# Structured Matrix Basis for Multivariate Time Series Forecasting with Interpretable Dynamics

Xiaodan Chen<sup>1</sup>, Xiucheng Li<sup>2</sup> (🖂), Xinyang Chen<sup>2</sup>, Zhijun Li<sup>1</sup> (🖂)

<sup>1</sup> School of Computer Science and Technology, Harbin Institute of Technology <sup>2</sup> School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen {21B303004@stu., lixiucheng@, chenxinyang@, lizhijun\_os@}hit.edu.cn

### **Abstract**

Multivariate time series forecasting is of central importance in modern intelligent decision systems. The dynamics of multivariate time series are jointly characterized by temporal dependencies and spatial correlations. Hence, it is equally important to build the forecasting models from both perspectives. The real-world multivariate time series data often presents spatial correlations that show structures and evolve dynamically. To capture such dynamic spatial structures, the existing forecasting approaches often rely on a two-stage learning process (learning dynamic series representations and then generating spatial structures), which is sensitive to the small time-window input data and has high variance. To address this, we propose a novel forecasting model with a structured matrix basis. At its core is a dynamic spatial structure generation function whose output space is well-constrained and the generated structures have lower variance, meanwhile, it is more expressive and can offer interpretable dynamics. This is achieved via a novel structured parameterization and imposing structure regularization on the matrix basis. The resulting forecasting model can achieve up to 8.5% improvements over the existing methods on six benchmark datasets, and meanwhile, it enables us to gain insights into the dynamics of underlying systems.

## 1 Introduction

Multivariate time series forecasting plays a pivotal role in a wide range of fields, such as traffic flow management, electricity consumption, and weather prediction. Multivariate time series data records quantities of interest from N series spanning over T time steps, and its underlying dynamics are jointly characterized by the temporal correlations (intra-series dependencies) and spatial structures (inter-series dependencies). Inspired by the advancements in Natural Language Processing, substantial research has been proposed to apply RNNs and Transformers to capture the underlying temporal dependencies [41, 32, 44, 45, 30]. Besides, the convolution paradigm also exhibits promising temporal correlation modeling capability and excels in long-term forecasting [33, 36, 29].

As the underlying dynamics are jointly described by the intra- and inter-correlations, it is equally important to explore the spatial structures for an ideal forecasting model design. Many proposals employ dense connection to capture the spatial correlations implicitly [31, 24]. However, the dense connection lacks clear structures and is prone to introduce noise from uncorrelated spatial dimensions. The development of Graph Neural Networks (GNNs) [18, 17, 7] offers an effective solution to model non-Euclidean structure data. DCRNN [22] builds graphs based on spatial proximity and conducts graph convolution to capture spatial correlations for traffic forecasting. To apply GNNs to more general scenarios where graph structures are unavailable, the forecasting methods propose to learn the graph adaptively through learnable node embeddings [37, 1, 38, 15], which significantly enhances the forecasting performance.

Despite the progress achieved, the spatial structures remain static across time steps for the aforementioned forecasting methods, which may not reflect the actual inter-series correlation. Because in many scenarios, the spatial correlations are also changing dynamically, for example, the traffic speeds of certain road segments manifest correlation only in peak hours. To relax this restriction, many dynamic graph-based methods have been proposed [43, 39, 42, 28, 34] to learn the spatial structures within a short time window. The intuition is that the spatial correlations in real-world applications often evolve continuously and tend to be stable over a short period of time. The general idea is to learn each series a dynamic representation via a nonlinear transformation  $f_{\rm dynm}$  by taking as input the current time window data, and it then generates the spatial structures by pairwise interacting the dynamic representations via a transformation  $f_{\text{pair}}$ , the composition of two transformations forms the spatial structure generation function  $f_{\rm spatial} = f_{\rm pair} \circ f_{\rm dynm}$ . The dynamic representation function  $f_{\rm dynm}$  is often implemented as MLP ([43, 42, 28, 34]) or RNN ([39]) whereas  $f_{\rm pair}$  is mostly instantiated by attention mechanism or inner product. One severe issue of these methods is that the output space of  $f_{\text{dynm}}$  is not well constrained and unbounded, this makes the learned dynamic representations very sensitive to the short time window input data and the unboundedness will be exaggerated by the inner product operation in  $f_{pair}$ , which will lead to the outputs of  $f_{spatial}$  fluctuate drastically and have high variance. The issue becomes even more severe in the presence of anomaly patterns. To reduce the variance, TPGNN [26] first learns a static spatial structure A (adjacency matrix) and then generates the dynamic spatial structures with a matrix polynomial  $\sum_{m=1}^{M} \alpha_m \mathbf{A}^m$  where  $\alpha_m$  is determined by the timestamps of the current time window. However, it has two drawbacks: 1) the coefficient  $\alpha_m$  solely depends on the timestamps and cannot adapt to the current window data, and 2) the matrix power basis  $\hat{\mathbf{A}}, \mathbf{A}^2, \dots, \mathbf{A}^M$  is overly restricted and has limited expressive capability. In addition, the existing forecasting methods often lack interpretable dynamics.

In this paper, we propose a dynamic multivariate time series forecasting model with a structured matrix basis. Instead of relying on the two-stage spatial structure learning process (learning dynamic series representations and then generating spatial structures), we directly parameterize  $f_{\rm spatial}$  with a learnable matrix basis  ${\bf B}_1, {\bf B}_2, \ldots, {\bf B}_M$  and represent any spatial structure with a convex combination  $\sum_{m=1}^M \alpha_m {\bf B}_m, \, \alpha_m \geq 0$  and  $\sum_{m=1}^M \alpha_m = 1$ . To learn the matrix basis effectively, we propose a novel structured matrix parameterization method and impose structure regularization on the basis to enhance parameter efficiency and reduce complexity. In contrast to the two-stage spatial structure learning methods, the output space of our proposed  $f_{\rm spatial}$  is well constrained. Consequently, the generated spatial structures have lower variance and the resulting model is easier to learn. In comparison to TPGNN, our matrix basis is more expressive since it is not limited by the matrix power constraint; the coefficient  $\alpha$  can also be computed adaptively via the interaction of current time-window data and the basis. In addition, the coefficient  $\alpha$  offers a fashion to track the spatial structure evolution and enables us to gain insights into the underlying dynamics. Thus, the resulting model is more interpretable.

In summary, our proposed  $f_{\rm spatial}$  has the following appealing properties: 1) lower variance and easier to learn, 2) it is more expressive, and 3) it can yield more interpretable results. This is achieved through a novel structured matrix parameterization and structure regularization. By integrating  $f_{\rm spatial}$  into the forecasting framework, we evaluate the efficacy of the proposed method on six benchmark datasets, it achieves up to 8.5% improvements over existing forecasting methods across various prediction lengths and can also offer interpretable dynamics.

## 2 Related Work

Temporal Dependency Modeling Early deep sequential methods adopt recurrent neural networks to capture nonlinear temporal dynamics [41, 32, 5]. Motivated by the wide receptive fields of attention mechanism, various Transformer-based methods have been developed to capture the long-term temporal dependencies in forecasting. To reduce the quadratic complexity of the vanilla attention, LogTrans [21], Informer [44], Autoformer [35], and FEDformer [45] have been proposed successively. Non-stationary Transformer [27] attempts to mitigate the difficulties caused by non-stationarity in modeling temporal correlation. PatchTST [30] explores the strategies of patch-level semantic modeling and channel-independence. VQ-MTM [13] explores the well-defined semantic units for the Transformer architecture in time series modeling. In state-space models, the transition matrix is employed to model long-term temporal dependencies, and their recent representative works include Hippo [10], LSSL [11]. To reduce the computational complexity, S4 [12] and Mamba [9]

have been proposed successively. The convolution-based methods have also shown promising results in time series modeling. MICN [33] explores isometric convolution to capture non-local temporal patterns. TimesNet [36] reshapes 1D signals into 2D by aligning according to inherent multiple periodicity and it then employs the 2D kernels to capture both intraperiod- and interperiod-variations. ModernTCN [29] utilizes large kernels to model long-term dependencies. In addition, the Fourier basis parameterization has also been proposed to model long-term dependencies in time series imputation [25].

Static Spatial Correlation Modeling The spatial correlation plays an equally important role in time series modeling. DeepAR [31] and Pyraformer [24] employ dense connection to model the spatial dependencies. However, the dense connection fails to explore the underlying structure and may introduce noises from unrelated series. The advancement of GNNs offers an effective way to model non-Euclidean structure data. DCRNN [22] constructs the graph by using spatial proximity and proposes to fuse the spatial information via graph convolution operation, and thus it is only applicable when the underlying graph structures are easily accessible. To sidestep this limitation, the adaptive GNNs-based methods [1, 38, 15, 14, 16] propose to learn each series a representation and then generate the spatial structure via the interaction of the representations. BiTGraph [4] further develops the method to account for missing patterns in message passing to handle the time series with missing values. However, these approaches implicitly assume the series representations are shared across the entire time steps, and hence the underlying spatial graphs remain static over time.

Dynamic Spatial Correlation Modeling In real-world applications, the inter-series correlations or spatial structures are often evolving dynamically. To adapt to these scenarios, many dynamic spatial structure methods are proposed, which share a similar two-stage spatial structure learning process as the static adaptive GNNs-based methods (as discussed in Section 1). The difference is that the series representations are generated by conditioning a small time window rather than the entire timeline data, and hence, the underlying spatial structures can change dynamically over time. GMAN [43], iTransformer [28], Crossformer [42], and Card [34] implement the dynamic node representation function via MLP, whereas ESG [39] adopts the RNN. As the output spaces of their  $f_{\text{spatial}}$  are not well constrained, the learned spatial structures are very sensitive to the change of time-window data and hence have high variance. To reduce the variance, TPGNN [26] proposes to represent the dynamic graphs with matrix polynomial. As the polynomial coefficients are solely determined by the timestamps, such a method fails to utilize the current time-window data. Moreover, the matrix power basis is overly restricted and has weak expressive capability. The proposals [40, 8] attempt to build dynamic graphs by merging temporal and spatial dimensions. Nevertheless, the entanglement of temporal correlations and spatial dependencies makes the models hard to optimize. In addition, the existing multivariate time series forecasting methods also lack interpretability regarding the underlying dynamics.

### 3 Methodology

**Notation** From a generative perspective, the multivariate time series  $\mathbf{X} \in \mathbb{R}^{N \times T \times D}$  records a D-dimensional physical quantities of interest generated by N series (i.e., sensors or instances) over T time steps. We use  $\mathbf{X}^{(n)} \in \mathbb{R}^{T \times D}$  to represent the observations from n-th sensor and  $\mathbf{X}_t \in \mathbb{R}^{N \times D}$  to indicate the observations at the t-th timestamp. The slice notation  $\mathbf{X}_{t-H:t} \in \mathbb{R}^{N \times H \times D}$  denotes the values within a window spanning from the time interval [t-H,t). The operator  $\mathrm{diag}: \mathbb{R}^{N \times N} \mapsto \mathbb{R}^N$  takes the diagonal elements of a square matrix and returns it as a vector, the operator vec reshapes a matrix or tensor into a vector.

Overview and Pipeline Figure 1-(a) presents the architecture of our proposed Sumba (dynamic multivariate time series forecasting with structured matrix basis), which comprises L blocks. Each block contains two primary modules: the Multi-Scale TCN and Dynamic GCN modules. The Multi-Scale TCN module in the  $\ell$ -th block takes as the input  $\mathbf{Z}_{t_0-H:t_0}^{(\ell-1)} \in \mathbb{R}^{N \times H \times D_i^{(\ell-1)}}$  and generates the intermediate representation  $\mathbf{Z}_{t_0-H:t_0}^{\prime(\ell-1)} \in \mathbb{R}^{N \times H \times D_o^{(\ell-1)}}$ , which is fed to the Dynamic GCN module to produce  $\mathbf{Z}_{t_0-H:t_0}^{(\ell)} \in \mathbb{R}^{N \times H \times D_i^{(\ell)}}$ . The Multi-Scale TCN captures the temporal dependencies by performing multi-scale temporal convolution operation in a channel-independent manner, we choose the kernel sizes  $1 \times 2$ ,  $1 \times 3$ ,  $1 \times 6$ , and  $1 \times 7$  in this paper. The Dynamic GCN module comprises two functions, namely, the spatial structure generation function  $f_{\text{spatial}}$  and graph convolution function  $f_{\text{gen}}$ . Our proposed  $f_{\text{spatial}}$  generates the dynamic spatial structure  $\mathbf{A}_t \in \mathbb{R}^{N \times N}$  (adjacency matrix)

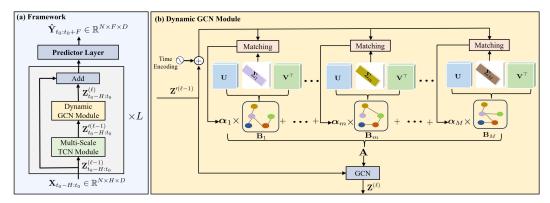



Figure 1: (a) The framework of our proposed Sumba. (b) the detailed structure of the Dynamic GCN module.

by conditioning on the intermediate representation  $\mathbf{Z}_t'^{(\ell-1)} \in \mathbb{R}^{N \times D_o^{(\ell-1)}}$  at time step  $t \in [t_0 - H, t_0)$ , which is obtained by transforming the current time-window data  $\mathbf{X}_{t_0 - H:t_0}$ . Given the generated dynamic graph  $\mathbf{A}_t$ ,  $f_{\text{gcn}}$  further fuses the spatial information of  $\mathbf{Z}_t'^{(\ell-1)}$  across different series to yield  $\mathbf{Z}_t^{(\ell)}$  by performing the graph convolution operation. Note that the spatial and temporal dimensions are kept unchanged during the entire transformation in the L blocks.

### 3.1 Adaptive Dynamic Spatial Structure Generation

The core layer of our proposed forecasting method is the spatial structure generation function  $f_{\text{spatial}}$ . It serves to infer the optimal graph structure  $\mathbf{A}_t$  that best characterizes the present spatial correlations from the intermediate representation  $\mathbf{Z}_t'$  (we drop the layer index  $\ell$  to keep the notation uncluttered in this subsection). As mentioned in Section 1, the existing methods all adopt the two-stage learning process, which results in unconstrained output function space and high graph structure variance. To address this, we propose to directly parameterize a learnable matrix basis  $\mathcal{B} = \{\mathbf{B}_m\}_{m=1}^M$  of dimension M where  $\mathbf{B}_m \in \mathbb{R}^{N \times N}$  and define the spatial structure generation function as

$$f_{\text{spatial}}(\mathbf{Z}_t') \triangleq \sum_{m=1}^{M} \alpha_{t,m} \mathbf{B}_m, \quad \alpha_{t,m} \geq 0, \sum_{m=1}^{M} \alpha_{t,m} = 1.$$
 (1)

Here, we choose the convex combination instead of the linear combination to better control the output space. This is reasonable since the basis  $\mathcal{B}$  is free to optimize in the training stage. The intuition behind Eq. 1 is that the basis  $\mathcal{B}$  can be shared and optimized globally across different time windows, and to infer the spatial structure dynamically, we only need to adaptively compute the coefficient  $\alpha_t \in \mathbb{R}^M$  by conditioning on  $\mathbf{Z}_t'$ .

However, two challenges remain in adopting the spatial structure generation function in Eq. 1. 1) The number of parameters to be learned equals  $MN^2$ , which grows quadratically to N. As these M matrices lack connection and constraints, learning by brute force will sooner become infeasible even for medium-size N. This actually is the reason why the existing methods resort to the two-stage learning process, i.e., learning each series an embedding whose learnable parameters are ND with D being the embedding dimension. 2) Intuitively, the best  $\alpha_m$  should be simultaneously determined by  $\mathbf{Z}'$  and  $\mathbf{B}_m$ , but identifying  $\mathbf{B}_m$  with  $N^2$  parameters will make  $\alpha_m$  hard to compute when N is large.

Structured Parameterization and Regularization To circumvent the two challenges, we propose to parameterize the basis matrices in a structured manner and impose additional structure regularization on the basis. The idea is to represent each basis matrix  $\mathbf{B}_m$  in its SVD (singular value decomposition) factor product form  $\mathbf{B}_m = \mathbf{U}_m \Sigma_m \mathbf{V}_m^{\top}$  and then parameterize the factors  $\mathbf{U}_m$ ,  $\Sigma_m$ ,  $\mathbf{V}_m$ , where  $\mathbf{U}_m$ ,  $\mathbf{V}_m \in \mathbb{R}^{N \times N}$  are orthogonal matrices, and  $\Sigma_m$  is a diagonal matrix consisting of the singular values of  $\mathbf{B}_m$ . One benefit of such structured parameterization is that it permits us to establish connections between the basis matrices and impose constraints, and consequently, enhance the parameter efficiency and ease of the model learning. To be specific, we impose the constraint that all  $\mathbf{B}_m$  for  $m=1,2,\ldots,M$  share the same parameterized orthogonal matrices  $\mathbf{U}$ ,  $\mathbf{V}$  and each matrix has its unique  $\Sigma_m$ , i.e.,

$$\mathcal{B} \triangleq \left\{ \mathbf{U} \Sigma_1 \mathbf{V}^\top, \mathbf{U} \Sigma_2 \mathbf{V}^\top, \dots, \mathbf{U} \Sigma_M \mathbf{V}^\top \right\}.$$
 (2)

The rationality behind such a choice stems from the geometry interpretation of orthogonal matrix-vector multiplication, i.e., left multiplying a vector by an orthogonal matrix is equivalent to coordinate transformation, which is provided in Appendix A.1. Hence, we implicitly require that all basis matrices share the same pair of coordinate transformations, which can be considered a sort of implicit regularization since it reduces extra freedom and guides the model to find the coordinate transformations ( $\mathbf{U}$  and  $\mathbf{V}$ ) that best suit the basis.

**Dynamic Coefficient Generation** Such a parameter sharing regularization mechanism along with the structured parameterization also brings **another benefit**, it allows us to treat  $\operatorname{diag}(\Sigma_m) \in \mathbb{R}^N$  as a fingerprint to identify each  $\mathbf{B}_m$ . Hence, we can compute the  $\alpha_t$  to infer the dynamic spatial structure by simultaneously conditioning on  $\mathbf{Z}_t'$  and  $\operatorname{diag}(\Sigma_m)$ . To this end, we design an adaptive matching module that takes as input  $\mathbf{Z}_t' \in \mathbb{R}^{N \times D_o}$  and  $[\operatorname{diag}(\Sigma_1), \operatorname{diag}(\Sigma_2), \dots, \operatorname{diag}(\Sigma_M)]$ , and it yields the coefficient  $\alpha_t$  at the t time step, as follows.

$$\mathbf{D} \triangleq [\operatorname{diag}(\Sigma_1), \operatorname{diag}(\Sigma_2), \dots, \operatorname{diag}(\Sigma_M)] \in \mathbb{R}^{N \times M}$$

$$\mathbf{z} \triangleq \operatorname{vec}(\mathbf{Z}_t') + \operatorname{TimeEncoding}(t) \in \mathbb{R}^{ND_o}$$

$$\boldsymbol{\alpha}_t = \operatorname{softmax}\left((\mathbf{W}_d \mathbf{D})^\top \mathbf{W}_z \mathbf{z} / \sqrt{d}\right) \in \mathbb{R}^M$$
(3)

where TimeEncoding is the timestamp encoding function,  $\mathbf{W}_d$  and  $\mathbf{W}_z$  are used to match the dimension, i.e., mapping  $\mathbf{D}$  and  $\mathbf{z}$  into the  $\mathbb{R}^d$  space. Given the structured basis in Eq. 2, each  $\alpha_t$  represents a dynamic spatial structure or graph at step t as

$$\mathbf{A}_{t} = f_{\text{spatial}}(\mathbf{Z}_{t}') = \sum_{m=1}^{M} \alpha_{t,m} \mathbf{U} \Sigma_{m} \mathbf{V}^{\top}.$$
 (4)

Given  $A_t$  at each time step, we can perform graph convolution operation to aggregate information from the spatial dimension. The process is illustrated in Figure 1-(b). The output space of  $f_{\rm spatial}$  is well constrained on the premise that  $\Sigma_m$  are well bounded, which is given by the following theorem.

**Theorem 3.1.** The output space of  $f_{\rm spatial}$  in Eq. 4 is bounded by the sum of the maximum of  $\Sigma_m$  (the maximum singular value of  ${\bf B}_m$ ) for  $m=1,2,\ldots,M$  in terms of the  $\ell_2$  norm i.e.,  $\|f_{\rm spatial}\|_2 \le \sum_{m=1}^M \max(\Sigma_m)$ .

The proof is presented in Appendix A.2 and Theorem 3.1 states that the variance of the learned structures is controllable by restricting the maximum value of  $\Sigma_m$ , which is easy to achieve since  $\Sigma_m$  can simply be parameterized by a vector with nonnegative values. Besides, by tracking the change of  $\alpha_t$  over time, our proposed method enables us to gain insight into the underlying dynamics of the system, and thus offers additional interpretability, as we will show in Section 4.4.

**Orthogonality** To impose the orthogonal constraint, one may attempt to apply an orthogonality penalty, i.e., by adding the penalty term  $\|\mathbf{U}^{\top}\mathbf{U} - \mathbf{I}\| + \|\mathbf{V}^{\top}\mathbf{V} - \mathbf{I}\|$  to the optimized objective. However, such a hard penalty cannot guarantee genuine orthogonality and the extra penalty term also increases the learning difficulty. Hence, rather than relying on the hard penalty, we opt for the orthogonal parameterization. In particular, we restrict our attention to the special orthogonal group

$$SO(N) \triangleq \left\{ \mathbf{A} \in \mathbb{R}^{N \times N} \mid \mathbf{A}^{\top} \mathbf{A} = \mathbf{I}, \det(\mathbf{A}) = 1 \right\},$$
 (5)

which are flexible enough to represent the coordinate transformation. A nice property of SO(N) is that it is both a compact Lie group and a smooth manifold [6]. The tangent space of the Lie group at the identity forms a vector space equipped with a Lie bracket operation, namely, its Lie algebra. The Lie algebra of SO(N) is the set of all skew-symmetric matrices, denoted by  $\mathfrak{so}(N)$ , i.e.,

$$\mathfrak{so}(N) \triangleq \left\{ \mathbf{A} \in \mathbb{R}^{N \times N} \mid \mathbf{A}^{\top} = -\mathbf{A} \right\}.$$
 (6)

In differentiable manifold and Lie group, a well-known result is that the matrix exponential  $\exp: \mathfrak{so} \mapsto SO$  establishes the connection between a Lie group and its Lie algebra, i.e., for any  $\mathfrak{g} \in \mathfrak{so}(N)$  we have  $\exp(\mathfrak{g}) \in SO(N)$ . The matrix exponential is defined as

$$\exp(\mathbf{A}) \triangleq \sum_{k=0}^{\infty} \frac{1}{k} \mathbf{A}^k = \mathbf{I} + \mathbf{A} + \frac{1}{2} \mathbf{A}^2 + \dots$$
 (7)

The computation of the matrix exponential map is costly but for the special orthogonal group it has a cheap first order approximation, also known as the Clay map [3, 2],

$$\phi(\mathbf{A}) \triangleq \left(\mathbf{I} + \frac{1}{2}\mathbf{A}\right) \left(\mathbf{I} - \frac{1}{2}\mathbf{A}\right)^{-1}.$$
 (8)

The Clay map can be implemented in parallel by the Gaussian elimination algorithm in a numerically stable way.

