6 0 0 13 23 180 170 90 5 0.35
Level 7 0 0 0 13 26 170 151 33 0.38
Level 8 0 0 0 3 19 12 11 67 0.60

0.80 0.27 0.12 0.23 0.45 0.39 0.49 0.63
Precision

Table 4. Reconstructed data confusion matrix
Ground Predictions
Truth Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8

Level 1 11228 2993 559 0 0 0 0 0 0.76

R
ec

al
l

Level 2 2787 1647 1212 291 2 0 0 0 0.28
Level 3 34 908 433 187 0 0 0 0 0.28
Level 4 0 11 281 362 29 0 0 0 0.53
Level 5 0 0 30 133 423 73 18 0 0.62
Level 6 0 0 0 0 211 190 80 0 0.40
Level 7 0 0 0 0 0 150 204 39 0.52
Level 8 0 0 0 0 0 0 31 81 0.72

0.80 0.30 0.14 0.23 0.64 0.46 0.61 0.68
Precision

Table 5. Calibrated data confusion matrix
Ground Predictions
Truth Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8

Level 1 9500 3996 1278 6 0 0 0 0 0.64

R
ec

al
l

Level 2 1683 3463 100 91 0 0 0 0 0.65
Level 3 34 497 865 165 0 1 0 0 0.55
Level 4 0 2 202 391 86 2 0 0 0.57
Level 5 0 0 12 85 452 126 0 2 0.67
Level 6 0 0 1 10 86 332 43 3 0.70
Level 7 0 0 0 0 35 85 249 29 0.63
Level 8 0 0 0 0 0 0 11 101 0.90

0.85 0.44 0.35 0.52 0.69 0.61 0.82 0.75
Precision

7.5 Evaluation of the Online Inference Model
In this section, the overall performance of the analytics

engine is evaluated over the two months’ deployment. We
first describe the setting of the parameters in the online in-
ference model. Then the performance of the analytics engine
is presented in an intuitive way—PM2.5 data through each
calibration step in time domain, as shown in Figure 14. In
addition, we visualized the confusion matrix after each cal-
ibration step, as shown in Figure 15. Finally, the numerical
accuracy numbers are shown in the end.

As described in Section 6.3, we associate different de-
vices with different noise parameters δ2

i to distinguish the
different confidence level of the devices. Generally, the
higher confidence a device takes the smaller noise param-
eter it will be bound. Additionally, we assume that the pub-
lic monitor station and Thermo stay in the same confidence
level since both of them are high accuracy devices. In our
experiment, the noise parameter δ2 associated with Thermo,
public monitor station, Dylos, AQM and miniAQM are 0.5,
0.5, 1.0, 1.5 and 2.0 respectively.

We present three days’ PM2.5 data in Figure 14. Fig-
ure 14(a) shows the raw data of AQM compared with
Thermo; it can be seen that PPD42NJ not only deviates from
the Thermo significantly, but is also noisy. And after the
signal reconstruction, it becomes much more stable as Fig-
ure 14(b) shows. This data is then calibrated by the neural
network model shown in Figure 14(c). It shows that the ANN
calibration model is able to recover the real PM2.5 value to

Figure 14. AQM PM2.5 in time domain. A) Raw data; B) Reconstructed data; C) Calibrated by ANN; D) Calibrated by
GP inference model.

Figure 15. Confusion matrix of the deployment dataset. A) Raw data; B) Reconstructed data; C) Calibrated by ANN;
D) Calibrated by GP inference model.

certain extent from the associated temperature and humidity.
The final calibrated data given by the online inference model
is shown in Figure 14(d).

The confusion matrix of the two months’ deployment
dataset is displayed in Figure 15. Figure 15(a) shows that
the predicted results of raw data have large variances. Af-
ter this data is processed by the online based GP inference
model, the predicted levels are much batter aligned with the
true levels, as shown in Figure 15(d).

The overall accuracy improvement from each step of
the analytics engine are shown in Figure 16. The predic-
tion accuracy achieved by RAW (raw data), SR (signal re-
construction), ANN, and GP (inference) are 0.532, 0.603,
0.641, and 0.817 respectively. The improvement results from
the previous step for SR, ANN, and GP are 13.4%, 6.3%,
and 27.5% respectively. These results from the deploy-
ment dataset show that 1) raw AQM data contains significant
noise and can meaningfully benefit from signal reconstruc-
tion; 2) while ANN-based calibration is effective for histori-
cal dataset, it’s less useful for real deployment; and 3) AQM
data can benefit significantly from an online inference-based
calibration model. This result corroborated with our hypoth-
esis that certain features such as distance and POI can help
establish the relative effects between data sources of varying
(and same) confidence levels, thus enabling data sources to
improve each other’s accuracies. As shown in Figure 16,
the combined improvement using SR, ANN, and Inference
is 53.6% in real deployment.