Low Rank Approximation By using the Clay map, the number of parameters required to parameterize  $\mathbf{U}$  and  $\mathbf{V}$  is N(N-1) (two skew-symmetric matrices N(N-1)/2+N(N-1)/2). Thus the total number of parameters required by the basis in Eq. 2 is N(N-1)+MN. To further reduce the parameter count, we can apply the low rank approximation. In real-world applications, the spatial structures (adjacency matrices) of multivariate time series are often low-ranked. Suppose the rank is K, we can only preserve the first K columns of  $\mathbf{U}$  and  $\mathbf{V}$  as well as parameterize each  $\Sigma_m$  with a length K vector, which leads to a parameter count upper bound NK+MK. Since K is often much less than N in practice, the low rank approximation can enhance both the parameter and computation efficiency when N is large.

### 3.2 Hierarchical Architecture

By stacking L blocks, the Sumba significantly enhances its capability to model temporal correlations and spatial dependencies effectively. We initialize  $\mathbf{Z}^{(0)}$  with the original input  $\mathbf{X} \in \mathbb{R}^{N \times H \times D}$ . The output of L-th block  $\mathbf{Z}^{(L)} \in \mathbb{R}^{N \times H \times D^{(L)}}$  produces the multi-step prediction  $\hat{\mathbf{Y}}_{t_0:t_0+F}$  through a linear transformation. The model is optimized by minimizing mean absolute error (MAE):

$$\mathcal{L}_{\text{MAE}}(\mathbf{Y}_{t_0:t_0+F}, \hat{\mathbf{Y}}_{t_0:t_0+F}) \triangleq \frac{\sum_{n=1}^{N} \sum_{t=t_0}^{t_0+F-1} |\hat{y}_t^{(n)} - y_t^{(n)}|}{N \times F}.$$
 (9)

# 4 Experiments

In this section, we evaluate our approach Sumba against 15 time series forecasting methods on six benchmark datasets (Section 4.2 and Appendix C). The ablation studies are presented in Section 4.3. We demonstrate the interpretability of our method with case studies in Section 4.4. The sensitivity of hyperparameters is provided in Section 4.5 and Appendix D; the computational cost is empirically studied in Appendix E. The code of Sumba is available at: https://github.com/chenxiaodanhit/Sumba/.

## 4.1 Experimental Setup

**Datasets** We conduct experiments on six commonly adopted public datasets including: (1) **Electricity** [44] contains hourly electricity consumption of 321 clients. (2) **Weather** [35] includes 21 meteorological factors collected every 10 minutes from the weather station of the Max Planck Biogeochemistry Institute. (3) **PEMS** [23] records traffic data of 358 variates in California sampled every 5 minutes. (4) **ETTh2** [44] contains hourly data from 7 electricity transformers. (5) **Traffic** [35] measures the hourly road occupancy rates of 862 sensors on San Francisco Bay area freeways. (6) **Solar-Energy** [20] records the solar power production, which is sampled every 10 minutes from 137 PV plants.

**Baselines** We compare our method with the following baselines: (1) TCN-based methods: MICN [33], ModernTCN [29]; (2) Transformer-based methods: PatchTST [30], FEDformer [45], Autoformer [35], Reformer [19]; (3) Static graphs-based methods: MTGNN [38], MegaCRN [15]; (4) Dynamic graphs-based methods: iTransformer [28], Crossformer [42], Card [34], ESG [39], TPGNN [26], FourierGNN [40]; (5) Structured State Space model: S4 [12]. More details of baselines are provided in Appendix B.

Implementation details The number of blocks L of Sumba is set to 3, the dimension of structured basis M is set to 5, and the rank K is set to  $\min(N,30)$  in all our experiments. The batch size is 32, the learning rate is 0.0001. We split the datasets into training, validation, and test datasets with the ratio 0.6/0.2/0.2 chronologically. The future window size F is set to 3, 6, 12, and 24 for all

Table 1: The forecasting results with prediction horizons of 3 and 6 on Electricity, Weather, etc.

| Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Electricity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Weather                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (F=3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MAPE(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MAPE(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MICN [33]<br>ModernTCN [29]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.217 \pm 0.001$<br>$0.172 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.323 \pm 0.001$<br>$0.259 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2.380 \pm 0.012$<br>$1.629 \pm 0.008$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c c} 0.0812 \pm 0.001 \\ 0.0727 \pm 0.000 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.217 \pm 0.002$<br>$0.213 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.563 \pm 0.017$<br>$1.695 \pm 0.056$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PatchTST [30]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.172 \pm 0.001$<br>$0.173 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.266 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.359 \pm 0.006$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.0642 \pm 0.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.213 \pm 0.001$<br>$0.214 \pm 0.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $2.511 \pm 0.223$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| FEDformer [45]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.268 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.380\pm0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $2.454 \pm 0.011$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.236 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.364 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $4.832 \pm 0.039$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Autoformer [35]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.271 \pm 0.003$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.383 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $2.543 \pm 0.005$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.238 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.386 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $7.133 \pm 0.693$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Reformer [19]<br>S4 [12]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.324 \pm 0.002$<br>$0.331 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.452 \pm 0.002$<br>$0.479 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2.921 \pm 0.010$<br>$2.792 \pm 0.015$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.220 \pm 0.002$<br>$0.292 \pm 0.003$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.533 \pm 0.022$<br>$4.782 \pm 0.055$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MTGNN [38]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.153 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.245 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.340 \pm 0.004$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.0693 \pm 0.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.219 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.624 \pm 0.018$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MegaCRN [15]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.272 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.394 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $2.429 \pm 0.026$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.0674 \pm 0.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.215 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.458 \pm 0.032$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| iTransformer [28]<br>CrossFormer [42]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.158 \pm 0.001$<br>$0.156 \pm 0.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.248 \pm 0.000$<br>$0.246 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1.472 \pm 0.007$<br>$1.370 \pm 0.008$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c c} 0.0644 \pm 0.000 \\ 0.0643 \pm 0.002 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.216 \pm 0.001$<br>$0.210 \pm 0.003$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.628 \pm 0.026$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Card [34]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.150 \pm 0.000$<br>$0.152 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.240 \pm 0.001$<br>$0.244 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1.460 \pm 0.008$<br>$1.460 \pm 0.013$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.0643 \pm 0.002$<br>$0.0641 \pm 0.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{0.210 \pm 0.003}{0.215 \pm 0.001}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{1.417 \pm 0.035}{1.523 \pm 0.007}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ESG [39]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.153 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.247 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.434 \pm 0.005$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.0753 \pm 0.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.215 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.837\pm0.072$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FourierGNN [40]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.213 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.327 \pm 0.003$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.619 \pm 0.006$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.0859 \pm 0.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.229 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.732 \pm 0.031$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TPGNN [26]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.206 \pm 0.003$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.324 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.677 \pm 0.009$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.0652 \pm 0.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.219 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.538 \pm 0.024$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sumba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.148 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.237 \pm 0.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.331 \pm 0.005$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $  \   0.0587 \pm 0.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.208 \pm 0.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.381 \pm 0.011$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ETTh2<br>RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MADE(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Traffic<br>RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MADE(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (F=3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MAPE(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MAPE(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MICN [33]<br>ModernTCN [29]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c c} 0.225 \pm 0.002 \\ 0.242 \pm 0.002 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.341 \pm 0.001$<br>$0.340 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1.126 \pm 0.008$<br>$1.153 \pm 0.013$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 0.253 \pm 0.001 \\ 0.239 \pm 0.002 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.577 \pm 0.001$<br>$0.562 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $2.794 \pm 0.013$<br>$3.210 \pm 0.036$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PatchTST [30]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.182 \pm 0.002$<br>$0.182 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.285 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.854 \pm 0.003$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.226 \pm 0.002$<br>$0.226 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.532 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2.440 \pm 0.009$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| FEDformer [45]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.332 \pm 0.012$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.480 \pm 0.006$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.522 \pm 0.023$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.346 \pm 0.006$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.714 \pm 0.009$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $4.010 \pm 0.041$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Autoformer [35]<br>Reformer [19]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.299 \pm 0.003$<br>$0.442 \pm 0.006$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.438 \pm 0.004$<br>$0.663 \pm 0.011$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1.344 \pm 0.017$<br>$2.091 \pm 0.025$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c c} 0.361 \pm 0.003 \\ 0.322 \pm 0.007 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.728 \pm 0.005$<br>$0.757 \pm 0.014$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $3.956 \pm 0.026$<br>$3.351 \pm 0.038$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| S4 [12]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.442 \pm 0.000$<br>$0.441 \pm 0.004$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.603 \pm 0.011$<br>$0.617 \pm 0.018$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2.749 \pm 0.023$<br>$2.749 \pm 0.017$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.322 \pm 0.007$<br>$0.295 \pm 0.003$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.737 \pm 0.014$<br>$0.734 \pm 0.003$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $2.647 \pm 0.038$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MTGNN [38]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.185 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.289\pm0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.855 \pm 0.004$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.203 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.525\pm0.003$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2.332\pm0.008$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MegaCRN [15]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.237 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.352 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.177 \pm 0.005$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.326 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.735 \pm 0.007$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $4.054 \pm 0.028$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| iTransformer [28]<br>CrossFormer [42]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.188 \pm 0.000$<br>$0.206 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.294 \pm 0.002$<br>$0.325 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.906 \pm 0.001$<br>$0.927 \pm 0.003$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 0.195 \pm 0.001 \\ \hline 0.198 \pm 0.002 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.492 \pm 0.001$<br>$0.602 \pm 0.006$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $2.155 \pm 0.007$<br>$2.079 \pm 0.021$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Card [34]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.200 \pm 0.001$<br>$0.182 \pm 0.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.323 \pm 0.002$<br>$0.287 \pm 0.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.927 \pm 0.003$<br>$0.869 \pm 0.006$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.198 \pm 0.002$<br>$0.197 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.495 \pm 0.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{2.079 \pm 0.021}{2.147 \pm 0.007}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ESG [39]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.217 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.335 \pm 0.009$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.909 \pm 0.015$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.198 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.588 \pm 0.003$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2.086\pm0.004$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FourierGNN [40]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.232 \pm 0.003$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.376 \pm 0.005$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.436 \pm 0.016$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.264 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.585 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2.934 \pm 0.019$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TPGNN [26]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.207 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.329 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.986 \pm 0.004$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.665 \pm 0.004$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $3.137 \pm 0.022$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sumba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.179 \pm 0.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.286 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\textbf{0.850} \pm \textbf{0.001}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.192 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.521 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2.042 \pm 0.015$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Method $(F = 6)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Electricity<br>RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MAPE(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Weather<br>RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MAPE(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (F=6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MAE $0.235 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Electricity<br>RMSE<br>$0.317 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MAPE(%)<br>1.890 ± 0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MAE $0.111 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Weather<br>RMSE<br>$0.250 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MAPE(%)<br>2.886 ± 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (F = 6)<br>MICN [33]<br>ModernTCN [29]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.235 \pm 0.002$<br>$0.191 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RMSE $0.317 \pm 0.001$ $0.286 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.890 \pm 0.009$<br>$1.719 \pm 0.005$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RMSE $0.250 \pm 0.001$ $0.241 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $2.886 \pm 0.013$ $1.712 \pm 0.020$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (F = 6)  MICN [33]  ModernTCN [29]  PatchTST [30]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.235 \pm 0.002$<br>$0.191 \pm 0.002$<br>$0.188 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RMSE $0.317 \pm 0.001$ $0.286 \pm 0.001$ $0.290 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ 0.0746 \pm 0.000 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \text{RMSE} \\ 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.239 \pm 0.001 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 2.886 \pm 0.013 \\ \underline{1.712 \pm 0.020} \\ 3.138 \pm 0.096 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (F = 6)  MICN [33]  ModernTCN [29]  PatchTST [30]  FEDformer [45]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 0.235 \pm 0.002 \\ 0.191 \pm 0.002 \\ 0.188 \pm 0.001 \\ 0.271 \pm 0.002 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RMSE $0.317 \pm 0.001$ $0.286 \pm 0.001$ $0.290 \pm 0.001$ $0.384 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ 0.0746 \pm 0.000 \\ \hline 0.230 \pm 0.001 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} \text{RMSE} \\ 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.239 \pm 0.001 \\ 0.364 \pm 0.003 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 2.886 \pm 0.013 \\ \underline{1.712 \pm 0.020} \\ 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (F = 6)  MICN [33]  ModernTCN [29]  PatchTST [30]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.235 \pm 0.002$<br>$0.191 \pm 0.002$<br>$0.188 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RMSE $0.317 \pm 0.001$ $0.286 \pm 0.001$ $0.290 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ 0.0746 \pm 0.000 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \text{RMSE} \\ 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.239 \pm 0.001 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 2.886 \pm 0.013 \\ \underline{1.712 \pm 0.020} \\ 3.138 \pm 0.096 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (F = 6)<br>MICN [33]<br>ModernTCN [29]<br>PatchTST [30]<br>FEDformer [45]<br>Autofrmer [35]<br>Reformer [19]<br>S4 [12]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 0.235 \pm 0.002 \\ 0.191 \pm 0.002 \\ 0.188 \pm 0.001 \\ 0.271 \pm 0.002 \\ 0.269 \pm 0.004 \\ 0.348 \pm 0.001 \\ 0.341 \pm 0.003 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} \text{RMSE} \\ 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.384 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.001 \\ 0.489 \pm 0.002 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 0.111\pm0.001\\ 0.0934\pm0.000\\ 0.0746\pm0.000\\ \hline 0.230\pm0.001\\ 0.246\pm0.002\\ 0.117\pm0.001\\ 0.0926\pm0.001 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \text{RMSE} \\ 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.239 \pm 0.001 \\ 0.364 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.263 \pm 0.002 \\ 0.285 \pm 0.003 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 2.886 \pm 0.013 \\ \underline{1.712} \pm 0.020 \\ 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (F = 6)<br>MICN [33]<br>ModernTCN [29]<br>PatchTST [30]<br>FEDformer [45]<br>Autoformer [35]<br>Reformer [19]<br>S4 [12]<br>MTGNN [38]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 0.235 \pm 0.002 \\ 0.191 \pm 0.002 \\ 0.188 \pm 0.001 \\ 0.271 \pm 0.002 \\ 0.269 \pm 0.004 \\ 0.348 \pm 0.001 \\ 0.341 \pm 0.003 \\ 0.169 \pm 0.001 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \text{RMSE} \\ \hline 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.384 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.001 \\ 0.489 \pm 0.002 \\ 0.268 \pm 0.003 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ 0.0746 \pm 0.000 \\ 0.230 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.117 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} \text{RMSE} \\ 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.239 \pm 0.001 \\ 0.364 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.263 \pm 0.002 \\ 0.285 \pm 0.003 \\ 0.256 \pm 0.001 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 2.886 \pm 0.013 \\ \underline{1.712 \pm 0.020} \\ 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (F = 6)  MICN [33]  ModernTCN [29]  PatchTST [30]  FEDformer [45]  Autoformer [35]  Reformer [19]  S4 [12]  MTGNN [38]  MegaCRN [15]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 0.235 \pm 0.002 \\ 0.191 \pm 0.002 \\ 0.188 \pm 0.001 \\ 0.271 \pm 0.002 \\ 0.269 \pm 0.004 \\ 0.348 \pm 0.001 \\ 0.341 \pm 0.003 \\ 0.169 \pm 0.001 \\ 0.292 \pm 0.002 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} \text{RMSE} \\ \hline 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.384 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.001 \\ 0.489 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ 0.0746 \pm 0.000 \\ 0.230 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.117 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \text{RMSE} \\ 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.239 \pm 0.001 \\ 0.364 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.263 \pm 0.002 \\ 0.285 \pm 0.003 \\ 0.256 \pm 0.001 \\ 0.242 \pm 0.001 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 2.886 \pm 0.013 \\ \underline{1.712 \pm 0.020} \\ 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{c} (F=6)\\ \hline \text{MICN [33]}\\ \text{ModernTCN [29]}\\ \text{PatchTST [30]}\\ \text{FEDformer [45]}\\ \text{Autoformer [35]}\\ \text{Reformer [19]}\\ \text{S4 [12]}\\ \text{MTGNN [38]}\\ \text{MegaCRN [15]}\\ \text{ITransformer [28]}\\ \text{CrossFormer [42]} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 0.235 \pm 0.002 \\ 0.191 \pm 0.002 \\ 0.188 \pm 0.001 \\ 0.271 \pm 0.002 \\ 0.269 \pm 0.004 \\ 0.348 \pm 0.001 \\ 0.341 \pm 0.003 \\ 0.169 \pm 0.001 \\ 0.292 \pm 0.002 \\ 0.171 \pm 0.002 \\ 0.169 \pm 0.001 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \text{RMSE} \\ \hline 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.384 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.001 \\ 0.489 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.541 \pm 0.006 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ 0.0746 \pm 0.000 \\ 0.230 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.117 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0804 \pm 0.000 \\ 0.0882 \pm 0.000 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \text{RMSE} \\ 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.239 \pm 0.001 \\ 0.364 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.263 \pm 0.002 \\ 0.285 \pm 0.003 \\ 0.256 \pm 0.001 \\ 0.242 \pm 0.001 \\ 0.243 \pm 0.002 \\ 0.237 \pm 0.002 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ \hline 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\begin{array}{c} (F=6)\\ \hline \text{MICN [33]}\\ \text{ModernTCN [29]}\\ \text{PatchTST [30]}\\ \text{FEDformer [45]}\\ \text{Autoformer [35]}\\ \text{Reformer [19]}\\ \text{S4 [12]}\\ \hline \text{MTGNN [38]}\\ \\ \text{MegaCRN [15]}\\ \hline \text{ITransformer [28]}\\ \hline \text{CrossFormer [42]}\\ \hline \text{Card [34]} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 0.235 \pm 0.002 \\ 0.191 \pm 0.002 \\ 0.188 \pm 0.001 \\ 0.271 \pm 0.002 \\ 0.269 \pm 0.004 \\ 0.348 \pm 0.001 \\ 0.341 \pm 0.003 \\ 0.169 \pm 0.001 \\ 0.292 \pm 0.002 \\ 0.171 \pm 0.002 \\ 0.169 \pm 0.001 \\ 0.169 \pm 0.001 \\ 0.169 \pm 0.001 \\ 0.166 \pm 0.001 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \text{RMSE} \\ \hline 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.384 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.001 \\ 0.489 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.267 \pm 0.001 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.541 \pm 0.006 \\ 1.576 \pm 0.002 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ 0.0746 \pm 0.000 \\ 0.230 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.117 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0804 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0778 \pm 0.000 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} \text{RMSE} \\ 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.239 \pm 0.001 \\ 0.364 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.263 \pm 0.002 \\ 0.285 \pm 0.003 \\ 0.256 \pm 0.001 \\ 0.242 \pm 0.001 \\ 0.243 \pm 0.002 \\ 0.237 \pm 0.002 \\ 0.242 \pm 0.002 \\ 0.242 \pm 0.002 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \\ 1.748 \pm 0.009 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{array}{c} (F=6) \\ \hline \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \text{S4 [12]} \\ \text{MTGNN [38]} \\ \text{MegaCRN [15]} \\ \text{iTransformer [28]} \\ \text{CrossFormer [42]} \\ \text{Card [34]} \\ \text{ESG [39]} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 0.235 \pm 0.002 \\ 0.191 \pm 0.002 \\ 0.188 \pm 0.001 \\ 0.271 \pm 0.002 \\ 0.269 \pm 0.004 \\ 0.348 \pm 0.001 \\ 0.341 \pm 0.003 \\ 0.169 \pm 0.001 \\ 0.292 \pm 0.002 \\ 0.171 \pm 0.002 \\ 0.169 \pm 0.001 \\ 0.166 \pm 0.001 \\ \hline 0.168 \pm 0.002 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \text{RMSE} \\ \hline 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.384 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.001 \\ 0.489 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.275 \pm 0.003 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.541 \pm 0.006 \\ 1.576 \pm 0.002 \\ 1.549 \pm 0.003 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ 0.0746 \pm 0.000 \\ 0.230 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.117 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0804 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0932 \pm 0.005 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} \text{RMSE} \\ 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.239 \pm 0.001 \\ 0.364 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.263 \pm 0.002 \\ 0.285 \pm 0.003 \\ 0.256 \pm 0.001 \\ 0.242 \pm 0.001 \\ 0.243 \pm 0.002 \\ 0.237 \pm 0.002 \\ 0.242 \pm 0.001 \\ 0.242 \pm 0.001 \\ 0.242 \pm 0.002 \\ 0.242 \pm 0.002 \\ 0.242 \pm 0.001 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 2.886 \pm 0.013 \\ \underline{1.712 \pm 0.020} \\ 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \\ 1.748 \pm 0.009 \\ 2.322 \pm 0.026 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c} (F=6)\\ \hline \text{MICN [33]}\\ \text{ModernTCN [29]}\\ \text{PatchTST [30]}\\ \text{FEDformer [45]}\\ \text{Autoformer [35]}\\ \text{Reformer [19]}\\ \text{S4 [12]}\\ \hline \text{MTGNN [38]}\\ \\ \text{MegaCRN [15]}\\ \hline \text{ITransformer [28]}\\ \hline \text{CrossFormer [42]}\\ \hline \text{Card [34]} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 0.235 \pm 0.002 \\ 0.191 \pm 0.002 \\ 0.188 \pm 0.001 \\ 0.271 \pm 0.002 \\ 0.269 \pm 0.004 \\ 0.348 \pm 0.001 \\ 0.341 \pm 0.003 \\ 0.169 \pm 0.001 \\ 0.292 \pm 0.002 \\ 0.171 \pm 0.002 \\ 0.169 \pm 0.001 \\ 0.169 \pm 0.001 \\ 0.169 \pm 0.001 \\ 0.166 \pm 0.001 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \text{RMSE} \\ \hline 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.384 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.001 \\ 0.489 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.267 \pm 0.001 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.541 \pm 0.006 \\ 1.576 \pm 0.002 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ 0.0746 \pm 0.000 \\ 0.230 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.117 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0804 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0778 \pm 0.000 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} \text{RMSE} \\ 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.239 \pm 0.001 \\ 0.364 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.263 \pm 0.002 \\ 0.285 \pm 0.003 \\ 0.256 \pm 0.001 \\ 0.242 \pm 0.001 \\ 0.243 \pm 0.002 \\ 0.237 \pm 0.002 \\ 0.242 \pm 0.002 \\ 0.242 \pm 0.002 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \\ 1.748 \pm 0.009 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{array}{c} (F=6) \\ \hline \\ \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \text{S4 [12]} \\ \text{MTGNN [38]} \\ \text{MegaCRN [15]} \\ \text{iTransformer [28]} \\ \text{CrossFormer [42]} \\ \text{Card [34]} \\ \text{ESG [39]} \\ \text{FourierGNN [40]} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 0.235 \pm 0.002 \\ 0.191 \pm 0.002 \\ 0.188 \pm 0.001 \\ 0.271 \pm 0.002 \\ 0.269 \pm 0.004 \\ 0.348 \pm 0.001 \\ 0.341 \pm 0.003 \\ 0.169 \pm 0.001 \\ 0.292 \pm 0.002 \\ 0.171 \pm 0.002 \\ 0.169 \pm 0.001 \\ 0.166 \pm 0.001 \\ 0.166 \pm 0.001 \\ 0.168 \pm 0.002 \\ 0.237 \pm 0.003 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} \text{RMSE} \\ \hline 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.384 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.001 \\ 0.489 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.267 \pm 0.001 \\ 0.267 \pm 0.001 \\ 0.275 \pm 0.003 \\ 0.369 \pm 0.002 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ \hline 1.541 \pm 0.006 \\ 1.576 \pm 0.002 \\ 1.549 \pm 0.003 \\ 1.978 \pm 0.007 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ 0.0746 \pm 0.000 \\ 0.230 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.117 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0778 \pm 0.000 \\ 0.0932 \pm 0.004 \\ 0.0935 \pm 0.004 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \text{RMSE} \\ 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.239 \pm 0.001 \\ 0.364 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.263 \pm 0.002 \\ 0.285 \pm 0.003 \\ 0.256 \pm 0.001 \\ 0.242 \pm 0.001 \\ 0.243 \pm 0.002 \\ 0.237 \pm 0.002 \\ 0.242 \pm 0.001 \\ 0.242 \pm 0.002 \\ 0.242 \pm 0.001 \\ 0.242 \pm 0.002 \\ 0.242 \pm 0.001 \\ 0.257 \pm 0.002 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \\ 1.748 \pm 0.009 \\ 2.322 \pm 0.026 \\ 2.869 \pm 0.038 \end{array}$                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{c} (F=6) \\ \hline \text{MICN [33]} \\ \hline \text{ModernTCN [29]} \\ \hline \text{PatchTST [30]} \\ \hline \text{FEDformer [45]} \\ \hline \text{Autoformer [35]} \\ \hline \text{Reformer [19]} \\ \hline \text{S4 [12]} \\ \hline \text{MTGNN [38]} \\ \hline \text{MegaCRN [15]} \\ \hline \hline \text{iTransformer [28]} \\ \hline \text{CrossFormer [42]} \\ \hline \text{Card [34]} \\ \hline \hline \text{ESG [39]} \\ \hline \hline \text{FourierGNN [40]} \\ \hline \hline \hline \text{TPGNN [26]} \\ \hline \hline \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 0.235 \pm 0.002 \\ 0.191 \pm 0.002 \\ 0.188 \pm 0.001 \\ 0.271 \pm 0.002 \\ 0.269 \pm 0.004 \\ 0.348 \pm 0.001 \\ 0.341 \pm 0.003 \\ 0.169 \pm 0.001 \\ 0.292 \pm 0.002 \\ 0.171 \pm 0.002 \\ 0.169 \pm 0.001 \\ 0.166 \pm 0.001 \\ 0.168 \pm 0.002 \\ 0.237 \pm 0.003 \\ 0.234 \pm 0.002 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} \text{RMSE} \\ 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.384 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.001 \\ 0.489 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.275 \pm 0.003 \\ 0.369 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.260 \pm 0.001 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.541 \pm 0.006 \\ \hline 1.576 \pm 0.002 \\ 1.549 \pm 0.003 \\ 1.978 \pm 0.007 \\ 2.042 \pm 0.007 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ \begin{array}{c} 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ 0.0746 \pm 0.000 \\ 0.230 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.117 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0804 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0778 \pm 0.000 \\ 0.0932 \pm 0.005 \\ 0.0935 \pm 0.004 \\ 0.0782 \pm 0.000 \\ 0.0794 \pm 0.000 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} \text{RMSE} \\ 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.239 \pm 0.001 \\ 0.364 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.263 \pm 0.002 \\ 0.285 \pm 0.003 \\ 0.256 \pm 0.001 \\ 0.242 \pm 0.001 \\ 0.243 \pm 0.002 \\ 0.237 \pm 0.002 \\ 0.242 \pm 0.001 \\ 0.242 \pm 0.002 \\ 0.242 \pm 0.002 \\ 0.242 \pm 0.001 \\ 0.257 \pm 0.002 \\ 0.246 \pm 0.002 \\ 0.246 \pm 0.002 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \\ 1.748 \pm 0.009 \\ 2.322 \pm 0.026 \\ 2.869 \pm 0.038 \\ 1.731 \pm 0.030 \\ \hline \textbf{1.663} \pm \textbf{0.013} \\ \end{array}$                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{l} (F=6) \\ \hline \text{MICN [33]} \\ \hline \text{ModernTCN [29]} \\ \hline \text{PatchTST [30]} \\ \hline \text{FEDformer [45]} \\ \hline \text{Autoformer [35]} \\ \hline \text{Reformer [19]} \\ \hline \text{S4 [12]} \\ \hline \text{MTGNN [38]} \\ \hline \text{MegaCRN [15]} \\ \hline \hline \text{iTransformer [28]} \\ \hline \text{CrossFormer [42]} \\ \hline \text{Card [34]} \\ \hline \text{ESG [39]} \\ \hline \hline \text{FourierGNN [40]} \\ \hline \hline \text{TPGNN [26]} \\ \hline \\ \hline \\ \hline \text{Sumba} \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \text{Method} \\ \hline (F=6) \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                           | $ \begin{array}{c} 0.235 \pm 0.002 \\ 0.191 \pm 0.002 \\ 0.188 \pm 0.001 \\ 0.271 \pm 0.002 \\ 0.269 \pm 0.004 \\ 0.348 \pm 0.001 \\ 0.341 \pm 0.003 \\ 0.169 \pm 0.001 \\ 0.292 \pm 0.002 \\ 0.171 \pm 0.002 \\ 0.169 \pm 0.001 \\ 0.166 \pm 0.001 \\ 0.168 \pm 0.002 \\ 0.237 \pm 0.003 \\ 0.234 \pm 0.002 \\ \hline \textbf{0.163} \pm \textbf{0.001} \\ \hline \textbf{0.163} \pm \textbf{0.001} \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \text{RMSE} \\ 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.398 \pm 0.002 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.001 \\ 0.489 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.275 \pm 0.003 \\ 0.369 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.367 \pm 0.002 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.541 \pm 0.006 \\ \hline 1.576 \pm 0.002 \\ 1.549 \pm 0.003 \\ 1.978 \pm 0.007 \\ 2.042 \pm 0.007 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ \begin{array}{c} 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ 0.0746 \pm 0.000 \\ 0.230 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.117 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0932 \pm 0.005 \\ 0.0935 \pm 0.004 \\ 0.0782 \pm 0.000 \\ 0.0798 \pm 0.000 \\ 0.0935 \pm 0.004 \\ 0.0794 \pm 0.000 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} \text{RMSE} \\ 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.239 \pm 0.001 \\ 0.364 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.263 \pm 0.002 \\ 0.285 \pm 0.003 \\ 0.256 \pm 0.001 \\ 0.242 \pm 0.001 \\ 0.243 \pm 0.002 \\ 0.242 \pm 0.002 \\ 0.246 \pm 0.002 \\ 0.246 \pm 0.002 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \\ 1.748 \pm 0.009 \\ 2.322 \pm 0.026 \\ 2.869 \pm 0.038 \\ 1.731 \pm 0.030 \\ \textbf{1.663 \pm 0.013} \\ \end{array}$                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{l} (F=6) \\ \hline \text{MICN [33]} \\ \hline \text{ModernTCN [29]} \\ \hline \text{PatchTST [30]} \\ \hline \text{FEDformer [45]} \\ \hline \text{Autoformer [35]} \\ \hline \text{Reformer [19]} \\ \hline \text{S4 [12]} \\ \hline \text{MTGNN [38]} \\ \hline \text{MegaCRN [15]} \\ \hline \text{iTransformer [28]} \\ \hline \text{CrossFormer [42]} \\ \hline \text{Card [34]} \\ \hline \hline \text{ESG [39]} \\ \hline \hline \text{FourierGNN [40]} \\ \hline \hline \hline \text{TPGNN [26]} \\ \hline \hline \\ \hline \\ \hline \text{Sumba} \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \text{MICN [33]} \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{c} 0.235 \pm 0.002 \\ 0.191 \pm 0.002 \\ 0.188 \pm 0.001 \\ 0.271 \pm 0.002 \\ 0.269 \pm 0.004 \\ 0.348 \pm 0.001 \\ 0.341 \pm 0.003 \\ 0.169 \pm 0.001 \\ 0.292 \pm 0.002 \\ 0.171 \pm 0.002 \\ 0.169 \pm 0.001 \\ 0.166 \pm 0.001 \\ 0.168 \pm 0.002 \\ 0.237 \pm 0.003 \\ 0.234 \pm 0.002 \\ \hline \textbf{0.163} \pm \textbf{0.001} \\ \hline \textbf{0.163} \pm \textbf{0.001} \\ \hline \textbf{0.163} \pm \textbf{0.001} \\ \hline \textbf{0.281} \pm 0.001 \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} \text{RMSE} \\ 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.384 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.275 \pm 0.003 \\ 0.369 \pm 0.002 \\ 0.367 \pm 0.001 \\ 0.260 \pm 0.001$ | $\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.541 \pm 0.006 \\ \hline 1.576 \pm 0.002 \\ 1.549 \pm 0.003 \\ 1.978 \pm 0.007 \\ 2.042 \pm 0.007 \\ \hline \\ \textbf{1.530} \pm \textbf{0.005} \\ \hline \\ \textbf{1.692} \pm 0.006 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{c} 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ 0.0746 \pm 0.000 \\ 0.230 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.117 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0804 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0932 \pm 0.005 \\ 0.0935 \pm 0.004 \\ 0.0782 \pm 0.000 \\ \textbf{0.0704} \pm \textbf{0.000} \\ \textbf{0.0704} \pm \textbf{0.000} \\ \textbf{0.0704} \pm \textbf{0.000} \\ \textbf{0.0704} \pm \textbf{0.000} \\ \textbf{0.0705} \pm \textbf{0.0000} \\ \textbf{0.0705} \pm $ | $\begin{array}{c} \text{RMSE} \\ 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.239 \pm 0.001 \\ 0.364 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.263 \pm 0.002 \\ 0.285 \pm 0.003 \\ 0.256 \pm 0.001 \\ 0.242 \pm 0.001 \\ 0.243 \pm 0.002 \\ 0.237 \pm 0.002 \\ 0.242 \pm 0.001 \\ 0.242 \pm 0.002 \\ 0.242 \pm 0.002 \\ 0.242 \pm 0.002 \\ 0.242 \pm 0.002 \\ 0.246 \pm 0.002 \\ 0.246 \pm 0.002 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \\ 1.748 \pm 0.009 \\ 2.322 \pm 0.026 \\ 2.869 \pm 0.038 \\ 1.731 \pm 0.030 \\ \hline \textbf{1.663} \pm \textbf{0.013} \\ \\ \hline \textbf{MAPE(\%)} \\ 3.369 \pm 0.019 \\ \hline \end{array}$                                                                                                                                                                                                                                              |
| $\begin{array}{l} (F=6) \\ \hline \text{MICN [33]} \\ \hline \text{ModernTCN [29]} \\ \hline \text{PatchTST [30]} \\ \hline \text{FEDformer [45]} \\ \hline \text{Autoformer [35]} \\ \hline \text{Reformer [19]} \\ \hline \text{S4 [12]} \\ \hline \hline \text{MTGNN [38]} \\ \hline \text{MegaCRN [15]} \\ \hline \text{iTransformer [28]} \\ \hline \text{CrossFormer [42]} \\ \hline \text{Card [34]} \\ \hline \hline \text{ESG [39]} \\ \hline \hline \text{FourierGNN [40]} \\ \hline \hline \hline \text{TPGNN [26]} \\ \hline \hline \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{c} 0.235 \pm 0.002 \\ 0.191 \pm 0.002 \\ 0.188 \pm 0.001 \\ 0.271 \pm 0.002 \\ 0.269 \pm 0.004 \\ 0.348 \pm 0.001 \\ 0.341 \pm 0.003 \\ 0.169 \pm 0.001 \\ 0.292 \pm 0.002 \\ 0.171 \pm 0.002 \\ 0.169 \pm 0.001 \\ 0.166 \pm 0.001 \\ 0.168 \pm 0.002 \\ 0.237 \pm 0.003 \\ 0.234 \pm 0.002 \\ \hline \textbf{0.163} \pm \textbf{0.001} \\ \hline \textbf{0.163} \pm \textbf{0.001} \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \text{RMSE} \\ 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.398 \pm 0.002 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.001 \\ 0.489 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.275 \pm 0.003 \\ 0.369 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.367 \pm 0.002 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.541 \pm 0.006 \\ \hline 1.576 \pm 0.002 \\ 1.549 \pm 0.003 \\ 1.978 \pm 0.007 \\ 2.042 \pm 0.007 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ \begin{array}{c} 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ 0.0746 \pm 0.000 \\ 0.230 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.117 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0932 \pm 0.005 \\ 0.0935 \pm 0.004 \\ 0.0782 \pm 0.000 \\ 0.0798 \pm 0.000 \\ 0.0935 \pm 0.004 \\ 0.0794 \pm 0.000 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} \text{RMSE} \\ 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.239 \pm 0.001 \\ 0.364 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.263 \pm 0.002 \\ 0.285 \pm 0.003 \\ 0.256 \pm 0.001 \\ 0.242 \pm 0.001 \\ 0.243 \pm 0.002 \\ 0.242 \pm 0.002 \\ 0.246 \pm 0.002 \\ 0.246 \pm 0.002 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 2.886 \pm 0.013 \\ \underline{1.712 \pm 0.020} \\ 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \\ 2.322 \pm 0.026 \\ 2.869 \pm 0.038 \\ 1.731 \pm 0.030 \\ \hline \textbf{1.663 \pm 0.013} \\ \\ \mathbf{MAPE(\%)} \\ 3.369 \pm 0.019 \\ 3.219 \pm 0.028 \\ \end{array}$                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 0.235 \pm 0.002 \\ 0.191 \pm 0.002 \\ 0.191 \pm 0.002 \\ 0.188 \pm 0.001 \\ 0.271 \pm 0.002 \\ 0.269 \pm 0.004 \\ 0.348 \pm 0.001 \\ 0.341 \pm 0.003 \\ 0.169 \pm 0.001 \\ 0.292 \pm 0.002 \\ 0.171 \pm 0.002 \\ 0.169 \pm 0.001 \\ 0.166 \pm 0.001 \\ 0.166 \pm 0.001 \\ 0.168 \pm 0.002 \\ 0.237 \pm 0.003 \\ 0.234 \pm 0.002 \\ \hline \textbf{0.163} \pm \textbf{0.001} \\ \hline \textbf{MAE} \\ \hline \hline 0.281 \pm 0.001 \\ 0.272 \pm 0.002 \\ 0.210 \pm 0.002 \\ 0.349 \pm 0.006 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \text{RMSE} \\ 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.384 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.001 \\ 0.489 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.275 \pm 0.003 \\ 0.369 \pm 0.002 \\ 0.367 \pm 0.002 \\ \hline \textbf{0.260} \pm \textbf{0.001} \\ 0.275 \pm 0.003 \\ 0.369 \pm 0.002 \\ \hline \textbf{0.360} \pm \textbf{0.001} \\ 0.389 \pm 0.002 \\ 0.389 \pm 0.002 \\ 0.388 \pm 0.002 \\ 0.508 \pm 0.007 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ \hline 1.541 \pm 0.006 \\ 1.576 \pm 0.002 \\ \hline 1.549 \pm 0.003 \\ 1.978 \pm 0.007 \\ \hline 2.042 \pm 0.007 \\ \hline 1.530 \pm 0.005 \\ \hline \\ MAPE(\%) \\ \hline 1.692 \pm 0.006 \\ 1.819 \pm 0.015 \\ 0.956 \pm 0.005 \\ \hline 1.523 \pm 0.021 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{c} 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ 0.0746 \pm 0.000 \\ 0.230 \pm 0.001 \\ 0.230 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.117 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0804 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0778 \pm 0.000 \\ 0.0932 \pm 0.005 \\ 0.0935 \pm 0.004 \\ 0.0782 \pm 0.000 \\ \hline                              $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} \text{RMSE} \\ 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.239 \pm 0.001 \\ 0.364 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.263 \pm 0.002 \\ 0.285 \pm 0.003 \\ 0.256 \pm 0.001 \\ 0.242 \pm 0.001 \\ 0.242 \pm 0.001 \\ 0.242 \pm 0.002 \\ 0.245 \pm 0.002 \\ 0.246 \pm 0.002 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \\ 1.748 \pm 0.009 \\ 2.322 \pm 0.026 \\ 2.869 \pm 0.038 \\ 1.731 \pm 0.030 \\ \hline \textbf{1.663} \pm \textbf{0.013} \\ \hline \textbf{MAPE(\%)} \\ 3.369 \pm 0.019 \\ 3.219 \pm 0.028 \\ 2.465 \pm 0.012 \\ 3.845 \pm 0.033 \\ \hline \end{array}$                                                                                                                                                                                                           |