The long-term errors caused by hardware shift/aging are
an important issue, we use the following methods to deal
with this problem: 1) For the products of the same batch,
we will use one unique ANN calibration model to do the

single-point calibration. As time progresses, more data will
be added to the ANN training model and the parameters will
get updated, and the errors caused by hardware aging are
removed; 2) In the real deployment, we use Gaussian Pro-
cess Inference model to futher improve the accuracy of the
AQM devices, we will refer to all the devices in the area,
such as accurate public monitoring stations, Thermo and less
accurate Dylos or AQM to improve the accuracy and reduce
the error caused by hardware aging; 3) we want to solve the
hardware shift/aging problem by a real-time calibration tech-
nique in the future. Specifically, we continuously calibrate
devices utilizing the real-time data from nearby public mon-
itoring stations, which are considered to be always precise.

7.6 Visualization of the Spatial Inference in
Heatmap

AirCloud can infer the air quality at places where sensors
are unavailable and further improve accuracies of low confi-
dence AQM or miniAQM sensors. Figure 17 shows the es-
timation of air quality generated by the GP inference model
in our deployment area using a heatmap. It demonstrates
that the PM2.5 concentration deviation can be as large as 100
even in a small area of 4km×4km. The heatmap is valuable
for a variety of applications such as pollution tracking, trip
planning, and locating pollution sources.

8 API and Applications
8.1 RESTful APIs

AirCloud currently supports two types of API—time-
series based access and GPS-based access, both in RESTful
style and use JSON as the data format.

The time-series based APIs inherit the powerful querying
capabilities from sMAP and support direct data access using

Figure 16. Overall prediction results of each step in the
analytics engine. The left part is the prediction accuracy
of RAW (raw data), SR (signal reconstruction), ANN, and
GP (inference); the right part shows the relative improve-
ments over previous step.

Figure 17. The spatial inference result of our deployment
area in heatmap.

a SQL-like language, or directly via device IDs or meta-data
lookups (please refer to [7] for examples).

The GPS-based API provides access to one of the build-
in services of AirCloud, which compute an estimate of air-
quality given an GPS coordinate. This service essentially ex-
port the inference functionality of the Air Quality Analytics
Engine.
8.2 Applications

In addition to the Air Quality Analytics Engine, AirCloud
is an open cloud platform for storing, accessing and sharing
of air-quality related data. The APIs we provide enable third-
party developers to innovate on top of AirCloud.

Because air quality is an important social issue, we have
attracted many developers in a short two month period. To

date, there are around eight applications running on our plat-
form - two are web applications developed in-house, and six
are smartphone applications developed by others.

Figure 18. Visualization web app to view time-series
data.

Figure 19. Trip planning web app - select the most
healthy route.

Figure 18 is a visualization app to view time-series data
stored on AirCloud, we can see the real time data or histor-
ical data of each AQM or miniAQM device. Figure 19 is a
trip planning app that plans a route between A and B based
on the least PM2.5 intake instead of shortest distance, which

Figure 20. The wechat app.

will give users the most healthy route. Figure 20 is a service
using the WeChat [11] official account platform. Users can
subscribe to the channel and revive system message or use
our system interactively. Figure 20(a) is the service menu;
Figure 20(b) shows getting the PM2.5 when given the cur-
rent location; Figure 20(c) shows two other services: finding
the city’s average PM2.5 and displaying the city’s best PM2.5
location.

Figure 21. A and B are iOS games, while C is an air-
quality aware aerial drone, all using AirCloud APIs, and
by third-party developers. D is AQM phone app used to
connect to the miniAQM device and E is MyAir app used
to show PM2.5 information in details, which are developed
by ourselves.

Figure 21(a) is an iOS game called “AirPet”. AirPet is a
virtual pet that lives in your iPhone. She will grow up health
and happy if fed at locations with good air (using the GPS
API) or unhealthy and sad if fed at locations with bad air.

This game encourages the player to go to places with good
air. Figure 21(b) is a crowd-sourcing based iOS game called
AirFace that asks the user to guess the current PM2.5 con-
centration, with animated smile faces and sounds that corre-
spond to different levels of air quality. AirFace then com-
pares your guess with others in your area and tells you the
actual PM2.5 value, again, using our GPS API, Figure 21(c)
is a quadcopter that flies around the city and “warns” citi-
zens with a loud siren sound if the air quality is bad at that
GPS location. Figure 21(d) is the AQM phone app used to
connect to the miniAQM device; it will show the local and
calibrated PM2.5 concentrations. Figure 21(e) is MyAir app;
it shows the PM2.5 concentrations at your current location,
and gives visualized warnings.

In the future, we will provide more applications and ser-
vices for users, and more real-time data APIs for developers.

9 Conclusion
We approach the challenging problem of accurate and af-

fordable PM2.5 monitoring from a novel cloud-based data
analytics perspective. By carefully designing and building
our own PM2.5 monitors - AQM and miniAQM - we are able
to obtain reasonably accurate PM2.5 measurement in real-
time and at low cost. And by aggregating their data, plus
other types of data at the cloud, we are able to learn and cre-
ate model for particulate matter, which in turn helps us cali-
brate AQMs & miniAQMs, and infer PM2.5 concentrations.
We show a combined improvement of 53.6% in a real de-
ployment using our cloud-based Air-Quality Analytics En-
gine. Together, AirCloud is able to achieve good accuracies
at much lower cost than previous solutions. As a result, we
are able to deploy a large number of AQMs throughout a city,
providing dense coverage spatially.