| $\begin{array}{l} (F=6) \\ \hline \text{MICN [33]} \\ \hline \text{ModernTCN [29]} \\ \hline \text{PatchTST [30]} \\ \hline \text{FEDformer [45]} \\ \hline \text{Autoformer [35]} \\ \hline \text{Reformer [19]} \\ \hline \text{S4 [12]} \\ \hline \text{MTGNN [38]} \\ \hline \text{MegaCRN [15]} \\ \hline \hline \text{iTransformer [28]} \\ \hline \text{CrossFormer [42]} \\ \hline \text{Card [34]} \\ \hline \text{ESG [39]} \\ \hline \hline \text{FourierGNN [40]} \\ \hline \hline \text{TPGNN [26]} \\ \hline \hline \\ \hline \text{Sumba} \\ \hline \hline \\ \hline \text{MICN [33]} \\ \hline \hline \text{ModernTCN [29]} \\ \hline \text{PatchTST [30]} \\ \hline \text{FEDformer [45]} \\ \hline \text{Autoformer [35]} \\ \hline \end{array}$                                                                                                                                                                                                                                                                  | $\begin{array}{c} 0.235 \pm 0.002 \\ 0.191 \pm 0.002 \\ 0.188 \pm 0.001 \\ 0.271 \pm 0.002 \\ 0.269 \pm 0.004 \\ 0.348 \pm 0.001 \\ 0.341 \pm 0.003 \\ 0.169 \pm 0.001 \\ 0.292 \pm 0.002 \\ 0.171 \pm 0.002 \\ 0.169 \pm 0.001 \\ 0.166 \pm 0.001 \\ 0.168 \pm 0.002 \\ 0.237 \pm 0.003 \\ 0.234 \pm 0.002 \\ \hline \textbf{0.163} \pm \textbf{0.001} \\ 0.272 \pm 0.003 \\ 0.234 \pm 0.002 \\ \hline \textbf{0.163} \pm \textbf{0.001} \\ 0.272 \pm 0.002 \\ 0.210 \pm 0.002 \\ 0.349 \pm 0.006 \\ 0.322 \pm 0.002 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \text{RMSE} \\ 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.398 \pm 0.002 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.001 \\ 0.489 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.275 \pm 0.003 \\ 0.369 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.368 \pm 0.002 \\ 0.369 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.275 \pm 0.003 \\ 0.369 \pm 0.002 \\ 0.369 \pm 0.002 \\ 0.369 \pm 0.001 \\ 0.260 \pm 0.001 \\ 0.380 \pm 0.002 \\ 0.508 \pm 0.007 \\ 0.473 \pm 0.003 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001$                                                                                         | $\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ \hline 1.576 \pm 0.002 \\ 1.549 \pm 0.003 \\ 1.978 \pm 0.007 \\ 2.042 \pm 0.007 \\ \hline \textbf{1.530} \pm \textbf{0.005} \\ \hline \textbf{MAPE(\%)} \\ \\ \hline 1.692 \pm 0.006 \\ 1.819 \pm 0.015 \\ 0.956 \pm 0.005 \\ 1.523 \pm 0.021 \\ 1.350 \pm 0.010 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{c} 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ 0.0746 \pm 0.000 \\ 0.230 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.117 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0842 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0778 \pm 0.000 \\ 0.0932 \pm 0.005 \\ 0.0935 \pm 0.004 \\ 0.0782 \pm 0.000 \\ \hline \textbf{0.0704} \pm \textbf{0.000} \\ \hline \textbf{0.275} \pm 0.000 \\ \hline \textbf{0.275} \pm 0.002 \\ 0.231 \pm 0.001 \\ 0.344 \pm 0.003 \\ 0.360 \pm 0.002 \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \text{RMSE} \\ 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.239 \pm 0.001 \\ 0.364 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.263 \pm 0.002 \\ 0.285 \pm 0.003 \\ 0.256 \pm 0.001 \\ 0.242 \pm 0.001 \\ 0.242 \pm 0.002 \\ 0.246 \pm 0.002 \\ 0.257 \pm 0.002 \\ 0.266 \pm 0.002 \\ 0.257 \pm 0.002 \\ 0.218 \pm 0.002 \\ 0.218 \pm 0.001 \\ 0.597 \pm 0.001 \\ 0.597 \pm 0.001 \\ 0.597 \pm 0.001 \\ 0.591 \pm 0.007 \\ 0.730 \pm 0.003 \\ 0.730 \pm 0.003$          | $\begin{array}{c} 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \\ 1.748 \pm 0.009 \\ 2.322 \pm 0.026 \\ 2.869 \pm 0.038 \\ 1.731 \pm 0.030 \\ \hline \textbf{1.663} \pm \textbf{0.013} \\ \hline \textbf{MAPE(\%)} \\ 3.369 \pm 0.019 \\ 3.219 \pm 0.028 \\ 2.465 \pm 0.012 \\ 3.845 \pm 0.033 \\ 3.891 \pm 0.018 \\ \hline \end{array}$                                                                                                                                                                     |
| $\begin{array}{l} (F=6) \\ \hline \text{MICN [33]} \\ \hline \text{ModernTCN [29]} \\ \hline \text{PatchTST [30]} \\ \hline \text{FEDformer [45]} \\ \hline \text{Autoformer [35]} \\ \hline \text{Reformer [19]} \\ \hline \text{S4 [12]} \\ \hline \text{MTGNN [38]} \\ \hline \text{MegaCRN [15]} \\ \hline \hline \text{iTransformer [28]} \\ \hline \text{CrossFormer [42]} \\ \hline \text{Card [34]} \\ \hline \text{ESG [39]} \\ \hline \hline \text{FourierGNN [40]} \\ \hline \hline \text{TPGNN [26]} \\ \hline \hline \\ \hline \text{Sumba} \\ \hline \hline \\ \hline \text{MiCN [33]} \\ \hline \hline \text{ModernTCN [29]} \\ \hline \text{PatchTST [30]} \\ \hline \text{FEDformer [45]} \\ \hline \\ \hline \text{Autoformer [35]} \\ \hline \\ \hline \text{Reformer [19]} \\ \hline \end{array}$                                                                                                                                                                                                               | $\begin{array}{c} 0.235 \pm 0.002 \\ 0.191 \pm 0.002 \\ 0.188 \pm 0.001 \\ 0.271 \pm 0.002 \\ 0.269 \pm 0.004 \\ 0.348 \pm 0.001 \\ 0.341 \pm 0.003 \\ 0.169 \pm 0.001 \\ 0.292 \pm 0.002 \\ 0.171 \pm 0.002 \\ 0.169 \pm 0.001 \\ 0.292 \pm 0.002 \\ 0.168 \pm 0.001 \\ 0.168 \pm 0.002 \\ 0.237 \pm 0.003 \\ 0.234 \pm 0.002 \\ \hline \textbf{0.163} \pm \textbf{0.001} \\ 0.272 \pm 0.002 \\ 0.210 \pm 0.001 \\ 0.210 \pm 0.002 \\ 0.349 \pm 0.002 \\ 0.349 \pm 0.002 \\ 0.488 \pm 0.012 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \text{RMSE} \\ 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.398 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.001 \\ 0.489 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.275 \pm 0.003 \\ 0.369 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.368 \pm 0.002 \\ 0.369 \pm 0.001 \\ 0.260 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.275 \pm 0.003 \\ 0.369 \pm 0.002 \\ 0.369 \pm 0.001 \\ 0.380 \pm 0.001 \\ 0.380 \pm 0.003 \\ 0.508 \pm 0.002 \\ 0.508 \pm 0.003 \\ 0.473 \pm 0.003 \\ 0.690 \pm 0.007 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.541 \pm 0.006 \\ \hline 1.576 \pm 0.002 \\ 1.549 \pm 0.003 \\ 1.978 \pm 0.007 \\ 2.042 \pm 0.007 \\ \hline \textbf{1.530} \pm \textbf{0.005} \\ \hline \textbf{MAPE(\%)} \\ 1.692 \pm 0.006 \\ 1.819 \pm 0.015 \\ 0.956 \pm 0.005 \\ 1.523 \pm 0.021 \\ 1.350 \pm 0.010 \\ 2.604 \pm 0.031 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{c} 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ 0.0746 \pm 0.000 \\ 0.230 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.117 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0804 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0778 \pm 0.000 \\ 0.0932 \pm 0.005 \\ 0.0935 \pm 0.004 \\ 0.0782 \pm 0.000 \\ \hline \textbf{0.0704} \pm \textbf{0.000} \\ \textbf{0.275} \pm 0.000 \\ \textbf{0.275} \pm 0.002 \\ 0.261 \pm 0.002 \\ 0.231 \pm 0.001 \\ 0.344 \pm 0.003 \\ 0.360 \pm 0.002 \\ 0.338 \pm 0.002 \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \text{RMSE} \\ 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.399 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.263 \pm 0.002 \\ 0.285 \pm 0.003 \\ 0.256 \pm 0.001 \\ 0.242 \pm 0.001 \\ 0.242 \pm 0.002 \\ 0.246 \pm 0.002 \\ 0.246 \pm 0.002 \\ 0.257 \pm 0.002 \\ 0.246 \pm 0.002 \\ 0.257 \pm 0.002 \\ 0.257 \pm 0.002 \\ 0.257 \pm 0.002 \\ 0.257 \pm 0.002 \\ 0.218 \pm 0.002 \\ 0.234 \pm 0.002 \\ 0.234 \pm 0.002 \\ 0.234 \pm 0.003 \\ 0.597 \pm 0.001 \\ 0.597 \pm 0.001 \\ 0.594 \pm 0.002 \\ 0.718 \pm 0.007 \\ 0.730 \pm 0.003 \\ 0.775 \pm 0.006 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001$                                                                                                        | $\begin{array}{c} 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.025 \\ 2.931 \pm 0.059 \\ 1.748 \pm 0.009 \\ 2.322 \pm 0.026 \\ 2.869 \pm 0.038 \\ 1.731 \pm 0.030 \\ \hline \textbf{1.663} \pm \textbf{0.013} \\ \hline \textbf{MAPE(\%)} \\ 3.369 \pm 0.019 \\ 3.219 \pm 0.028 \\ 2.465 \pm 0.012 \\ 3.845 \pm 0.038 \\ 3.891 \pm 0.018 \\ 3.613 \pm 0.025 \\ \hline \end{array}$                                                                                                                                                  |
| $\begin{array}{l} (F=6) \\ \hline \text{MICN [33]} \\ \hline \text{ModernTCN [29]} \\ \hline \text{PatchTST [30]} \\ \hline \text{FEDformer [45]} \\ \hline \text{Autoformer [35]} \\ \hline \text{Reformer [19]} \\ \hline \text{S4 [12]} \\ \hline \text{MTGNN [38]} \\ \hline \text{MegaCRN [15]} \\ \hline \text{iTransformer [28]} \\ \hline \text{CrossFormer [42]} \\ \hline \text{Card [34]} \\ \hline \text{ESG [39]} \\ \hline \hline \text{FourierGNN [40]} \\ \hline \hline \text{TPGNN [26]} \\ \hline \hline \\ \hline \\ \hline \text{Sumba} \\ \hline \\ \hline \\ \hline \text{MICN [33]} \\ \hline \\ \hline \text{ModernTCN [29]} \\ \hline \text{PatchTST [30]} \\ \hline \text{FEDformer [45]} \\ \hline \text{Autoformer [35]} \\ \hline \\ \hline \text{Reformer [19]} \\ \hline \\ \hline \text{S4 [12]} \\ \hline \end{array}$                                                                                                                                                                             | $\begin{array}{c} 0.235 \pm 0.002 \\ 0.191 \pm 0.002 \\ 0.188 \pm 0.001 \\ 0.271 \pm 0.002 \\ 0.269 \pm 0.004 \\ 0.348 \pm 0.001 \\ 0.341 \pm 0.003 \\ 0.169 \pm 0.001 \\ 0.292 \pm 0.002 \\ 0.171 \pm 0.002 \\ 0.169 \pm 0.001 \\ 0.166 \pm 0.001 \\ 0.168 \pm 0.002 \\ 0.237 \pm 0.003 \\ 0.234 \pm 0.002 \\ \hline \textbf{0.163} \pm \textbf{0.001} \\ 0.272 \pm 0.003 \\ 0.234 \pm 0.002 \\ \hline \textbf{0.163} \pm \textbf{0.001} \\ 0.272 \pm 0.002 \\ 0.210 \pm 0.002 \\ 0.349 \pm 0.006 \\ 0.322 \pm 0.002 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \text{RMSE} \\ 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.398 \pm 0.002 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.001 \\ 0.489 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.275 \pm 0.003 \\ 0.369 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.368 \pm 0.002 \\ 0.369 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.275 \pm 0.003 \\ 0.369 \pm 0.002 \\ 0.369 \pm 0.002 \\ 0.369 \pm 0.001 \\ 0.260 \pm 0.001 \\ 0.380 \pm 0.002 \\ 0.508 \pm 0.007 \\ 0.473 \pm 0.003 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001$                                                                                         | $\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ \hline 1.576 \pm 0.002 \\ 1.549 \pm 0.003 \\ 1.978 \pm 0.007 \\ 2.042 \pm 0.007 \\ \hline \textbf{1.530} \pm \textbf{0.005} \\ \hline \textbf{MAPE(\%)} \\ \\ \hline 1.692 \pm 0.006 \\ 1.819 \pm 0.015 \\ 0.956 \pm 0.005 \\ 1.523 \pm 0.021 \\ 1.350 \pm 0.010 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{c} 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ 0.0746 \pm 0.000 \\ 0.230 \pm 0.001 \\ 0.230 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.117 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0778 \pm 0.005 \\ 0.0932 \pm 0.005 \\ 0.0935 \pm 0.004 \\ 0.0782 \pm 0.000 \\ \hline                              $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \text{RMSE} \\ 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.239 \pm 0.001 \\ 0.364 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.263 \pm 0.002 \\ 0.285 \pm 0.003 \\ 0.256 \pm 0.001 \\ 0.242 \pm 0.001 \\ 0.242 \pm 0.002 \\ 0.246 \pm 0.002 \\ 0.257 \pm 0.002 \\ 0.266 \pm 0.002 \\ 0.257 \pm 0.002 \\ 0.218 \pm 0.002 \\ 0.218 \pm 0.001 \\ 0.597 \pm 0.001 \\ 0.597 \pm 0.001 \\ 0.597 \pm 0.001 \\ 0.591 \pm 0.007 \\ 0.730 \pm 0.003 \\ 0.730 \pm 0.003$          | $\begin{array}{c} 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \\ 1.748 \pm 0.009 \\ 2.322 \pm 0.026 \\ 2.869 \pm 0.038 \\ 1.731 \pm 0.030 \\ \hline \textbf{1.663} \pm \textbf{0.013} \\ \hline \textbf{MAPE(\%)} \\ 3.369 \pm 0.019 \\ 3.219 \pm 0.028 \\ 2.465 \pm 0.012 \\ 3.845 \pm 0.033 \\ 3.891 \pm 0.018 \\ \hline \end{array}$                                                                                                                                                                     |
| $\begin{array}{l} (F=6) \\ \hline \text{MICN [33]} \\ \hline \text{ModernTCN [29]} \\ \hline \text{PatchTST [30]} \\ \hline \text{FEDformer [45]} \\ \hline \text{Autoformer [35]} \\ \hline \text{Reformer [19]} \\ \hline \text{S4 [12]} \\ \hline \text{MTGNN [38]} \\ \hline \text{MegaCRN [15]} \\ \hline \hline \text{ITransformer [28]} \\ \hline \text{CrossFormer [42]} \\ \hline \text{Card [34]} \\ \hline \text{ESG [39]} \\ \hline \text{FourierGNN [40]} \\ \hline \hline \text{TPGNN [26]} \\ \hline \hline \\ \hline \\ \hline \text{Sumba} \\ \hline \\ \hline \\ \hline \text{Method} \\ \hline (F=6) \\ \hline \\ \hline \text{MICN [33]} \\ \hline \\ \hline \text{ModernTCN [29]} \\ \hline \text{PatchTST [30]} \\ \hline \text{FEDformer [45]} \\ \hline \\ \hline \text{Autoformer [19]} \\ \hline \text{S4 [12]} \\ \hline \\ \hline \\ \hline \text{MTGNN [38]} \\ \hline \\ \hline \text{MegaCRN [15]} \\ \hline \end{array}$                                                                            | $\begin{array}{c} 0.235 \pm 0.002 \\ 0.191 \pm 0.002 \\ 0.191 \pm 0.002 \\ 0.188 \pm 0.001 \\ 0.271 \pm 0.002 \\ 0.269 \pm 0.004 \\ 0.348 \pm 0.001 \\ 0.341 \pm 0.003 \\ 0.169 \pm 0.001 \\ 0.292 \pm 0.002 \\ 0.171 \pm 0.002 \\ 0.169 \pm 0.001 \\ 0.168 \pm 0.001 \\ 0.168 \pm 0.002 \\ 0.237 \pm 0.003 \\ 0.234 \pm 0.002 \\ \hline \textbf{0.163} \pm \textbf{0.001} \\ \hline \textbf{0.263} \pm \textbf{0.001} \\ 0.272 \pm 0.002 \\ 0.210 \pm 0.002 \\ 0.349 \pm 0.006 \\ 0.322 \pm 0.002 \\ 0.488 \pm 0.012 \\ 0.562 \pm 0.003 \\ 0.212 \pm 0.001 \\ 0.287 \pm 0.001 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \text{RMSE} \\ 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.384 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.001 \\ 0.489 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.275 \pm 0.003 \\ 0.369 \pm 0.002 \\ 0.367 \pm 0.002 \\ \hline \textbf{0.369} \pm 0.002 \\ \textbf{0.369} \pm 0.002 \\ \hline \textbf{0.369} \pm 0.002 \\ 0.369 \pm 0.002 \\ \hline \textbf{0.389} \pm 0.002 \\ \hline \textbf{0.405} \pm 0.001 \\ 0.389 \pm 0.002 \\ 0.405 \pm 0.001 \\ 0.389 \pm 0.003 \\ 0.508 \pm 0.003 \\ 0.690 \pm 0.007 \\ 0.747 \pm 0.009 \\ 0.323 \pm 0.002 \\ \hline \textbf{0.323} \pm 0.000 \\ 0.323 \pm 0.000 \\ 0.411 \pm 0.003 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ \hline 1.541 \pm 0.006 \\ 1.576 \pm 0.002 \\ 1.549 \pm 0.003 \\ 1.978 \pm 0.007 \\ 2.042 \pm 0.007 \\ \hline 1.530 \pm 0.005 \\ \hline \\ MAPE(\%) \\ \hline 1.692 \pm 0.006 \\ 1.819 \pm 0.015 \\ 0.956 \pm 0.005 \\ 1.523 \pm 0.021 \\ 1.350 \pm 0.010 \\ 2.604 \pm 0.031 \\ 2.755 \pm 0.021 \\ 0.994 \pm 0.006 \\ 1.437 \pm 0.009 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ 0.0746 \pm 0.000 \\ 0.230 \pm 0.001 \\ 0.230 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.117 \pm 0.001 \\ 0.0926 \pm 0.000 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0778 \pm 0.000 \\ 0.0932 \pm 0.005 \\ 0.0935 \pm 0.004 \\ 0.0782 \pm 0.000 \\ \hline \textbf{0.0704} \pm \textbf{0.000} \\ \hline \textbf{0.000} \\ \hline \textbf{0.0000} \\ \hline \textbf{0.00000} \\ \hline \textbf{0.000000} \\ \hline \textbf{0.0000000} \\ \hline \textbf{0.0000000} \\ \hline \textbf{0.0000000} \\ \hline \textbf{0.0000000} \\ \hline \textbf{0.00000000} \\ \hline \textbf{0.00000000} \\ \hline \textbf{0.000000000} \\ \hline \textbf{0.000000000000} \\ \hline \textbf{0.0000000000000000} \\ \hline 0.00000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} \text{RMSE} \\ 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.239 \pm 0.001 \\ 0.364 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.263 \pm 0.002 \\ 0.285 \pm 0.003 \\ 0.256 \pm 0.001 \\ 0.242 \pm 0.001 \\ 0.242 \pm 0.001 \\ 0.242 \pm 0.002 \\ 0.245 \pm 0.002 \\ 0.245 \pm 0.002 \\ 0.246 \pm 0.002 \\ 0.266 \pm 0.002 \\ \hline \textbf{Traffic RMSE} \\ 0.571 \pm 0.001 \\ 0.597 \pm 0.001 \\ 0.751 \pm 0.004 \\ 0.751 \pm 0.004 \\ 0.751 \pm 0.004 \\ 0.754 \pm 0.002 \\ 0.754 \pm 0$ | $\begin{array}{c} 2.886 \pm 0.013 \\ \underline{1.712 \pm 0.020} \\ 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \\ 2.322 \pm 0.026 \\ 2.869 \pm 0.038 \\ 1.731 \pm 0.030 \\ \hline \textbf{1.663 \pm 0.013} \\ \hline \textbf{MAPE(\%)} \\ 3.369 \pm 0.019 \\ 3.219 \pm 0.028 \\ 2.465 \pm 0.012 \\ 3.845 \pm 0.003 \\ 3.891 \pm 0.018 \\ 3.613 \pm 0.025 \\ 2.952 \pm 0.020 \\ 2.562 \pm 0.007 \\ 3.994 \pm 0.015 \\ \hline \end{array}$                                                                                                                            |
| $\begin{array}{l} (F=6) \\ \hline \text{MICN [33]} \\ \hline \text{ModernTCN [29]} \\ \hline \text{PatchTST [30]} \\ \hline \text{FEDformer [45]} \\ \hline \text{Autoformer [35]} \\ \hline \text{Reformer [19]} \\ \hline \text{S4 [12]} \\ \hline \text{MTGNN [38]} \\ \hline \text{MegaCRN [15]} \\ \hline \hline \text{ITransformer [28]} \\ \hline \text{CrossFormer [42]} \\ \hline \text{Card [34]} \\ \hline \text{ESG [39]} \\ \hline \hline \text{FourierGNN [40]} \\ \hline \hline \\ \hline \text{Sumba} \\ \hline \hline \\ \hline \\ \hline \text{Method} \\ \hline (F=6) \\ \hline \\ \hline \text{MICN [33]} \\ \hline \\ \hline \text{ModernTCN [29]} \\ \hline \\ \hline \text{PatchTST [30]} \\ \hline \\ \hline \text{FEDformer [45]} \\ \hline \\ \hline \text{Autoformer [35]} \\ \hline \\ \hline \text{Reformer [19]} \\ \hline \text{S4 [12]} \\ \hline \\ \hline \text{MTGNN [38]} \\ \hline \\ \hline \\ \hline \text{MegaCRN [15]} \\ \hline \\ \hline \text{iTransformer [28]} \\ \hline \end{array}$ | $\begin{array}{c} 0.235 \pm 0.002 \\ 0.191 \pm 0.002 \\ 0.191 \pm 0.002 \\ 0.188 \pm 0.001 \\ 0.271 \pm 0.002 \\ 0.269 \pm 0.004 \\ 0.348 \pm 0.001 \\ 0.341 \pm 0.003 \\ 0.169 \pm 0.001 \\ 0.292 \pm 0.002 \\ 0.171 \pm 0.002 \\ 0.169 \pm 0.001 \\ 0.166 \pm 0.001 \\ 0.168 \pm 0.002 \\ 0.237 \pm 0.003 \\ 0.234 \pm 0.002 \\ 0.210 \pm 0.001 \\ 0.272 \pm 0.002 \\ 0.210 \pm 0.001 \\ 0.349 \pm 0.001 \\ 0.272 \pm 0.002 \\ 0.349 \pm 0.006 \\ 0.322 \pm 0.002 \\ 0.488 \pm 0.012 \\ 0.562 \pm 0.003 \\ 0.212 \pm 0.001 \\ 0.287 \pm 0.004 \\ 0.212 \pm 0.001 \\ 0.287 \pm 0.004 \\ 0.212 \pm 0.001 \\ 0.212 \pm 0.001 \\ 0.212 \pm 0.001 \\ 0.212 \pm 0.001 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} \text{RMSE} \\ 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.398 \pm 0.002 \\ 0.483 \pm 0.002 \\ 0.483 \pm 0.002 \\ 0.483 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.275 \pm 0.003 \\ 0.369 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.368 \pm 0.002 \\ 0.369 \pm 0.003 \\ 0.369 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.369 \pm 0.001 \\ 0.380 \pm 0.003 \\ 0.328 \pm 0.002 \\ 0.508 \pm 0.007 \\ 0.473 \pm 0.003 \\ 0.690 \pm 0.007 \\ 0.747 \pm 0.009 \\ 0.323 \pm 0.002 \\ 0.411 \pm 0.003 \\ 0.329 \pm 0.001 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ \hline 1.576 \pm 0.002 \\ 1.549 \pm 0.003 \\ 1.978 \pm 0.007 \\ 2.042 \pm 0.007 \\ \hline 1.530 \pm 0.005 \\ \hline \\ MAPE(\%) \\ \hline \\ 1.692 \pm 0.006 \\ 1.819 \pm 0.015 \\ 0.956 \pm 0.005 \\ 1.523 \pm 0.021 \\ 1.350 \pm 0.010 \\ 2.604 \pm 0.031 \\ 2.755 \pm 0.021 \\ 0.994 \pm 0.006 \\ 1.437 \pm 0.009 \\ 1.029 \pm 0.003 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ 0.0746 \pm 0.000 \\ 0.230 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.117 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0842 \pm 0.000 \\ 0.0822 \pm 0.000 \\ 0.0932 \pm 0.005 \\ 0.0935 \pm 0.004 \\ 0.0782 \pm 0.000 \\ \textbf{0.0704} \pm 0.000 \\ \textbf{0.0704} \pm 0.000 \\ \textbf{0.0335} \pm 0.004 \\ 0.0782 \pm 0.000 \\ \textbf{0.0344} \pm 0.000 \\ \textbf{0.035} \pm 0.001 \\ \textbf{0.045} \pm 0.001 \\ \textbf{0.05} \pm 0.002 \\ \textbf{0.231} \pm 0.001 \\ \textbf{0.344} \pm 0.003 \\ \textbf{0.360} \pm 0.002 \\ \textbf{0.338} \pm 0.002 \\ \textbf{0.338} \pm 0.002 \\ \textbf{0.338} \pm 0.002 \\ \textbf{0.227} \pm 0.002 \\ \textbf{0.231} \pm 0.001 \\ \textbf{0.275} \pm 0.002 \\ \textbf{0.237} \pm 0.002 \\ \textbf{0.238} \pm 0.002 \\ \textbf{0.247} \pm 0.002 \\ \textbf{0.251} \pm 0.002 \\$                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} \text{RMSE} \\ 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.239 \pm 0.001 \\ 0.364 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.263 \pm 0.002 \\ 0.285 \pm 0.003 \\ 0.256 \pm 0.001 \\ 0.242 \pm 0.001 \\ 0.242 \pm 0.002 \\ 0.246 \pm 0.002 \\ 0.257 \pm 0.002 \\ 0.266 \pm 0.002 \\ 0.266 \pm 0.002 \\ 0.271 \pm 0.002 \\ 0.281 \pm 0.002 \\ 0.291 \pm 0.001 \\ 0.291 \pm 0.001$          | $\begin{array}{c} 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \\ 1.748 \pm 0.009 \\ 2.322 \pm 0.026 \\ 2.869 \pm 0.038 \\ 1.731 \pm 0.030 \\ \textbf{1.663 \pm 0.013} \\ \hline \textbf{MAPE(\%)} \\ 3.369 \pm 0.019 \\ 3.219 \pm 0.028 \\ 2.465 \pm 0.012 \\ 3.845 \pm 0.033 \\ 3.891 \pm 0.018 \\ 3.613 \pm 0.025 \\ 2.952 \pm 0.020 \\ 2.562 \pm 0.007 \\ 3.994 \pm 0.015 \\ 2.269 \pm 0.005 \\ \hline \end{array}$                                                                                      |
| $\begin{array}{l} (F=6) \\ \hline \text{MICN [33]} \\ \hline \text{ModernTCN [29]} \\ \hline \text{PatchTST [30]} \\ \hline \text{FEDformer [45]} \\ \hline \text{Autoformer [35]} \\ \hline \text{Reformer [19]} \\ \hline \text{S4 [12]} \\ \hline \text{MTGNN [38]} \\ \hline \text{MegaCRN [15]} \\ \hline \hline \text{iTransformer [28]} \\ \hline \text{CrossFormer [42]} \\ \hline \text{Card [34]} \\ \hline \text{ESG [39]} \\ \hline \hline \text{FourierGNN [40]} \\ \hline \hline \text{TPGNN [26]} \\ \hline \hline \\ \hline \text{Sumba} \\ \hline \hline \\ \hline \text{MICN [33]} \\ \hline \hline \text{ModernTCN [29]} \\ \hline \text{PatchTST [30]} \\ \hline \hline \text{FEDformer [45]} \\ \hline \text{Autoformer [35]} \\ \hline \hline \text{Reformer [19]} \\ \hline \text{S4 [12]} \\ \hline \hline \text{MTGNN [38]} \\ \hline \\ \hline \text{MegaCRN [15]} \\ \hline \hline \text{iTransformer [28]} \\ \hline \\ \hline \text{CrossFormer [42]} \\ \hline \end{array}$                           | $\begin{array}{c} 0.235 \pm 0.002 \\ 0.191 \pm 0.002 \\ 0.191 \pm 0.002 \\ 0.188 \pm 0.001 \\ 0.271 \pm 0.002 \\ 0.269 \pm 0.004 \\ 0.348 \pm 0.001 \\ 0.341 \pm 0.003 \\ 0.169 \pm 0.001 \\ 0.292 \pm 0.002 \\ 0.171 \pm 0.002 \\ 0.166 \pm 0.001 \\ 0.168 \pm 0.001 \\ 0.168 \pm 0.002 \\ 0.237 \pm 0.003 \\ 0.237 \pm 0.003 \\ 0.234 \pm 0.002 \\ \hline \textbf{0.163} \pm \textbf{0.001} \\ 0.263 \pm \textbf{0.001} \\ 0.272 \pm 0.002 \\ 0.210 \pm 0.002 \\ 0.349 \pm 0.002 \\ 0.349 \pm 0.002 \\ 0.349 \pm 0.002 \\ 0.349 \pm 0.003 \\ 0.212 \pm 0.001 \\ 0.287 \pm 0.004 \\ 0.212 \pm 0.001 \\ 0.249 \pm 0.002 \\ 0.249 \pm 0.00$ | $\begin{array}{c} \text{RMSE} \\ 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.398 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.001 \\ 0.489 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.275 \pm 0.003 \\ 0.369 \pm 0.002 \\ 0.367 \pm 0.003 \\ 0.369 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.275 \pm 0.003 \\ 0.369 \pm 0.002 \\ 0.367 \pm 0.003 \\ 0.328 \pm 0.003 \\ 0.328 \pm 0.007 \\ 0.473 \pm 0.003 \\ 0.690 \pm 0.007 \\ 0.747 \pm 0.009 \\ 0.323 \pm 0.002 \\ 0.411 \pm 0.003 \\ 0.329 \pm 0.001 \\ 0.387 \pm 0.001$ | $\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.541 \pm 0.006 \\ \hline 1.576 \pm 0.002 \\ 1.549 \pm 0.003 \\ 1.978 \pm 0.007 \\ 2.042 \pm 0.007 \\ \hline \textbf{1.530} \pm \textbf{0.005} \\ \hline \textbf{1.630} \pm \textbf{0.005} \\ \hline \textbf{1.530} \pm \textbf{0.005} \\ \hline \textbf{1.520} \pm \textbf{0.005} \\ \hline \textbf{1.530} \pm \textbf{0.005} \\ \hline \textbf{1.523} \pm \textbf{0.005} \\ \hline \textbf{1.525} \pm \textbf{0.005} \\ \hline \textbf{1.525} \pm \textbf{0.005} \\ \hline \textbf{1.525} \pm \textbf{0.005} \\ \hline \textbf{1.527} \pm \textbf{0.005} \\ \hline \textbf{1.527} \pm \textbf{0.005} \\ \hline \textbf{1.529} \pm \textbf{0.005} \\ \hline \textbf{1.437} \pm \textbf{0.009} \\ \textbf{1.029} \pm \textbf{0.003} \\ \textbf{1.097} \pm \textbf{0.006} \\ \hline \textbf{1.098} \pm \textbf{0.006} \\ \hline \textbf{1.099} \pm \textbf{0.006} \\ \hline$ | $\begin{array}{c} 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ 0.0746 \pm 0.000 \\ 0.230 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.117 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0932 \pm 0.005 \\ 0.0935 \pm 0.004 \\ 0.0778 \pm 0.000 \\ 0.0935 \pm 0.004 \\ 0.0782 \pm 0.000 \\ 0.0778 \pm 0.000 \\ 0.0935 \pm 0.004 \\ 0.0782 \pm 0.000 \\ 0.0704 \pm 0.000 \\ 0.0704 \pm 0.000 \\ 0.261 \pm 0.002 \\ 0.231 \pm 0.001 \\ 0.344 \pm 0.003 \\ 0.344 \pm 0.003 \\ 0.338 \pm 0.002 \\ 0.338 \pm 0.002 \\ 0.338 \pm 0.002 \\ 0.211 \pm 0.002 \\ 0.211 \pm 0.002 \\ 0.211 \pm 0.002 \\ 0.216 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \text{RMSE} \\ 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.239 \pm 0.001 \\ 0.364 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.263 \pm 0.002 \\ 0.285 \pm 0.003 \\ 0.256 \pm 0.001 \\ 0.242 \pm 0.001 \\ 0.242 \pm 0.002 \\ 0.246 \pm 0.002 \\ 0.246 \pm 0.002 \\ 0.246 \pm 0.002 \\ 0.234 \pm 0.002 \\ 0.234 \pm 0.002 \\ 0.234 \pm 0.002 \\ 0.234 \pm 0.002 \\ 0.341 \pm 0.002 \\ 0.551 \pm 0.001 \\ 0.554 \pm 0.002 \\ 0.718 \pm 0.007 \\ 0.730 \pm 0.003 \\ 0.775 \pm 0.006 \\ 0.738 \pm 0.003 \\ 0.551 \pm 0.004 \\ 0.754 \pm 0.002 \\ 0.524 \pm 0.001 \\ 0.634 \pm 0.003 \\ 0.634 \pm 0.003$          | $\begin{array}{c} 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \\ 1.748 \pm 0.009 \\ 2.322 \pm 0.026 \\ 2.869 \pm 0.038 \\ 1.731 \pm 0.030 \\ \textbf{1.663} \pm \textbf{0.013} \\ \hline \textbf{MAPE(\%)} \\ 3.369 \pm 0.019 \\ 3.219 \pm 0.028 \\ 2.465 \pm 0.012 \\ 3.845 \pm 0.013 \\ 3.613 \pm 0.025 \\ 2.952 \pm 0.020 \\ 2.562 \pm 0.007 \\ 3.994 \pm 0.015 \\ \textbf{2.140} \pm \textbf{0.014} \\ \hline \end{tabular}$                                                                            |
| $\begin{array}{l} (F=6) \\ \hline \text{MICN [33]} \\ \hline \text{ModernTCN [29]} \\ \hline \text{PatchTST [30]} \\ \hline \text{FEDformer [45]} \\ \hline \text{Autoformer [35]} \\ \hline \text{Reformer [19]} \\ \hline \text{S4 [12]} \\ \hline \text{MTGNN [38]} \\ \hline \text{MegaCRN [15]} \\ \hline \hline \text{ITransformer [28]} \\ \hline \text{CrossFormer [42]} \\ \hline \text{Card [34]} \\ \hline \text{ESG [39]} \\ \hline \hline \text{FourierGNN [40]} \\ \hline \hline \\ \hline \text{Sumba} \\ \hline \hline \\ \hline \\ \hline \text{Method} \\ \hline (F=6) \\ \hline \\ \hline \text{MICN [33]} \\ \hline \\ \hline \text{ModernTCN [29]} \\ \hline \\ \hline \text{PatchTST [30]} \\ \hline \\ \hline \text{FEDformer [45]} \\ \hline \\ \hline \text{Autoformer [35]} \\ \hline \\ \hline \text{Reformer [19]} \\ \hline \text{S4 [12]} \\ \hline \\ \hline \text{MTGNN [38]} \\ \hline \\ \hline \\ \hline \text{MegaCRN [15]} \\ \hline \\ \hline \text{iTransformer [28]} \\ \hline \end{array}$ | $\begin{array}{c} 0.235 \pm 0.002 \\ 0.191 \pm 0.002 \\ 0.191 \pm 0.002 \\ 0.188 \pm 0.001 \\ 0.271 \pm 0.002 \\ 0.269 \pm 0.004 \\ 0.348 \pm 0.001 \\ 0.341 \pm 0.003 \\ 0.169 \pm 0.001 \\ 0.292 \pm 0.002 \\ 0.171 \pm 0.002 \\ 0.169 \pm 0.001 \\ 0.166 \pm 0.001 \\ 0.168 \pm 0.002 \\ 0.237 \pm 0.003 \\ 0.234 \pm 0.002 \\ 0.210 \pm 0.001 \\ 0.272 \pm 0.002 \\ 0.210 \pm 0.001 \\ 0.349 \pm 0.001 \\ 0.272 \pm 0.002 \\ 0.349 \pm 0.006 \\ 0.322 \pm 0.002 \\ 0.488 \pm 0.012 \\ 0.562 \pm 0.003 \\ 0.212 \pm 0.001 \\ 0.287 \pm 0.004 \\ 0.212 \pm 0.001 \\ 0.287 \pm 0.004 \\ 0.212 \pm 0.001 \\ 0.212 \pm 0.001 \\ 0.212 \pm 0.001 \\ 0.212 \pm 0.001 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} \text{RMSE} \\ 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.398 \pm 0.002 \\ 0.483 \pm 0.002 \\ 0.483 \pm 0.002 \\ 0.483 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.275 \pm 0.003 \\ 0.369 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.368 \pm 0.002 \\ 0.369 \pm 0.003 \\ 0.369 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.367 \pm 0.002 \\ 0.369 \pm 0.001 \\ 0.380 \pm 0.003 \\ 0.328 \pm 0.002 \\ 0.508 \pm 0.007 \\ 0.473 \pm 0.003 \\ 0.690 \pm 0.007 \\ 0.747 \pm 0.009 \\ 0.323 \pm 0.002 \\ 0.411 \pm 0.003 \\ 0.329 \pm 0.001 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ \hline 1.576 \pm 0.002 \\ 1.549 \pm 0.003 \\ 1.978 \pm 0.007 \\ 2.042 \pm 0.007 \\ \hline 1.530 \pm 0.005 \\ \hline \\ MAPE(\%) \\ \hline \\ 1.692 \pm 0.006 \\ 1.819 \pm 0.015 \\ 0.956 \pm 0.005 \\ 1.523 \pm 0.021 \\ 1.350 \pm 0.010 \\ 2.604 \pm 0.031 \\ 2.755 \pm 0.021 \\ 0.994 \pm 0.006 \\ 1.437 \pm 0.009 \\ 1.029 \pm 0.003 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ 0.0746 \pm 0.000 \\ 0.230 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.117 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0842 \pm 0.000 \\ 0.0822 \pm 0.000 \\ 0.0932 \pm 0.005 \\ 0.0935 \pm 0.004 \\ 0.0782 \pm 0.000 \\ \textbf{0.0704} \pm 0.000 \\ \textbf{0.0704} \pm 0.000 \\ \textbf{0.0335} \pm 0.004 \\ 0.0782 \pm 0.000 \\ \textbf{0.0344} \pm 0.000 \\ \textbf{0.035} \pm 0.001 \\ \textbf{0.045} \pm 0.001 \\ \textbf{0.05} \pm 0.002 \\ \textbf{0.231} \pm 0.001 \\ \textbf{0.344} \pm 0.003 \\ \textbf{0.360} \pm 0.002 \\ \textbf{0.338} \pm 0.002 \\ \textbf{0.338} \pm 0.002 \\ \textbf{0.338} \pm 0.002 \\ \textbf{0.227} \pm 0.002 \\ \textbf{0.231} \pm 0.001 \\ \textbf{0.275} \pm 0.002 \\ \textbf{0.237} \pm 0.002 \\ \textbf{0.238} \pm 0.002 \\ \textbf{0.247} \pm 0.002 \\ \textbf{0.251} \pm 0.002 \\$                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} \text{RMSE} \\ 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.239 \pm 0.001 \\ 0.364 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.263 \pm 0.002 \\ 0.285 \pm 0.003 \\ 0.256 \pm 0.001 \\ 0.242 \pm 0.001 \\ 0.242 \pm 0.002 \\ 0.246 \pm 0.002 \\ 0.257 \pm 0.002 \\ 0.266 \pm 0.002 \\ 0.266 \pm 0.002 \\ 0.271 \pm 0.002 \\ 0.281 \pm 0.002 \\ 0.291 \pm 0.001 \\ 0.291 \pm 0.001$          | $\begin{array}{c} 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \\ 1.748 \pm 0.009 \\ 2.322 \pm 0.026 \\ 2.869 \pm 0.038 \\ 1.731 \pm 0.030 \\ \hline \textbf{1.663} \pm \textbf{0.013} \\ \hline \textbf{MAPE(\%)} \\ 3.369 \pm 0.019 \\ 3.219 \pm 0.028 \\ 2.465 \pm 0.012 \\ 3.845 \pm 0.033 \\ 3.891 \pm 0.018 \\ 3.613 \pm 0.025 \\ 2.952 \pm 0.020 \\ 2.562 \pm 0.007 \\ 3.994 \pm 0.015 \\ 2.269 \pm 0.005 \\ \hline \end{array}$                                                                      |
| $ \begin{aligned} &(F=6) \\ &\text{MICN [33]} \\ &\text{ModernTCN [29]} \\ &\text{PatchTST [30]} \\ &\text{FEDformer [45]} \\ &\text{Autoformer [35]} \\ &\text{Reformer [19]} \\ &\text{S4 [12]} \\ &\text{MTGNN [38]} \\ &\text{MegaCRN [15]} \\ &\text{iTransformer [28]} \\ &\text{CrossFormer [42]} \\ &\text{Card [34]} \\ &\text{ESG [39]} \\ &\text{FourierGNN [40]} \\ &\text{TPGNN [26]} \\ \\ &\text{Sumba} \\ \hline \\ &\text{Method} \\ &(F=6) \\ &\text{MICN [33]} \\ &\text{ModernTCN [29]} \\ &\text{PatchTST [30]} \\ &\text{FEDformer [45]} \\ &\text{Autoformer [35]} \\ &\text{Reformer [19]} \\ &\text{S4 [12]} \\ &\text{MTGNN [38]} \\ &\text{MegaCRN [15]} \\ &\text{iTransformer [28]} \\ &\text{CrossFormer [42]} \\ &\text{Card [34]} \\ &\text{ESG [39]} \\ &\text{FourierGNN [40]} \end{aligned} $                                                                                                                                                                                                    | $\begin{array}{c} 0.235 \pm 0.002 \\ 0.191 \pm 0.002 \\ 0.191 \pm 0.002 \\ 0.188 \pm 0.001 \\ 0.271 \pm 0.002 \\ 0.269 \pm 0.004 \\ 0.348 \pm 0.001 \\ 0.341 \pm 0.003 \\ 0.169 \pm 0.001 \\ 0.292 \pm 0.002 \\ 0.171 \pm 0.002 \\ 0.169 \pm 0.001 \\ 0.168 \pm 0.001 \\ \hline 0.168 \pm 0.002 \\ 0.237 \pm 0.003 \\ 0.234 \pm 0.002 \\ \hline \textbf{0.163} \pm \textbf{0.001} \\ \hline 0.272 \pm 0.002 \\ 0.210 \pm 0.001 \\ 0.272 \pm 0.002 \\ 0.2488 \pm 0.002 \\ 0.2488 \pm 0.002 \\ 0.2488 \pm 0.002 \\ 0.248 \pm 0.001 \\ 0.272 \pm 0.002 \\ 0.248 \pm 0.001 \\ 0.249 \pm 0.002 \\ 0.249 \pm 0.001 \\ 0.249 \pm 0.002 \\ 0.209 \pm 0.001 \\ 0.254 \pm 0.006 \\ 0.265 \pm 0.002 \\ 0.265 \pm 0.002 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} \text{RMSE} \\ 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.384 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.001 \\ 0.489 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.275 \pm 0.003 \\ 0.369 \pm 0.002 \\ 0.367 \pm 0.002 \\ \hline \textbf{0.369} \pm 0.002 \\ \hline \textbf{0.775} \pm 0.003 \\ 0.369 \pm 0.002 \\ \textbf{0.385} \pm 0.002 \\ \textbf{0.385} \pm 0.001 \\ 0.380 \pm 0.003 \\ 0.389 \pm 0.003 \\ 0.508 \pm 0.007 \\ 0.473 \pm 0.003 \\ 0.690 \pm 0.007 \\ 0.747 \pm 0.009 \\ 0.323 \pm 0.002 \\ \hline 0.411 \pm 0.003 \\ 0.329 \pm 0.001 \\ 0.387 \pm 0.001 \\ 0.371 \pm 0.013 \\ 0.371 \pm 0.013 \\ 0.393 \pm 0.006 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.541 \pm 0.006 \\ 1.576 \pm 0.002 \\ 1.549 \pm 0.007 \\ 2.042 \pm 0.007 \\ 2.042 \pm 0.007 \\ 1.530 \pm 0.005 \\ 1.523 \pm 0.005 \\ 1.523 \pm 0.015 \\ 0.956 \pm 0.005 \\ 1.523 \pm 0.010 \\ 2.604 \pm 0.031 \\ 2.755 \pm 0.021 \\ 0.994 \pm 0.006 \\ 1.437 \pm 0.009 \\ 1.029 \pm 0.006 \\ 1.097 \pm 0.006 \\ 0.951 \pm 0.004 \\ 1.027 \pm 0.012 \\ 1.933 \pm 0.008 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ 0.0746 \pm 0.000 \\ 0.230 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.117 \pm 0.001 \\ 0.0817 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0882 \pm 0.000 \\ 0.0778 \pm 0.000 \\ 0.0778 \pm 0.000 \\ 0.0932 \pm 0.005 \\ 0.0935 \pm 0.004 \\ 0.0782 \pm 0.000 \\ \hline \textbf{MAE} \\ & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \text{RMSE} \\ 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.364 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.263 \pm 0.002 \\ 0.285 \pm 0.003 \\ 0.256 \pm 0.001 \\ 0.242 \pm 0.001 \\ 0.242 \pm 0.001 \\ 0.242 \pm 0.002 \\ 0.257 \pm 0.001 \\ 0.597 \pm 0.001 \\ 0.626 \pm 0.002 \\ 0.626 \pm 0.002 \\ 0.665 \pm 0.002 \\ 0.665 \pm 0.002 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 2.886 \pm 0.013 \\ \underline{1.712 \pm 0.020} \\ 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \\ 2.322 \pm 0.026 \\ 2.869 \pm 0.038 \\ 1.731 \pm 0.030 \\ \hline \textbf{1.663 \pm 0.013} \\ \\ \hline \textbf{MAPE(\%)} \\ 3.369 \pm 0.019 \\ 3.219 \pm 0.028 \\ 2.465 \pm 0.012 \\ 3.845 \pm 0.033 \\ 3.891 \pm 0.013 \\ \hline \textbf{3.613 \pm 0.025} \\ 2.952 \pm 0.020 \\ 2.562 \pm 0.007 \\ 3.994 \pm 0.015 \\ 2.269 \pm 0.005 \\ \textbf{2.140 \pm 0.014} \\ 2.341 \pm 0.006 \\ 3.608 \pm 0.028 \\ \hline \end{array}$ |
| $\begin{array}{l} (F=6) \\ \hline \text{MICN [33]} \\ \hline \text{ModernTCN [29]} \\ \hline \text{PatchTST [30]} \\ \hline \text{FeDformer [45]} \\ \hline \text{Autoformer [35]} \\ \hline \text{Reformer [19]} \\ \hline \text{S4 [12]} \\ \hline \text{MTGNN [38]} \\ \hline \text{MegaCRN [15]} \\ \hline \text{iTransformer [28]} \\ \hline \text{CrossFormer [42]} \\ \hline \text{Card [34]} \\ \hline \text{ESG [39]} \\ \hline \text{FourierGNN [40]} \\ \hline \hline \text{TPGNN [26]} \\ \hline \\ \hline \\ \hline \text{Sumba} \\ \hline \hline \\ \hline \text{MICN [33]} \\ \hline \\ \hline \text{ModernTCN [29]} \\ \hline \text{PatchTST [30]} \\ \hline \text{FeDformer [45]} \\ \hline \text{Autoformer [35]} \\ \hline \text{Reformer [19]} \\ \hline \text{S4 [12]} \\ \hline \\ \hline \text{MTGNN [38]} \\ \hline \\ \hline \text{MegaCRN [15]} \\ \hline \text{iTransformer [28]} \\ \hline \text{CrossFormer [42]} \\ \hline \text{Card [34]} \\ \hline \text{ESG [39]} \\ \hline \end{array}$          | $\begin{array}{c} 0.235 \pm 0.002 \\ 0.191 \pm 0.002 \\ 0.191 \pm 0.002 \\ 0.188 \pm 0.001 \\ 0.271 \pm 0.002 \\ 0.269 \pm 0.004 \\ 0.348 \pm 0.001 \\ 0.341 \pm 0.003 \\ 0.169 \pm 0.001 \\ 0.292 \pm 0.002 \\ 0.171 \pm 0.002 \\ 0.169 \pm 0.001 \\ 0.168 \pm 0.001 \\ \hline 0.168 \pm 0.002 \\ 0.237 \pm 0.003 \\ 0.234 \pm 0.002 \\ \hline \textbf{0.163} \pm \textbf{0.001} \\ 0.272 \pm 0.002 \\ 0.210 \pm 0.001 \\ 0.272 \pm 0.002 \\ 0.210 \pm 0.002 \\ 0.322 \pm 0.002 \\ 0.348 \pm 0.001 \\ 0.322 \pm 0.002 \\ 0.3488 \pm 0.012 \\ 0.562 \pm 0.003 \\ 0.212 \pm 0.001 \\ 0.287 \pm 0.004 \\ 0.212 \pm 0.001 \\ 0.249 \pm 0.002 \\ 0.209 \pm 0.001 \\ \hline 0.254 \pm 0.006 \\ 0.209 \pm 0.001 \\ 0.254 \pm 0.006 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \text{RMSE} \\ 0.317 \pm 0.001 \\ 0.286 \pm 0.001 \\ 0.290 \pm 0.001 \\ 0.384 \pm 0.001 \\ 0.378 \pm 0.002 \\ 0.483 \pm 0.002 \\ 0.483 \pm 0.002 \\ 0.268 \pm 0.003 \\ 0.419 \pm 0.002 \\ 0.269 \pm 0.001 \\ 0.270 \pm 0.001 \\ 0.275 \pm 0.003 \\ 0.369 \pm 0.002 \\ 0.367 \pm 0.001 \\ 0.371 \pm 0.003 \\ 0.328 \pm 0.002 \\ 0.473 \pm 0.003 \\ 0.473 \pm 0.003 \\ 0.690 \pm 0.007 \\ 0.473 \pm 0.003 \\ 0.690 \pm 0.007 \\ 0.473 \pm 0.003 \\ 0.323 \pm 0.002 \\ 0.411 \pm 0.003 \\ 0.329 \pm 0.001 \\ 0.387 \pm 0.001 \\ 0.319 \pm 0.001 \\ 0.371 \pm 0.001 \\ 0.371 \pm 0.001 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 1.890 \pm 0.009 \\ 1.719 \pm 0.005 \\ 1.547 \pm 0.009 \\ 2.541 \pm 0.008 \\ 2.643 \pm 0.007 \\ 3.189 \pm 0.006 \\ 3.265 \pm 0.009 \\ 1.636 \pm 0.003 \\ 2.743 \pm 0.011 \\ 1.578 \pm 0.005 \\ 1.541 \pm 0.006 \\ 1.576 \pm 0.002 \\ 1.549 \pm 0.007 \\ 2.042 \pm 0.007 \\ 2.042 \pm 0.007 \\ 1.530 \pm 0.005 \\ 1.819 \pm 0.005 \\ 1.819 \pm 0.015 \\ 0.956 \pm 0.005 \\ 1.350 \pm 0.005 \\ 1.235 \pm 0.021 \\ 1.350 \pm 0.010 \\ 2.604 \pm 0.031 \\ 2.755 \pm 0.021 \\ 0.994 \pm 0.006 \\ 1.437 \pm 0.009 \\ 1.029 \pm 0.003 \\ 1.097 \pm 0.004 \\ 0.951 \pm 0.004 \\ 1.027 \pm 0.012 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 0.111 \pm 0.001 \\ 0.0934 \pm 0.000 \\ 0.0746 \pm 0.000 \\ 0.230 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.117 \pm 0.001 \\ 0.0926 \pm 0.001 \\ 0.0817 \pm 0.000 \\ 0.0819 \pm 0.000 \\ 0.0804 \pm 0.000 \\ 0.0802 \pm 0.000 \\ 0.0778 \pm 0.000 \\ 0.0932 \pm 0.005 \\ 0.0935 \pm 0.004 \\ 0.0782 \pm 0.000 \\ \textbf{0.0782} \pm 0.000 \\ \textbf{0.0782} \pm 0.000 \\ \textbf{0.0784} \pm 0.000 \\ 0.0932 \pm 0.005 \\ 0.0935 \pm 0.004 \\ 0.0782 \pm 0.000 \\ \textbf{0.0704} \pm 0.000 \\ \textbf{0.0704} \pm 0.000 \\ \textbf{0.261} \pm 0.002 \\ 0.231 \pm 0.001 \\ 0.338 \pm 0.002 \\ 0.338 \pm 0.002 \\ 0.211 \pm 0.002 \\ 0.216 \pm 0.002 \\ 0.215 \pm 0.001 \\ 0.221 \pm 0.002 \\ 0.221 \pm 0.002 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} \text{RMSE} \\ 0.250 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.241 \pm 0.001 \\ 0.239 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.399 \pm 0.003 \\ 0.263 \pm 0.002 \\ 0.285 \pm 0.003 \\ 0.256 \pm 0.001 \\ 0.242 \pm 0.001 \\ 0.243 \pm 0.002 \\ 0.237 \pm 0.002 \\ 0.242 \pm 0.002 \\ 0.242 \pm 0.002 \\ 0.242 \pm 0.002 \\ 0.246 \pm 0.002 \\ 0.246 \pm 0.002 \\ 0.257 \pm 0.002 \\ 0.246 \pm 0.002 \\ 0.234 \pm 0.002 \\ 0.234 \pm 0.002 \\ 0.234 \pm 0.002 \\ 0.551 \pm 0.001 \\ 0.597 \pm 0.001$          | $\begin{array}{c} 2.886 \pm 0.013 \\ 1.712 \pm 0.020 \\ \hline 3.138 \pm 0.096 \\ 4.118 \pm 0.027 \\ 12.782 \pm 1.039 \\ 3.611 \pm 0.025 \\ 3.932 \pm 0.037 \\ 1.987 \pm 0.017 \\ 1.972 \pm 0.019 \\ 1.774 \pm 0.023 \\ 2.931 \pm 0.059 \\ 1.748 \pm 0.009 \\ 2.322 \pm 0.026 \\ 2.869 \pm 0.038 \\ 1.731 \pm 0.030 \\ \hline \textbf{1.663} \pm \textbf{0.013} \\ \hline \\ \textbf{MAPE(\%)} \\ 3.369 \pm 0.019 \\ 3.219 \pm 0.028 \\ 2.465 \pm 0.012 \\ 3.891 \pm 0.012 \\ 3.891 \pm 0.015 \\ 2.952 \pm 0.020 \\ 2.562 \pm 0.007 \\ 3.994 \pm 0.015 \\ 2.269 \pm 0.0014 \\ 2.341 \pm 0.006 \\ 2.248 \pm 0.003 \\ \hline \end{array}$                                        |