At the time of this writing, 500 AQMs and 500 mini-
AQMs have been manufactured, and will be deployed across
a metropolitan city with a population of 20 million. As fu-
ture work, we hope to use this PM2.5 sensor network to fur-
ther improve our model in the analytic engine, and to solve a
number of environment problems, such as identifying pollu-
tion sources and air-quality prediction. At the same time, we
hope to build an ecosystem where people can create novel
applications using the wealth of air-quality related data in
AirCloud.

10 Acknowledgments
We would like to thank to our shepherd, Thomas Schmid,

Jun Luo, and the anonymous reviewers for their insight and
detailed feedback. Special thanks to Peipei Yang for his par-
ticipation and thoughtful commentary that vastly improved
the quality of this work.

11 References
[1] Celery: Distributed task queue. http://www.celeryproject.org/.
[2] confusion matrix. http://en.wikipedia.org/wiki/Confusion_

matrix.
[3] Dylos. http://www.dylosproducts.com.
[4] Green Welcome. http://www.green-welcome.com.
[5] Peric. http://www.peric.cn.
[6] PM2.5. http://www.dwz.cn/cnnRO.
[7] sMAP archiver query language. https://code.google.com/p/

smap-data/wiki/ArdQuery.
[8] Thermo. http://www.thermoscientific.com.

[9] Tornado web server. http://www.tornadoweb.org/.
[10] TSI. http://www.tsi.com/Optical-Particle-Sizer-3330.
[11] WeChat official account platform. https://mp.weixin.qq.com/.
[12] Y. Bengio. Learning deep architectures for AI. Foundations and

trends R© in Machine Learning, 2(1):1–127, 2009.
[13] C. M. Bishop et al. Pattern recognition and machine learning, vol-

ume 1. springer New York, 2006.
[14] E. Boldo, S. Medina, A. Le Tertre, F. Hurley, H.-G. Mücke,

F. Ballester, and I. Aguilera. Apheis: Health impact assessment of
long-term exposure to PM2. 5 in 23 European cities. European jour-
nal of epidemiology, 21(6):449–458, 2006.

[15] S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge
university press, 2004.

[16] S. Dawson-Haggerty, X. Jiang, G. Tolle, J. Ortiz, and D. Culler.
sMAP: a simple measurement and actuation profile for physical in-
formation. In Proceedings of the 8th ACM Conference on Embedded
Networked Sensor Systems, pages 197–210. ACM, 2010.

[17] D. Hasenfratz, O. Saukh, S. Sturzenegger, and L. Thiele. Participatory
air pollution monitoring using smartphones. 2012.

[18] Y. Jiang, K. Li, L. Tian, R. Piedrahita, X. Yun, O. Mansata, Q. Lv,
R. P. Dick, M. Hannigan, and L. Shang. MAQS: a personalized mobile
sensing system for indoor air quality monitoring. In Proceedings of the
13th international conference on Ubiquitous computing, pages 271–
280. ACM, 2011.

[19] R. V. Martin. Satellite remote sensing of surface air quality. Atmo-
spheric Environment, 42(34):7823–7843, 2008.

[20] K. P. Murphy. Machine learning: a probabilistic perspective. MIT
Press, 2012.

[21] H. Patashnick, M. Meyer, and B. Rogers. Tapered element oscillating

microbalance technology.
[22] J. Quiñonero-Candela and C. E. Rasmussen. A unifying view of sparse

approximate Gaussian process regression. The Journal of Machine
Learning Research, 6:1939–1959, 2005.

[23] J. Quinonero-Candela, C. E. Rasmussen, and C. K. Williams. Approx-
imation methods for gaussian process regression. Large-scale kernel
machines, pages 203–223, 2007.

[24] C. E. Rasmussen. Gaussian processes for machine learning. 2006.
[25] M. Sørensen, B. Daneshvar, M. Hansen, L. O. Dragsted, O. Her-

tel, L. Knudsen, and S. Loft. Personal PM2. 5 exposure and mark-
ers of oxidative stress in blood. Environmental Health Perspectives,
111(2):161, 2003.

[26] M. E. Tipping. Sparse Bayesian learning and the relevance vector
machine. The journal of machine learning research, 1:211–244, 2001.

[27] S. Vardoulakis, B. E. Fisher, K. Pericleous, and N. Gonzalez-Flesca.
Modelling air quality in street canyons: a review. Atmospheric envi-
ronment, 37(2):155–182, 2003.

[28] T. Zhang. Solving large scale linear prediction problems using
stochastic gradient descent algorithms. In Proceedings of the twenty-
first international conference on Machine learning, page 116. ACM,
2004.

[29] Y. Zheng, X. Chen, Q. Jin, Y. Chen, X. Qu, X. Liu, E. Chang, W.-Y.
Ma, Y. Rui, and W. Sun. A cloud-based knowledge discovery system
for monitoring fine-grained air quality.

[30] Y. Zheng, F. Liu, and H.-P. Hsieh. U-Air: when urban air quality
inference meets big data. In Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining,
pages 1436–1444. ACM, 2013.