Table 2: The forecasting results with prediction horizons of 3 and 6 on PEMS and Solar datasets.

| Method                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PEMS                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                 | Solar-Energy                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (F=3)                                                                                                                                                                                                                                                                                                                                                                                                             | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RMSE                                                                                                                                                                                                                                                                                                                    | MAPE(%)                                                                                                                                                                                                                                                                                               | MAE                                                                                                                                                                                                                                                                                                                                                                                             | RMSE                                                                                                                                                                                                                                                                                                                                                                                                                          | MAPE(%)                                                                                                                                                                                                                                                                                                              |
| MICN [33]                                                                                                                                                                                                                                                                                                                                                                                                         | $0.155 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.228 \pm 0.002$                                                                                                                                                                                                                                                                                                       | $1.180 \pm 0.004$                                                                                                                                                                                                                                                                                     | $0.077 \pm 0.000$                                                                                                                                                                                                                                                                                                                                                                               | $0.136 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                             | $0.782 \pm 0.003$                                                                                                                                                                                                                                                                                                    |
| ModernTCN [29]                                                                                                                                                                                                                                                                                                                                                                                                    | $0.143 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.211 \pm 0.000$                                                                                                                                                                                                                                                                                                       | $1.102 \pm 0.003$                                                                                                                                                                                                                                                                                     | $0.065 \pm 0.000$                                                                                                                                                                                                                                                                                                                                                                               | $0.125 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                             | $0.608 \pm 0.002$                                                                                                                                                                                                                                                                                                    |
| PatchTST [30]                                                                                                                                                                                                                                                                                                                                                                                                     | $0.179 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.242 \pm 0.001$                                                                                                                                                                                                                                                                                                       | $1.137 \pm 0.003$                                                                                                                                                                                                                                                                                     | $0.082 \pm 0.000$                                                                                                                                                                                                                                                                                                                                                                               | $0.142 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                             | $0.647 \pm 0.002$                                                                                                                                                                                                                                                                                                    |
| FEDformer [45]                                                                                                                                                                                                                                                                                                                                                                                                    | $0.246 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.349 \pm 0.003$                                                                                                                                                                                                                                                                                                       | $1.765 \pm 0.005$                                                                                                                                                                                                                                                                                     | $0.169 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                               | $0.247 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                             | $1.224 \pm 0.006$                                                                                                                                                                                                                                                                                                    |
| Autoformer [35]                                                                                                                                                                                                                                                                                                                                                                                                   | $0.462 \pm 0.003$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.670 \pm 0.002$                                                                                                                                                                                                                                                                                                       | $2.446 \pm 0.008$                                                                                                                                                                                                                                                                                     | $0.213 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                               | $0.290 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                                                                             | $1.340 \pm 0.004$                                                                                                                                                                                                                                                                                                    |
| Reformer [19]                                                                                                                                                                                                                                                                                                                                                                                                     | $0.190 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.300 \pm 0.002$                                                                                                                                                                                                                                                                                                       | $1.506 \pm 0.003$                                                                                                                                                                                                                                                                                     | $0.068 \pm 0.000$                                                                                                                                                                                                                                                                                                                                                                               | $0.147 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                             | $0.818 \pm 0.004$                                                                                                                                                                                                                                                                                                    |
| S4 [12]                                                                                                                                                                                                                                                                                                                                                                                                           | $0.232 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.331 \pm 0.003$                                                                                                                                                                                                                                                                                                       | $2.029 \pm 0.007$                                                                                                                                                                                                                                                                                     | $0.092 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                               | $0.139 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                             | $0.974 \pm 0.003$                                                                                                                                                                                                                                                                                                    |
| MTGNN [38]                                                                                                                                                                                                                                                                                                                                                                                                        | $0.145 \pm 0.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.215 \pm 0.000$                                                                                                                                                                                                                                                                                                       | $1.127 \pm 0.004$                                                                                                                                                                                                                                                                                     | $0.060 \pm 0.000$                                                                                                                                                                                                                                                                                                                                                                               | $0.135 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                             | $0.629 \pm 0.002$                                                                                                                                                                                                                                                                                                    |
| MegaCRN [15]                                                                                                                                                                                                                                                                                                                                                                                                      | $0.154 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.232 \pm 0.003$                                                                                                                                                                                                                                                                                                       | $1.209 \pm 0.004$                                                                                                                                                                                                                                                                                     | $0.057 \pm 0.000$                                                                                                                                                                                                                                                                                                                                                                               | $0.129 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                             | $0.658 \pm 0.002$                                                                                                                                                                                                                                                                                                    |
| iTransformer [28]                                                                                                                                                                                                                                                                                                                                                                                                 | $0.146 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.215 \pm 0.001$                                                                                                                                                                                                                                                                                                       | $1.147 \pm 0.007$                                                                                                                                                                                                                                                                                     | $0.060 \pm 0.000$                                                                                                                                                                                                                                                                                                                                                                               | $0.126 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                             | $0.609 \pm 0.002$                                                                                                                                                                                                                                                                                                    |
| CrossFormer [42]                                                                                                                                                                                                                                                                                                                                                                                                  | $0.144 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.219 \pm 0.001$                                                                                                                                                                                                                                                                                                       | $1.139 \pm 0.002$                                                                                                                                                                                                                                                                                     | $0.047 \pm 0.000$                                                                                                                                                                                                                                                                                                                                                                               | $0.116 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                             | $0.553 \pm 0.003$                                                                                                                                                                                                                                                                                                    |
| Card [34]                                                                                                                                                                                                                                                                                                                                                                                                         | $0.155 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.226 \pm 0.001$                                                                                                                                                                                                                                                                                                       | $1.139 \pm 0.002$                                                                                                                                                                                                                                                                                     | $0.057 \pm 0.000$                                                                                                                                                                                                                                                                                                                                                                               | $0.134 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                             | $0.684 \pm 0.002$                                                                                                                                                                                                                                                                                                    |
| ESG [39]                                                                                                                                                                                                                                                                                                                                                                                                          | $0.142 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.212 \pm 0.001$                                                                                                                                                                                                                                                                                                       | $1.089 \pm 0.003$                                                                                                                                                                                                                                                                                     | $0.050 \pm 0.000$                                                                                                                                                                                                                                                                                                                                                                               | $0.122 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                             | $0.606 \pm 0.002$                                                                                                                                                                                                                                                                                                    |
| FourierGNN [40]                                                                                                                                                                                                                                                                                                                                                                                                   | $0.154 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.236 \pm 0.002$                                                                                                                                                                                                                                                                                                       | $1.292 \pm 0.003$                                                                                                                                                                                                                                                                                     | $0.063 \pm 0.000$                                                                                                                                                                                                                                                                                                                                                                               | $0.129 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                                                                             | $0.647 \pm 0.003$                                                                                                                                                                                                                                                                                                    |
| TPGNN [26]                                                                                                                                                                                                                                                                                                                                                                                                        | $0.149 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.230 \pm 0.001$                                                                                                                                                                                                                                                                                                       | $1.157 \pm 0.005$                                                                                                                                                                                                                                                                                     | $0.059 \pm 0.000$                                                                                                                                                                                                                                                                                                                                                                               | $0.138 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                                                                             | $0.612 \pm 0.002$                                                                                                                                                                                                                                                                                                    |
| Sumba                                                                                                                                                                                                                                                                                                                                                                                                             | $\mid \textbf{0.137} \pm \textbf{0.001}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\textbf{0.204} \pm \textbf{0.000}$                                                                                                                                                                                                                                                                                     | $\textbf{1.060} \pm \textbf{0.002}$                                                                                                                                                                                                                                                                   | $ $ 0.046 $\pm$ 0.000                                                                                                                                                                                                                                                                                                                                                                           | $\textbf{0.114} \pm \textbf{0.002}$                                                                                                                                                                                                                                                                                                                                                                                           | $\textbf{0.541} \pm \textbf{0.002}$                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                      |
| Method                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PEMS                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                 | Solar-Energy                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                      |
| Method $(F=6)$                                                                                                                                                                                                                                                                                                                                                                                                    | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PEMS<br>RMSE                                                                                                                                                                                                                                                                                                            | MAPE(%)                                                                                                                                                                                                                                                                                               | MAE                                                                                                                                                                                                                                                                                                                                                                                             | Solar-Energy<br>RMSE                                                                                                                                                                                                                                                                                                                                                                                                          | MAPE(%)                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                   | MAE<br>0.176 ± 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                         | MAPE(%)<br>1.355 ± 0.003                                                                                                                                                                                                                                                                              | MAE<br>  0.094 ± 0.000                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                               | MAPE(%)<br>0.889 ± 0.003                                                                                                                                                                                                                                                                                             |
| (F=6)                                                                                                                                                                                                                                                                                                                                                                                                             | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RMSE                                                                                                                                                                                                                                                                                                                    | . ,                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                 | RMSE                                                                                                                                                                                                                                                                                                                                                                                                                          | . ,                                                                                                                                                                                                                                                                                                                  |
| $\frac{(F=6)}{\text{MICN [33]}}$                                                                                                                                                                                                                                                                                                                                                                                  | $0.176 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} \text{RMSE} \\ 0.239 \pm 0.001 \end{array}$                                                                                                                                                                                                                                                           | $1.355 \pm 0.003$                                                                                                                                                                                                                                                                                     | $0.094 \pm 0.000$                                                                                                                                                                                                                                                                                                                                                                               | $\frac{\text{RMSE}}{0.175 \pm 0.001}$                                                                                                                                                                                                                                                                                                                                                                                         | $0.889 \pm 0.003$                                                                                                                                                                                                                                                                                                    |
| (F = 6)<br>MICN [33]<br>ModernTCN [29]                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{vmatrix} 0.176 \pm 0.001 \\ 0.154 \pm 0.001 \end{vmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \text{RMSE} \\ 0.239 \pm 0.001 \\ 0.228 \pm 0.003 \end{array}$                                                                                                                                                                                                                                        | $1.355 \pm 0.003$<br>$1.218 \pm 0.006$                                                                                                                                                                                                                                                                | $ \begin{vmatrix} 0.094 \pm 0.000 \\ 0.086 \pm 0.000 \end{vmatrix} $                                                                                                                                                                                                                                                                                                                            | RMSE $0.175 \pm 0.001$ $0.161 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                                                      | $0.889 \pm 0.003$<br>$0.796 \pm 0.003$<br>$0.841 \pm 0.002$<br>$1.305 \pm 0.002$                                                                                                                                                                                                                                     |
| $\begin{array}{c} (F=6) \\ \hline \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \end{array}$                                                                                                                                                                                                                                            | $ \begin{array}{c} 0.176 \pm 0.001 \\ 0.154 \pm 0.001 \\ 0.189 \pm 0.001 \\ 0.244 \pm 0.001 \\ 0.515 \pm 0.002 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \text{RMSE} \\ 0.239 \pm 0.001 \\ 0.228 \pm 0.003 \\ 0.262 \pm 0.002 \\ 0.348 \pm 0.002 \\ 0.729 \pm 0.004 \end{array}$                                                                                                                                                                               | $\begin{array}{c} 1.355 \pm 0.003 \\ 1.218 \pm 0.006 \\ 1.226 \pm 0.003 \\ 1.761 \pm 0.002 \\ 2.881 \pm 0.003 \end{array}$                                                                                                                                                                            | $ \begin{vmatrix} 0.094 \pm 0.000 \\ 0.086 \pm 0.000 \\ 0.096 \pm 0.000 \\ 0.169 \pm 0.001 \\ 0.246 \pm 0.002 \end{vmatrix} $                                                                                                                                                                                                                                                                   | RMSE $0.175 \pm 0.001$ $0.161 \pm 0.002$ $0.183 \pm 0.001$ $0.253 \pm 0.001$ $0.333 \pm 0.002$                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 0.889 \pm 0.003 \\ 0.796 \pm 0.003 \\ 0.841 \pm 0.002 \\ 1.305 \pm 0.002 \\ 1.528 \pm 0.002 \end{array}$                                                                                                                                                                                           |
| $\begin{array}{c} (F=6) \\ \hline \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \end{array}$                                                                                                                                                                                                                    | $ \begin{array}{c} 0.176 \pm 0.001 \\ 0.154 \pm 0.001 \\ 0.189 \pm 0.001 \\ 0.244 \pm 0.001 \\ 0.515 \pm 0.002 \\ 0.202 \pm 0.001 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} \text{RMSE} \\ 0.239 \pm 0.001 \\ 0.228 \pm 0.003 \\ 0.262 \pm 0.002 \\ 0.348 \pm 0.002 \\ 0.729 \pm 0.004 \\ 0.316 \pm 0.002 \end{array}$                                                                                                                                                            | $\begin{array}{c} 1.355 \pm 0.003 \\ 1.218 \pm 0.006 \\ 1.226 \pm 0.003 \\ 1.761 \pm 0.002 \\ 2.881 \pm 0.003 \\ 1.655 \pm 0.003 \end{array}$                                                                                                                                                         | $ \begin{array}{c} 0.094 \pm 0.000 \\ 0.086 \pm 0.000 \\ 0.096 \pm 0.000 \\ 0.169 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.083 \pm 0.000 \\ \end{array} $                                                                                                                                                                                                                                              | $\begin{array}{c} \text{RMSE} \\ \hline 0.175 \pm 0.001 \\ 0.161 \pm 0.002 \\ 0.183 \pm 0.001 \\ 0.253 \pm 0.001 \\ 0.333 \pm 0.002 \\ 0.175 \pm 0.001 \\ \end{array}$                                                                                                                                                                                                                                                        | $\begin{array}{c} 0.889 \pm 0.003 \\ 0.796 \pm 0.003 \\ 0.841 \pm 0.002 \\ 1.305 \pm 0.002 \\ 1.528 \pm 0.002 \\ 0.919 \pm 0.004 \end{array}$                                                                                                                                                                        |
| $\begin{array}{c} (F=6) \\ \hline \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \text{S4 [12]} \\ \end{array}$                                                                                                                                                                                                  | $ \begin{array}{c} 0.176 \pm 0.001 \\ 0.154 \pm 0.001 \\ 0.189 \pm 0.001 \\ 0.244 \pm 0.001 \\ 0.515 \pm 0.002 \\ 0.202 \pm 0.001 \\ 0.244 \pm 0.003 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \text{RMSE} \\ 0.239 \pm 0.001 \\ 0.228 \pm 0.003 \\ 0.262 \pm 0.002 \\ 0.348 \pm 0.002 \\ 0.729 \pm 0.004 \\ 0.316 \pm 0.002 \\ 0.344 \pm 0.005 \end{array}$                                                                                                                                         | $\begin{array}{c} 1.355 \pm 0.003 \\ 1.218 \pm 0.006 \\ 1.226 \pm 0.003 \\ 1.761 \pm 0.002 \\ 2.881 \pm 0.003 \\ 1.655 \pm 0.003 \\ 2.177 \pm 0.006 \end{array}$                                                                                                                                      | $ \begin{vmatrix} 0.094 \pm 0.000 \\ 0.086 \pm 0.000 \\ 0.096 \pm 0.000 \\ 0.169 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.083 \pm 0.000 \\ 0.101 \pm 0.001 \\ \end{vmatrix} $                                                                                                                                                                                                                          | $\begin{array}{c} \text{RMSE} \\ \hline 0.175 \pm 0.001 \\ 0.161 \pm 0.002 \\ 0.183 \pm 0.001 \\ 0.253 \pm 0.001 \\ 0.333 \pm 0.002 \\ 0.175 \pm 0.001 \\ 0.158 \pm 0.002 \\ \end{array}$                                                                                                                                                                                                                                     | $\begin{array}{c} 0.889 \pm 0.003 \\ 0.796 \pm 0.003 \\ 0.841 \pm 0.002 \\ 1.305 \pm 0.002 \\ 1.528 \pm 0.002 \\ 0.919 \pm 0.004 \\ 1.156 \pm 0.004 \end{array}$                                                                                                                                                     |
| (F = 6)  MICN [33]  ModernTCN [29]  PatchTST [30]  FEDformer [45]  Autoformer [35]  Reformer [19]  S4 [12]  MTGNN [38]                                                                                                                                                                                                                                                                                            | $ \begin{array}{c} 0.176 \pm 0.001 \\ 0.154 \pm 0.001 \\ 0.189 \pm 0.001 \\ 0.244 \pm 0.001 \\ 0.515 \pm 0.002 \\ 0.202 \pm 0.001 \\ 0.244 \pm 0.003 \\ 0.158 \pm 0.001 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \text{RMSE} \\ 0.239 \pm 0.001 \\ 0.228 \pm 0.003 \\ 0.262 \pm 0.002 \\ 0.348 \pm 0.002 \\ 0.729 \pm 0.004 \\ 0.316 \pm 0.002 \\ 0.344 \pm 0.005 \\ 0.234 \pm 0.001 \end{array}$                                                                                                                      | $\begin{array}{c} 1.355 \pm 0.003 \\ 1.218 \pm 0.006 \\ 1.226 \pm 0.003 \\ 1.761 \pm 0.002 \\ 2.881 \pm 0.003 \\ 1.655 \pm 0.003 \\ 2.177 \pm 0.006 \\ 1.229 \pm 0.003 \end{array}$                                                                                                                   | $ \begin{array}{c} 0.094 \pm 0.000 \\ 0.086 \pm 0.000 \\ 0.096 \pm 0.000 \\ 0.169 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.083 \pm 0.000 \\ 0.101 \pm 0.001 \\ 0.083 \pm 0.000 \end{array} $                                                                                                                                                                                                           | $\begin{array}{c} \text{RMSE} \\ \hline 0.175 \pm 0.001 \\ 0.161 \pm 0.002 \\ 0.183 \pm 0.001 \\ 0.253 \pm 0.001 \\ 0.333 \pm 0.002 \\ 0.175 \pm 0.001 \\ 0.158 \pm 0.002 \\ 0.169 \pm 0.001 \\ \end{array}$                                                                                                                                                                                                                  | $\begin{array}{c} 0.889 \pm 0.003 \\ 0.796 \pm 0.003 \\ 0.841 \pm 0.002 \\ 1.305 \pm 0.002 \\ 1.528 \pm 0.002 \\ 0.919 \pm 0.004 \\ 1.156 \pm 0.004 \\ 0.810 \pm 0.002 \end{array}$                                                                                                                                  |
| $\begin{array}{c} (F=6) \\ \hline \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \text{S4 [12]} \\ \text{MTGNN [38]} \\ \text{MegaCRN [15]} \end{array}$                                                                                                                                                         | $ \begin{vmatrix} 0.176 \pm 0.001 \\ 0.154 \pm 0.001 \\ 0.189 \pm 0.001 \\ 0.244 \pm 0.001 \\ 0.515 \pm 0.002 \\ 0.202 \pm 0.001 \\ 0.244 \pm 0.003 \\ 0.158 \pm 0.001 \\ 0.167 \pm 0.002 \\ 0.001 \end{vmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} \text{RMSE} \\ 0.239 \pm 0.001 \\ 0.228 \pm 0.003 \\ 0.262 \pm 0.002 \\ 0.348 \pm 0.002 \\ 0.729 \pm 0.004 \\ 0.316 \pm 0.002 \\ 0.344 \pm 0.005 \\ 0.234 \pm 0.001 \\ 0.254 \pm 0.003 \end{array}$                                                                                                   | $\begin{array}{c} 1.355 \pm 0.003 \\ 1.218 \pm 0.006 \\ 1.226 \pm 0.003 \\ 1.761 \pm 0.002 \\ 2.881 \pm 0.003 \\ 1.655 \pm 0.003 \\ 2.177 \pm 0.006 \\ 1.229 \pm 0.003 \\ 1.356 \pm 0.005 \end{array}$                                                                                                | $ \begin{array}{c} 0.094 \pm 0.000 \\ 0.086 \pm 0.000 \\ 0.096 \pm 0.000 \\ 0.169 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.083 \pm 0.000 \\ 0.101 \pm 0.001 \\ 0.083 \pm 0.000 \\ 0.087 \pm 0.000 \\ \end{array} $                                                                                                                                                                                     | $\begin{array}{c} \text{RMSE} \\ \hline 0.175 \pm 0.001 \\ 0.161 \pm 0.002 \\ 0.183 \pm 0.001 \\ 0.253 \pm 0.001 \\ 0.333 \pm 0.002 \\ 0.175 \pm 0.001 \\ 0.158 \pm 0.002 \\ 0.169 \pm 0.001 \\ 0.172 \pm 0.002 \\ \end{array}$                                                                                                                                                                                               | $\begin{array}{c} 0.889 \pm 0.003 \\ 0.796 \pm 0.003 \\ 0.796 \pm 0.002 \\ 1.305 \pm 0.002 \\ 1.528 \pm 0.002 \\ 0.919 \pm 0.004 \\ 1.156 \pm 0.004 \\ 0.810 \pm 0.002 \\ 0.924 \pm 0.005 \end{array}$                                                                                                               |
| (F = 6)  MICN [33]  ModernTCN [29]  PatchTST [30]  FEDformer [45]  Autoformer [35]  Reformer [19]  S4 [12]  MegaCRN [15]  iTransformer [28]                                                                                                                                                                                                                                                                       | $ \begin{array}{c} 0.176 \pm 0.001 \\ 0.154 \pm 0.001 \\ 0.189 \pm 0.001 \\ 0.244 \pm 0.001 \\ 0.515 \pm 0.002 \\ 0.202 \pm 0.001 \\ 0.244 \pm 0.003 \\ 0.158 \pm 0.001 \\ 0.167 \pm 0.002 \\ 0.157 \pm 0.001 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \text{RMSE} \\ 0.239 \pm 0.001 \\ 0.228 \pm 0.003 \\ 0.262 \pm 0.002 \\ 0.348 \pm 0.002 \\ 0.729 \pm 0.004 \\ 0.316 \pm 0.002 \\ 0.344 \pm 0.005 \\ 0.234 \pm 0.001 \\ 0.254 \pm 0.003 \\ 0.233 \pm 0.002 \\ \end{array}$                                                                             | $\begin{array}{c} 1.355 \pm 0.003 \\ 1.218 \pm 0.006 \\ 1.226 \pm 0.003 \\ 1.761 \pm 0.002 \\ 2.881 \pm 0.003 \\ 1.655 \pm 0.003 \\ 2.177 \pm 0.006 \\ 1.229 \pm 0.003 \\ 1.356 \pm 0.005 \\ 1.241 \pm 0.003 \end{array}$                                                                             | $ \begin{array}{c} 0.094 \pm 0.000 \\ 0.086 \pm 0.000 \\ 0.096 \pm 0.000 \\ 0.169 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.083 \pm 0.000 \\ 0.101 \pm 0.001 \\ 0.083 \pm 0.000 \\ 0.087 \pm 0.000 \\ 0.071 \pm 0.000 \\ \end{array} $                                                                                                                                                                  | $\begin{array}{c} \text{RMSE} \\ \hline 0.175 \pm 0.001 \\ 0.161 \pm 0.002 \\ 0.183 \pm 0.001 \\ 0.253 \pm 0.001 \\ 0.333 \pm 0.002 \\ 0.175 \pm 0.001 \\ 0.158 \pm 0.002 \\ 0.169 \pm 0.001 \\ 0.172 \pm 0.002 \\ 0.163 \pm 0.001 \\ \end{array}$                                                                                                                                                                            | $\begin{array}{c} 0.889 \pm 0.003 \\ 0.796 \pm 0.003 \\ 0.796 \pm 0.002 \\ 1.305 \pm 0.002 \\ 1.528 \pm 0.002 \\ 0.919 \pm 0.004 \\ 1.156 \pm 0.004 \\ 0.810 \pm 0.002 \\ 0.924 \pm 0.005 \\ 0.823 \pm 0.002 \end{array}$                                                                                            |
| $\begin{array}{c} (F=6) \\ \hline \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \text{S4 [12]} \\ \text{MTGNN [38]} \\ \text{MegaCRN [15]} \\ \text{iTransformer [28]} \\ \text{CrossFormer [42]} \end{array}$                                                                                                  | $ \begin{array}{c} 0.176 \pm 0.001 \\ 0.154 \pm 0.001 \\ 0.189 \pm 0.001 \\ 0.244 \pm 0.001 \\ 0.515 \pm 0.002 \\ 0.202 \pm 0.001 \\ 0.244 \pm 0.003 \\ 0.158 \pm 0.001 \\ 0.167 \pm 0.002 \\ 0.157 \pm 0.001 \\ 0.151 \pm 0.001 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} \text{RMSE} \\ \hline 0.239 \pm 0.001 \\ 0.228 \pm 0.003 \\ 0.262 \pm 0.002 \\ 0.348 \pm 0.002 \\ 0.729 \pm 0.004 \\ 0.316 \pm 0.002 \\ 0.344 \pm 0.005 \\ 0.234 \pm 0.003 \\ 0.254 \pm 0.003 \\ 0.233 \pm 0.002 \\ 0.233 \pm 0.002 \\ \end{array}$                                                   | $\begin{array}{c} 1.355 \pm 0.003 \\ 1.218 \pm 0.006 \\ 1.226 \pm 0.003 \\ 1.761 \pm 0.002 \\ 2.881 \pm 0.003 \\ 1.655 \pm 0.003 \\ 2.177 \pm 0.006 \\ 1.229 \pm 0.003 \\ 1.356 \pm 0.005 \\ 1.241 \pm 0.003 \\ 1.234 \pm 0.002 \end{array}$                                                          | $ \begin{vmatrix} 0.094 \pm 0.000 \\ 0.086 \pm 0.000 \\ 0.096 \pm 0.000 \\ 0.169 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.083 \pm 0.000 \\ 0.101 \pm 0.001 \\ 0.083 \pm 0.000 \\ 0.087 \pm 0.000 \\ 0.071 \pm 0.000 \\ 0.063 \pm 0.001 \\ \end{aligned} $                                                                                                                                              | $\begin{array}{c} \text{RMSE} \\ \hline 0.175 \pm 0.001 \\ 0.161 \pm 0.002 \\ 0.183 \pm 0.001 \\ 0.253 \pm 0.001 \\ 0.333 \pm 0.002 \\ 0.175 \pm 0.001 \\ 0.158 \pm 0.002 \\ 0.169 \pm 0.001 \\ 0.172 \pm 0.002 \\ 0.163 \pm 0.001 \\ 0.156 \pm 0.002 \\ \hline \end{array}$                                                                                                                                                  | $\begin{array}{c} 0.889 \pm 0.003 \\ 0.796 \pm 0.003 \\ 0.796 \pm 0.002 \\ 1.305 \pm 0.002 \\ 1.528 \pm 0.002 \\ 0.919 \pm 0.004 \\ 1.156 \pm 0.004 \\ 0.810 \pm 0.002 \\ 0.924 \pm 0.005 \\ 0.823 \pm 0.002 \\ 0.739 \pm 0.003 \end{array}$                                                                         |
| $\begin{array}{c} (F=6) \\ \hline \\ \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \text{S4 [12]} \\ \text{MTGNN [38]} \\ \text{MegaCRN [15]} \\ \text{iTransformer [28]} \\ \text{CrossFormer [42]} \\ \text{Card [34]} \\ \end{array}$                                                                        | $ \begin{vmatrix} 0.176 \pm 0.001 \\ 0.154 \pm 0.001 \\ 0.189 \pm 0.001 \\ 0.244 \pm 0.001 \\ 0.515 \pm 0.002 \\ 0.202 \pm 0.001 \\ 0.244 \pm 0.003 \\ 0.158 \pm 0.001 \\ 0.167 \pm 0.002 \\ 0.157 \pm 0.001 \\ 0.151 \pm 0.001 \\ \hline 0.152 \pm 0.002 \\ \hline 0.1500000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} \text{RMSE} \\ 0.239 \pm 0.001 \\ 0.228 \pm 0.003 \\ 0.262 \pm 0.002 \\ 0.348 \pm 0.002 \\ 0.729 \pm 0.004 \\ 0.316 \pm 0.002 \\ 0.344 \pm 0.005 \\ 0.234 \pm 0.001 \\ 0.254 \pm 0.003 \\ 0.233 \pm 0.002 \\ 0.233 \pm 0.002 \\ 0.228 \pm 0.003 \end{array}$                                          | $\begin{array}{c} 1.355 \pm 0.003 \\ 1.218 \pm 0.006 \\ 1.226 \pm 0.003 \\ 1.761 \pm 0.002 \\ 2.881 \pm 0.003 \\ 1.655 \pm 0.003 \\ 2.177 \pm 0.006 \\ 1.229 \pm 0.003 \\ 1.356 \pm 0.005 \\ 1.241 \pm 0.003 \\ 1.234 \pm 0.002 \\ 1.182 \pm 0.004 \end{array}$                                       | $ \begin{vmatrix} 0.094 \pm 0.000 \\ 0.086 \pm 0.000 \\ 0.096 \pm 0.000 \\ 0.169 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.083 \pm 0.000 \\ 0.101 \pm 0.001 \\ 0.083 \pm 0.000 \\ 0.087 \pm 0.000 \\ 0.071 \pm 0.000 \\ 0.063 \pm 0.001 \\ 0.062 \pm 0.000 \\ 0.062 \pm 0.000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.000000 \\ 0.00000000$ | $\begin{array}{c} \text{RMSE} \\ \hline 0.175 \pm 0.001 \\ 0.161 \pm 0.002 \\ 0.183 \pm 0.001 \\ 0.253 \pm 0.001 \\ 0.333 \pm 0.002 \\ 0.175 \pm 0.001 \\ 0.158 \pm 0.002 \\ 0.169 \pm 0.001 \\ 0.172 \pm 0.002 \\ 0.163 \pm 0.002 \\ 0.163 \pm 0.001 \\ 0.156 \pm 0.002 \\ 0.160 \pm 0.002 \\ \hline \end{array}$                                                                                                            | $\begin{array}{c} 0.889 \pm 0.003 \\ 0.796 \pm 0.003 \\ 0.796 \pm 0.002 \\ 1.305 \pm 0.002 \\ 1.528 \pm 0.002 \\ 0.919 \pm 0.004 \\ 1.156 \pm 0.004 \\ 0.810 \pm 0.002 \\ 0.924 \pm 0.005 \\ 0.823 \pm 0.002 \\ 0.739 \pm 0.003 \\ \hline 0.775 \pm 0.003 \end{array}$                                               |
| $\begin{array}{c} (F=6)\\ \hline \\ \text{MICN [33]}\\ \text{ModernTCN [29]}\\ \text{PatchTST [30]}\\ \text{FEDformer [45]}\\ \text{Autoformer [35]}\\ \text{Reformer [19]}\\ \text{S4 [12]}\\ \hline \\ \text{MTGNN [38]}\\ \\ \text{MegaCRN [15]}\\ \hline \\ \text{iTransformer [28]}\\ \hline \\ \text{CrossFormer [42]}\\ \hline \\ \text{Card [34]}\\ \hline \\ \text{ESG [39]} \end{array}$                | $\begin{array}{c} 0.176 \pm 0.001 \\ 0.154 \pm 0.001 \\ 0.189 \pm 0.001 \\ 0.244 \pm 0.001 \\ 0.515 \pm 0.002 \\ 0.202 \pm 0.001 \\ 0.244 \pm 0.003 \\ 0.158 \pm 0.001 \\ 0.167 \pm 0.002 \\ 0.157 \pm 0.001 \\ 0.151 \pm 0.001 \\ 0.152 \pm 0.002 \\ 0.151 \pm 0.001 \\ 0.0151 \\ 0.001 \\ 0.0151 \\ 0.001 \\ 0.0151 \\ 0.001 \\ 0.0151 \\ 0.001 \\ 0.0151 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.$ | $\begin{array}{c} \text{RMSE} \\ 0.239 \pm 0.001 \\ 0.228 \pm 0.003 \\ 0.262 \pm 0.002 \\ 0.348 \pm 0.002 \\ 0.729 \pm 0.004 \\ 0.316 \pm 0.002 \\ 0.344 \pm 0.005 \\ 0.234 \pm 0.001 \\ 0.254 \pm 0.003 \\ 0.233 \pm 0.002 \\ 0.233 \pm 0.002 \\ 0.228 \pm 0.003 \\ 0.226 \pm 0.001 \end{array}$                       | $\begin{array}{c} 1.355 \pm 0.003 \\ 1.218 \pm 0.006 \\ 1.226 \pm 0.003 \\ 1.761 \pm 0.002 \\ 2.881 \pm 0.003 \\ 1.655 \pm 0.003 \\ 1.655 \pm 0.003 \\ 1.229 \pm 0.003 \\ 1.356 \pm 0.005 \\ 1.241 \pm 0.003 \\ 1.234 \pm 0.002 \\ 1.182 \pm 0.004 \\ 1.159 \pm 0.004 \end{array}$                    | $ \begin{array}{c} 0.094 \pm 0.000 \\ 0.086 \pm 0.000 \\ 0.096 \pm 0.000 \\ 0.169 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.083 \pm 0.000 \\ 0.101 \pm 0.001 \\ 0.087 \pm 0.000 \\ 0.063 \pm 0.000 \\ 0.063 \pm 0.001 \\ 0.063 \pm 0.001 \\ 0.063 \pm 0.000 \\ 0.068 \pm 0.000 \\ \end{array} $                                                                                                         | $\begin{array}{c} \text{RMSE} \\ \hline 0.175 \pm 0.001 \\ 0.161 \pm 0.002 \\ 0.183 \pm 0.001 \\ 0.253 \pm 0.001 \\ 0.333 \pm 0.002 \\ 0.175 \pm 0.001 \\ 0.158 \pm 0.002 \\ 0.169 \pm 0.001 \\ 0.172 \pm 0.002 \\ 0.163 \pm 0.001 \\ 0.156 \pm 0.002 \\ 0.160 \pm 0.002 \\ 0.158 \pm 0.001 \\ \end{array}$ | $\begin{array}{c} 0.889 \pm 0.003 \\ 0.796 \pm 0.003 \\ 0.796 \pm 0.002 \\ 1.305 \pm 0.002 \\ 1.528 \pm 0.002 \\ 0.919 \pm 0.004 \\ 1.156 \pm 0.004 \\ 0.810 \pm 0.002 \\ 0.924 \pm 0.005 \\ 0.823 \pm 0.002 \\ 0.739 \pm 0.003 \\ 0.775 \pm 0.003 \\ 0.757 \pm 0.005 \end{array}$                                   |
| $\begin{array}{c} (F=6) \\ \hline \\ \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \text{S4 [12]} \\ \hline \\ \text{MTGNN [38]} \\ \text{MegaCRN [15]} \\ \hline \text{iTransformer [28]} \\ \\ \text{CrossFormer [42]} \\ \\ \text{Card [34]} \\ \\ \text{ESG [39]} \\ \\ \text{FourierGNN [40]} \end{array}$ | $ \begin{array}{c} 0.176 \pm 0.001 \\ 0.154 \pm 0.001 \\ 0.189 \pm 0.001 \\ 0.244 \pm 0.001 \\ 0.515 \pm 0.002 \\ 0.202 \pm 0.001 \\ 0.244 \pm 0.003 \\ 0.158 \pm 0.001 \\ 0.167 \pm 0.002 \\ 0.157 \pm 0.001 \\ 0.151 \pm 0.001 \\ 0.152 \pm 0.002 \\ 0.151 \pm 0.001 \\ 0.152 \pm 0.002 \\ 0.151 \pm 0.001 \\ 0.182 \pm 0.003 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} \text{RMSE} \\ 0.239 \pm 0.001 \\ 0.228 \pm 0.003 \\ 0.262 \pm 0.002 \\ 0.348 \pm 0.002 \\ 0.729 \pm 0.004 \\ 0.316 \pm 0.002 \\ 0.344 \pm 0.005 \\ 0.234 \pm 0.001 \\ 0.254 \pm 0.003 \\ 0.233 \pm 0.002 \\ 0.233 \pm 0.002 \\ 0.228 \pm 0.003 \\ 0.228 \pm 0.001 \\ 0.267 \pm 0.002 \\ \end{array}$ | $\begin{array}{c} 1.355 \pm 0.003 \\ 1.218 \pm 0.006 \\ 1.226 \pm 0.003 \\ 1.761 \pm 0.002 \\ 2.881 \pm 0.003 \\ 1.655 \pm 0.003 \\ 2.177 \pm 0.006 \\ 1.229 \pm 0.003 \\ 1.356 \pm 0.005 \\ 1.241 \pm 0.003 \\ 1.234 \pm 0.002 \\ 1.182 \pm 0.004 \\ 1.159 \pm 0.004 \\ 1.327 \pm 0.003 \end{array}$ | $ \begin{array}{c} 0.094 \pm 0.000 \\ 0.086 \pm 0.000 \\ 0.096 \pm 0.000 \\ 0.169 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.083 \pm 0.000 \\ 0.101 \pm 0.001 \\ 0.083 \pm 0.000 \\ 0.087 \pm 0.000 \\ 0.071 \pm 0.000 \\ 0.063 \pm 0.001 \\ 0.068 \pm 0.000 \\ 0.096 \pm 0.001 \\ 0.096 \pm 0.001 \\ \end{array} $                                                                                      | $\begin{array}{c} \text{RMSE} \\ \hline 0.175 \pm 0.001 \\ 0.161 \pm 0.002 \\ 0.183 \pm 0.001 \\ 0.253 \pm 0.001 \\ 0.333 \pm 0.002 \\ 0.175 \pm 0.001 \\ 0.158 \pm 0.002 \\ 0.169 \pm 0.001 \\ 0.172 \pm 0.002 \\ 0.163 \pm 0.001 \\ 0.156 \pm 0.002 \\ \hline 0.160 \pm 0.002 \\ 0.158 \pm 0.001 \\ 0.177 \pm 0.002 \\ 0.158 \pm 0.001 \\ 0.177 \pm 0.002 \\ \end{array}$                                                   | $\begin{array}{c} 0.889 \pm 0.003 \\ 0.796 \pm 0.003 \\ 0.796 \pm 0.002 \\ 1.305 \pm 0.002 \\ 1.528 \pm 0.002 \\ 0.919 \pm 0.004 \\ 1.156 \pm 0.004 \\ 0.810 \pm 0.002 \\ 0.924 \pm 0.005 \\ 0.823 \pm 0.002 \\ \underline{0.739 \pm 0.003} \\ 0.775 \pm 0.003 \\ 0.872 \pm 0.002 \\ 0.872 \pm 0.002 \\ \end{array}$ |
| $\begin{array}{c} (F=6)\\ \hline \\ \text{MICN [33]}\\ \text{ModernTCN [29]}\\ \text{PatchTST [30]}\\ \text{FEDformer [45]}\\ \text{Autoformer [35]}\\ \text{Reformer [19]}\\ \text{S4 [12]}\\ \hline \\ \text{MTGNN [38]}\\ \\ \text{MegaCRN [15]}\\ \hline \\ \text{iTransformer [28]}\\ \hline \\ \text{CrossFormer [42]}\\ \hline \\ \text{Card [34]}\\ \hline \\ \text{ESG [39]} \end{array}$                | $\begin{array}{c} 0.176 \pm 0.001 \\ 0.154 \pm 0.001 \\ 0.189 \pm 0.001 \\ 0.244 \pm 0.001 \\ 0.515 \pm 0.002 \\ 0.202 \pm 0.001 \\ 0.244 \pm 0.003 \\ 0.158 \pm 0.001 \\ 0.167 \pm 0.002 \\ 0.157 \pm 0.001 \\ 0.151 \pm 0.001 \\ 0.152 \pm 0.002 \\ 0.151 \pm 0.001 \\ 0.0151 \\ 0.001 \\ 0.0151 \\ 0.001 \\ 0.0151 \\ 0.001 \\ 0.0151 \\ 0.001 \\ 0.0151 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.$ | $\begin{array}{c} \text{RMSE} \\ 0.239 \pm 0.001 \\ 0.228 \pm 0.003 \\ 0.262 \pm 0.002 \\ 0.348 \pm 0.002 \\ 0.729 \pm 0.004 \\ 0.316 \pm 0.002 \\ 0.344 \pm 0.005 \\ 0.234 \pm 0.001 \\ 0.254 \pm 0.003 \\ 0.233 \pm 0.002 \\ 0.233 \pm 0.002 \\ 0.228 \pm 0.003 \\ 0.226 \pm 0.001 \end{array}$                       | $\begin{array}{c} 1.355 \pm 0.003 \\ 1.218 \pm 0.006 \\ 1.226 \pm 0.003 \\ 1.761 \pm 0.002 \\ 2.881 \pm 0.003 \\ 1.655 \pm 0.003 \\ 1.655 \pm 0.003 \\ 1.229 \pm 0.003 \\ 1.356 \pm 0.005 \\ 1.241 \pm 0.003 \\ 1.234 \pm 0.002 \\ 1.182 \pm 0.004 \\ 1.159 \pm 0.004 \end{array}$                    | $ \begin{array}{c} 0.094 \pm 0.000 \\ 0.086 \pm 0.000 \\ 0.096 \pm 0.000 \\ 0.169 \pm 0.001 \\ 0.246 \pm 0.002 \\ 0.083 \pm 0.000 \\ 0.101 \pm 0.001 \\ 0.087 \pm 0.000 \\ 0.063 \pm 0.000 \\ 0.063 \pm 0.001 \\ 0.063 \pm 0.001 \\ 0.063 \pm 0.000 \\ 0.068 \pm 0.000 \\ \end{array} $                                                                                                         | $\begin{array}{c} \text{RMSE} \\ \hline 0.175 \pm 0.001 \\ 0.161 \pm 0.002 \\ 0.183 \pm 0.001 \\ 0.253 \pm 0.001 \\ 0.333 \pm 0.002 \\ 0.175 \pm 0.001 \\ 0.158 \pm 0.002 \\ 0.169 \pm 0.001 \\ 0.172 \pm 0.002 \\ 0.163 \pm 0.001 \\ 0.156 \pm 0.002 \\ 0.160 \pm 0.002 \\ 0.158 \pm 0.001 \\ \end{array}$ | $\begin{array}{c} 0.889 \pm 0.003 \\ 0.796 \pm 0.003 \\ 0.796 \pm 0.002 \\ 1.305 \pm 0.002 \\ 1.528 \pm 0.002 \\ 0.919 \pm 0.004 \\ 1.156 \pm 0.004 \\ 0.810 \pm 0.002 \\ 0.924 \pm 0.005 \\ 0.823 \pm 0.002 \\ 0.739 \pm 0.003 \\ 0.775 \pm 0.003 \\ 0.757 \pm 0.005 \end{array}$                                   |

methods, and the history window size H is set to 168. All methods are trained on Nvidia V100 GPUs. Our method is implemented with PyTorch 2.0 and we use the source codes publicly released by the authors for all baseline methods. We adjust the hyperparameters of baseline methods to obtain the best performance on each dataset, and evaluate the performance of different methods in terms of Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE).

### **4.2** Forecasting Performance

Table 1 and 2 present the forecasting performance with  $F \in \{3,6\}$  on six benchmark datasets, with results evaluated using three different random seeds. The best results are highlighted in **bold**, while the second-best results are <u>underlined</u>. PatchTST and ModernTCN demonstrate the best performance among methods without explicitly modeling spatial correlations. Besides, graph-based spatio-temporal methods yield better results than those that do not account for spatial structures. In addition, Card, Crossformer, iTransformer, and ESG outperform static graph-based methods such as MTGNN and MegaCRN, highlighting the significance of explicitly modeling dynamic spatial structures. Our method Sumba achieves state-of-the-art performance in most cases, demonstrating an improvement up to 8.5% over the best baseline on the Weather dataset. This superior performance is attributed to its capability to produce dynamic graph structures with low variance and high expressiveness using the proposed structured matrix basis. The forecasting results for additional prediction horizons are provided in Appendix C.

Table 3: Ablation study.

| E 2                                                                                                                  | Electricity |                  |                  | Weather    |                |                  | PEMS      |              |                  |
|----------------------------------------------------------------------------------------------------------------------|-------------|------------------|------------------|------------|----------------|------------------|-----------|--------------|------------------|
| F = 3                                                                                                                | MAE         | RMSE             | MAPE(%)          | MAE        | RMSE           | MAPE(%)          | MAE       | RMSE         | MAPE(%)          |
| w/o. dynamic                                                                                                         | 0.153       | 0.245            | 1.340            | 0.0693     | 0.219          | 1.624            | 0.145     | 0.215        | 1.127            |
| w/. $\mathbf{U}_m$ , $\mathbf{V}_m$                                                                                  | 0.148       | 0.238            | 1.251            | 0.0659     | 0.214          | 2.255            | 0.138     | 0.205        | 1.054            |
| w/o. orthogonality                                                                                                   | 0.151       | 0.242            | 1.337            | 0.0633     | 0.213          | 1.605            | 0.142     | 0.209        | 1.094            |
| Sumba                                                                                                                | 0.148       | 0.237            | 1.331            | 0.0587     | 0.208          | 1.381            | 0.137     | 0.204        | 1.060            |
|                                                                                                                      |             |                  |                  | -          |                |                  | •         |              |                  |
| E C                                                                                                                  |             | Electric         | eity             |            | Weathe         | er               |           | PEMS         | S                |
| F=6                                                                                                                  | MAE         | Electric<br>RMSE | eity<br>MAPE(%)  | MAE        | Weathe<br>RMSE | er<br>MAPE(%)    | MAE       | PEMS<br>RMSE | S<br>MAPE(%)     |
| F=6 w/o. dynamic                                                                                                     | MAE 0.169   |                  | - 3              | MAE 0.0817 |                |                  | MAE 0.158 |              |                  |
| $\overline{\mathbf{w}}$ /o. dynamic $\overline{\mathbf{w}}$ /. $\overline{\mathbf{U}}_m$ , $\overline{\mathbf{V}}_m$ |             | RMSE             | MAPE(%)          |            | RMSE           | MAPE(%)          |           | RMSE         | MAPE(%)          |
| w/o. dynamic                                                                                                         | 0.169       | RMSE 0.268       | MAPE(%)<br>1.636 | 0.0817     | RMSE 0.256     | MAPE(%)<br>1.987 | 0.158     | RMSE 0.234   | MAPE(%)<br>1.229 |

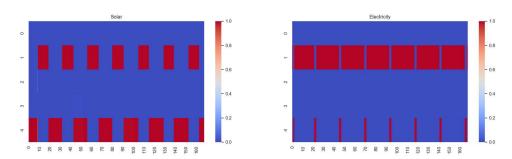



Figure 2: The change of  $\alpha$  over one week.

### 4.3 Ablation Study

We conduct the ablation study on the Electricity, Weather, and PEMS datasets with prediction horizons F of 3 and 6 to verify the efficacy of the proposed modules. In particular, we consider the following variants of our proposed model: (1) **w/o. dynamic**: we replace the Dynamic GCN module with the vanilla GCN module in [38]. (2) **w/.**  $U_m$ ,  $V_m$ : we use distinct  $U_m$ ,  $V_m$  for each basis matrix  $B_m$ . (3) **w/o. orthogonality**: we remove the orthogonal parameterization on U and V. As shown in Table 3, the performance of **w/o. dynamic** declines rapidly by up to 13.83%, 8.59%, and 16.31% on three metrics, which verifies the efficacy of the proposed dynamic GCN model. The absence of structure regularization (**w/o. orthogonality**) on structured matrix basis lead to averaged performance drops of 4.95% and 3.05%, respectively. This proves the effectiveness of the proposed structure regularization and orthogonal constraint strategy.

### 4.4 Interpretable Dynamics

As discussed in Section 3.1, one appealing feature of our proposed Sumba is that it enables us to gain insights into the underlying time series dynamics by tracking the change of the matrix basis coefficient  $\alpha$  over time. To verify this, we present the heatmap of the change of  $\alpha$  on two datasets—Solar-Energy and Electricity in Figure 2, in which the x-axis denotes the time (hourly), the y-axis represents the no. of 5 basis matrices, and the color indicates the weight of  $\alpha$ . It can be observed that most of the weights are concentrated on two basis matrices, no. 1 and no. 4, which implies that there are two dominant spatial structures on the two datasets. Furthermore, the two dominant spatial structures appear alternatively and regularly, which actually corresponds to the day and night for the Solar-Energy dataset. This aligns well with our intuition that solar energy observations should manifest different spatial correlations as the light intensity varies. For the Electricity dataset, there is a spatial correlation (no. 4) that spans two hours and only emerges in midnight, this reveals an interesting electricity consumption pattern, which is unnoticed by previous methods. Therefore, our proposed method is able to offer more interpretable dynamics of the underlying systems through tracking  $\alpha$ .

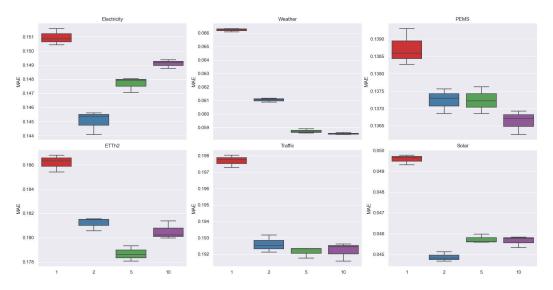



Figure 3: The sensitivity of the dimension of basis M.

### 4.5 Parameter Sensitivity Analysis

We evaluate the impact of M on performance of our model, where the M ranges from 1, 2, 5, to  $10.\ M=1$  corresponds to the static graph. As shown in Figure 3, the performance of our model improves significantly when M>1. When M=2, our method achieves the best performance on Electricity and Solar-Energy datasets, this coincides with the fact that the two datasets have two dominant spatial structure patterns, i.e., day and night. The experiments empirically show that the best setting of M is 5 on ETTh2, Traffic, and PEMS datasets and 10 on the Weather dataset. We hypothesize this is due to the Weather dataset having more complex dynamics, and thus it requires more basis matrices to cover the various patterns. The sensitivity analysis of L, K and K is presented in Appendix K0.

## 5 Conclusion

In this paper, we propose a time series forecasting method with the structured matrix basis, Sumba, to capture dynamic spatial structures. To this end, we propose a novel structured parameterization and impose structure regularization on the basis to enhance parameter efficiency, the output space of the spatial structure function is thus well constrained and the generated spatial structures have lower variance. Our proposed method offers us a manner to gain insights into the dynamics of the underlying systems, and thus it is more interpretable. The experiments on six benchmark datasets verify the superiority of our proposed method. Our extensive ablation studies prove the effectiveness of each proposed component. In addition, the case study shows that our method can offer desirable interpretability. In the future, we would like to explore how to better regularize the learned matrix vector space and set the dimension of basis M in a data-driven manner. We will also explore the possibility of integrating our proposed spatial structure modeling with other temporal encoders such as Transformers, and Structured State Space models, and apply our interpretable dynamics into more datasets to discover more interesting and hidden patterns.

### Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 62206074, Grant No. 62306085, Grant No. 62072137, Shenzhen College Stability Support Plan under Grant No. GXWD20220811173233001, and the National Key R&D Program of China under Grant No. 2023YFB4503100.

### References

- [1] Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. Adaptive graph convolutional recurrent network for traffic forecasting. In *Advances in Neural Information Processing Systems* (NeurIPS), 2020.
- [2] Mario Lezcano Casado. Trivializations for gradient-based optimization on manifolds. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2019.
- [3] Mario Lezcano Casado and David Martínez-Rubio. Cheap orthogonal constraints in neural networks: A simple parametrization of the orthogonal and unitary group. In *International Conference on Machine Learning (ICML)*, 2019.
- [4] Xiaodan Chen, Xiucheng Li, Bo Liu, and Zhijun Li. Biased temporal convolution graph network for time series forecasting with missing values. In *International Conference on Learning Representations (ICLR)*, 2023.
- [5] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.
- [6] Jean Gallier and Jocelyn Quaintance. *Differential Geometry and Lie Groups: A Computational Perspective*. Springer, 2020.
- [7] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph neural networks meet personalized pagerank. In *International Conference on Learning Representations (ICLR)*, 2019.
- [8] Jake Grigsby, Zhe Wang, Nam Nguyen, and Yanjun Qi. Long-range transformers for dynamic spatiotemporal forecasting. *arXiv preprint arXiv:2109.12218*, 2021.
- [9] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv preprint arXiv:2312.00752*, 2023.
- [10] Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory with optimal polynomial projections. In Advances in Neural Information Processing Systems (NeurIPS), 2020.
- [11] Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré. Combining recurrent, convolutional, and continuous-time models with linear state space layers. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2021.
- [12] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured state spaces. In *International Conference on Learning Representations (ICLR)*, 2022.
- [13] Haokun Gui, Xiucheng Li, and Xinyang Chen. Vector quantization pretraining for eeg time series with random projection and phase alignment. In *International Conference on Machine Learning (ICML)*, 2024.
- [14] Shengnan Guo, Youfang Lin, Huaiyu Wan, Xiucheng Li, and Gao Cong. Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting. *IEEE Trans. Knowl. Data Eng.*, 2022.
- [15] Renhe Jiang, Zhaonan Wang, Jiawei Yong, Puneet Jeph, Quanjun Chen, Yasumasa Kobayashi, Xuan Song, Shintaro Fukushima, and Toyotaro Suzumura. Spatio-temporal meta-graph learning for traffic forecasting. In Association for the Advancement of Artificial Intelligence (AAAI), 2023.
- [16] Yue Jiang, Xiucheng Li, Yile Chen, Shuai Liu, Weilong Kong, Antonis F. Lentzakis, and Gao Cong. A scalable adaptive graph diffusion forecasting network for multivariate time series forecasting. In 40th IEEE International Conference on Data Engineering (ICDE), 2024.
- [17] Gilmer Justin, S. Schoenholz Samuel, F. Riley Patrick, Vinyals Oriol, and E. Dahl George. Neural message passing for quantum chemistry. In *International Conference on Machine Learning (ICML)*, 2017.

- [18] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In *International Conference on Learning Representations (ICLR)*, 2016.
- [19] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In *International Conference on Learning Representations (ICLR)*, 2020.
- [20] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term temporal patterns with deep neural networks. In *International ACM SIGIR conference on research & development in information retrieval*, 2018.
- [21] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting. In *Advances in neural information processing systems (NeurIPS)*, 2019.
- [22] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. In *International Conference on Learning Representations* (*ICLR*), 2018.
- [23] Minhao LIU, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia LAI, Lingna Ma, and Qiang Xu. Scinet: Time series modeling and forecasting with sample convolution and interaction. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2022.
- [24] Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dustdar. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and forecasting. In *International Conference on Learning Representations (ICLR)*, 2021.
- [25] Shuai Liu, Xiucheng Li, Gao Cong, Yile Chen, and Yue Jiang. Multivariate time-series imputation with disentangled temporal representations. In *International Conference on Learning Representations (ICLR)*, 2023.
- [26] Yijing Liu, Qinxian Liu, Jian-Wei Zhang, Haozhe Feng, Zhongwei Wang, Zihan Zhou, and Wei Chen. Multivariate time-series forecasting with temporal polynomial graph neural networks. In Advances in Neural Information Processing Systems (NeurIPS), 2022.
- [27] Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring the stationarity in time series forecasting. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2022.
- [28] Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long. itransformer: Inverted transformers are effective for time series forecasting. In *International Conference on Learning Representations (ICLR)*, 2024.
- [29] Donghao Luo and Xue Wang. Moderntcn: A modern pure convolution structure for general time series analysis. In *International Conference on Learning Representations (ICLR)*, 2024.
- [30] Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64 words: Long-term forecasting with transformers. In *International Conference on Learning Representations (ICLR)*, 2023.
- [31] David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic forecasting with autoregressive recurrent networks. *International Journal of Forecasting*, 2020.
- [32] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. Lstm neural networks for language modeling. In *Interspeech*, 2012.
- [33] Huiqiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, and Yifei Xiao. Micn: Multi-scale local and global context modeling for long-term series forecasting. In *International Conference on Learning Representations (ICLR)*, 2023.
- [34] Xue Wang, Tian Zhou, Qingsong Wen, Jinyang Gao, Bolin Ding, and Rong Jin. Card: Channel aligned robust blend transformer for time series forecasting. In *International Conference on Learning Representations (ICLR)*, 2024.

- [35] Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2021.
- [36] Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:temporal 2d-variation modeling for general time series analysis. In *International Conference on Learning Representations (ICLR)*, 2023.
- [37] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for deep spatial-temporal graph modeling. In *International Joint Conference on Artificial Intelligence (IJCAI)*, 2019.
- [38] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang. Connecting the dots: Multivariate time series forecasting with graph neural networks. In ACM SIGKDD Conference on Knowledge Discovery and Data Mining (SIGKDD), 2020.
- [39] Junchen Ye, Zihan Liu, Bowen Du, Leilei Sun, Weimiao Li, Yanjie Fu, and Hui Xiong. Learning the evolutionary and multi-scale graph structure for multivariate time series forecasting. In *ACM SIGKDD Conference on Knowledge Discovery and Data Mining (SIGKDD)*, 2022.
- [40] Kun Yi, Qi Zhang, Wei Fan, Hui He, Liang Hu, Pengyang Wang, Ning An, Longbing Cao, and Zhendong Niu. Fouriergnn: Rethinking multivariate time series forecasting from a pure graph perspective. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2023.
- [41] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization. *arXiv preprint arXiv:1409.2329*, 2014.
- [42] Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency for multivariate time series forecasting. In *International Conference on Learning Representations (ICLR)*, 2023.
- [43] Chuanpan Zheng, Xiaoliang Fan, Cheng Wang, and Jianzhong Qi. Gman: A graph multiattention network for traffic prediction. In *Association for the Advancement of Artificial Intelligence (AAAI)*, 2020.
- [44] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In *Association for the Advancement of Artificial Intelligence (AAAI)*, 2021.
- [45] Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency enhanced decomposed transformer for long-term series forecasting. In *International Conference on Machine Learning (ICML)*, 2022.

# A Background and Proof of the Theorem

### A.1 Geometry Interpretation of Matrix Multiplication

Recall that given a matrix  $\mathbf{A} = \mathbf{U}\Sigma\mathbf{V}^{\top}$ , the multiplication  $\mathbf{A}\mathbf{x}$  can be interpreted as 1) transforming  $\mathbf{x}$  into the new coordinate system  $\mathbf{x}' \triangleq \mathbf{V}^{\top}\mathbf{x}$ , 2) doing the elementwise product in the new coordinate  $\mathbf{y}' = \Sigma\mathbf{x}'$ , and 3) transforming the coordinate system again  $\mathbf{y} = \mathbf{U}\mathbf{y}'$ .

$$\mathbf{A}\mathbf{x} = \mathbf{U}\Sigma\mathbf{V}^{\mathsf{T}}\mathbf{x} = \mathbf{U}\Sigma\mathbf{x}' = \mathbf{U}\mathbf{y}'. \tag{10}$$

### A.2 Proof of the Theorem

**Theorem A.1.** The output space of  $f_{\text{spatial}}$  in Eq. 4 is bounded by the sum of the maximum of  $\Sigma_m$  (the maximum singular value of  $\mathbf{B}_m$ ) for  $m=1,2,\ldots,M$  in terms of the  $\ell_2$  norm i.e.,  $\|f_{\text{spatial}}\|_2 \leq \sum_{m=1}^{M} \max(\Sigma_m)$ .

Proof.

$$\|f_{\text{spatial}}\|_{2} = \left\| \sum_{m=1}^{M} \alpha_{m} \mathbf{U} \Sigma_{m} \mathbf{V}^{\top} \right\|_{2}$$
 (11)

$$\leq \sum_{m=1}^{M} \alpha_m \left\| \mathbf{U} \Sigma_m \mathbf{V}^{\top} \right\|_2 \quad \text{(triangle inequality)} \tag{12}$$

$$= \sum_{m=1}^{M} \left\| \mathbf{U} \Sigma_m \mathbf{V}^{\top} \right\|_2 \qquad (0 < \alpha_m < 1)$$
 (13)

$$= \sum_{m=1}^{M} \|\mathbf{U}\|_{2} \|\Sigma_{m}\|_{2} \|\mathbf{V}^{\top}\|_{2}$$
 (14)

$$= \sum_{m=1}^{M} \|\Sigma_m\|_2 \qquad \qquad (\mathbf{U}, \mathbf{V} \text{ are orthogonal matrices})$$
 (15)

$$=\sum_{m=1}^{M}\max(\Sigma_m). \tag{16}$$

The proof is completed.

# **B** Implementation Details

### **B.1** Baselines

In our experiments, we compare our proposed Sumba with state-of-the-art (SOTA) baseline models.

- MICN: It utilizes temporal convolution networks and isometric convolution networks to capture local and global temporal correlations, respectively.
- ModernTCN: It leverages large kernels to build long-term temporal dependencies.
- PatchTST: It introduces a patch-based attention mechanism and channel-independent strategy to establish long-term temporal correlations.
- FEDformer: It leverages frequency-enhanced attention to capture long-term temporal dependencies and employs frequency sampling to reduce the complexity.
- Autoformer: It designs auto-correlation module to discover the sub-series similarity based on periodicity and aggregates similar sub-series from underlying periods.
- Reformer: It utilizes locality sensitive hashing strategy to reduce the complexity of the attention mechanism.
- S4: It captures long-term temporal dependencies via structured transition matrices.

- MTGNN: It builds an adaptive directed graph using learnable node embedding and aggregates information along spatial dimensions through mix-hop propagation.
- MegaCRN: It exploits memory-enhanced node embedding to build the graph structure.
- iTransformer: It embeds the whole time series into a spatial token and captures spatial correlations using the self-attention mechanism.
- Crossformer: It constructs both temporal and spatial dependencies using the attention mechanism and introduces a router mechanism to decrease the complexity of the spatial attention module.
- Card: It introduces summarized spatial tokens to decrease the complexity of the spatial
  attention module and employs a token blend mechanism in the temporal attention module to
  extract local temporal correlations.
- ESG: It designs multi-scale evolving node embedding based on Gated Recurrent Unit to capture dynamic spatial dependencies.
- FourierGNN: It builds dynamic graphs by merging spatial and temporal dimensions and designs the Fourier Graph Operator to decrease complexity.
- TPGNN: It regards the dynamic spatial correlations as the matrix polynomial graph where the time-varying coefficients are determined by timestamps.

### **B.2** Metrics

The evaluation metrics including MAE, RMSE, and MAPE are as follows:

$$MAE = \frac{\sum_{ij \in \Omega} |y_{ij} - \hat{y}_{ij}|}{|\Omega|} \quad RMSE = \sqrt{\frac{\sum_{ij \in \Omega} (y_{ij} - \hat{y}_{ij})^2}{|\Omega|}} \quad MAPE = \sum_{ij \in \Omega} \frac{|y_{ij} - \hat{y}_{ij}|}{|\Omega| \cdot |y_{ij}|} \quad (17)$$

where  $\Omega$  denotes the index set along temporal and spatial dimensions.

## **C** More Forecasting Results

Table 4 provides the results with prediction lengths of 12 and 24. The results underscore the significant role of explicitly capturing spatial correlations in improving forecasting accuracy. Furthermore, dynamic graphs exhibit a greater ability to enhance the forecasting performance than modeling static spatial correlations. Among the baseline methods, Card, Crossformer, and ESG demonstrate superior forecasting accuracy. Notably, our model achieves state-of-the-art performance, yielding improvements more than 20% in terms of MAE and 25% in terms of MAPE over the existing methods on the Solar-Energy dataset. In addition, we conduct experiments with a forecasting horizon of 96, and as Table 5 shows, Sumba gives rise to favorable performance in comparison to PatchTST, FEDformer, and iTransformer which are designed specifically for long-term forecasting.

# D Hyperparameters Sensitivity

We evaluate the sensitivity of hyperparameters including the number of blocks L, the rank K, and the history window size H. Number of Blocks: As shown in Figure 4, Sumba achieves its best performance when L=3. Further increasing L does not lead to performance improvements. We hypothesize that this is due to the over-smoothing issue associated with Graph Neural Networks. Rank: Figure 5 shows how performance varies as the rank K changes from 20 to 50. The optimal setting for K is 30 for the Electricity, PEMS, and Solar-Energy datasets, while K=50 yields the best results for the Traffic dataset. We propose that this is attributed to the larger number of nodes in the Traffic dataset, which requires a higher rank to effectively represent the dynamic spatial correlations. History window: Figure 6 demonstrates that increasing the history window size enhances model performance, especially for the Electricity dataset.

Table 4: The forecasting results under forecasting length 12 and 24.

| Method   CF = 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M d 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TI .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •, 1                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                           | 337 41                                                                                                                                                                                |                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                   | DEM                                                                                                                                                                                                        | C                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MICNI   SI   MARCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Method $(F = 12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          | MAE                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                       |                                                                                                                                                                                                              | MAE                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                            |                                                                                                                                                                                                              |
| ModernTCNI   29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ` ' 1                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                            |                                                                                                                                                                                                              |
| Patch TST [30]   0.201   0.311   1.765   0.0958   0.270   6.108   0.211   0.293   1.426   FEDlormer [45]   0.274   0.390   2.535   0.251   0.394   6.789   0.262   0.369   1.931   0.316   0.512   3.495   0.185   0.349   4.815   0.277   0.336   0.251   3.495   0.185   0.349   4.815   0.277   0.338   1.801   0.316   0.521   3.495   0.185   0.349   4.815   0.277   0.338   1.801   0.316   0.512   3.314   0.213   0.347   5.443   0.246   0.346   0.2184   0.316   0.360   0.520   2.715   0.115   0.279   3.757   0.188   0.286   0.173   0.238   1.402   0.376   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275   0.275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            |                                                                                                                                                                                                              |
| Autoformer [35]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                            |                                                                                                                                                                                                              |
| Reformer [19]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FEDformer [45]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.535                                                                                                                                                                                                    | 0.251                                                                                                                                                                                                                                                                                                                     | 0.394                                                                                                                                                                                 | 6.789                                                                                                                                                                                                        | 0.262                                                                                                                                                                                                                                                                                               | 0.369                                                                                                                                                                                                      |                                                                                                                                                                                                              |
| MGRING   SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                            |                                                                                                                                                                                                              |
| MTGNN [18]   0.366   0.520   2.715   0.115   0.279   3.757   0.188   0.286   1.572   0.715   0.115   0.279   3.757   0.188   0.286   1.572   0.727   0.278   0.278   0.173   0.286   1.572   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278   0.278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            |                                                                                                                                                                                                              |
| MegaCRN 115   15   0.366   0.520   2.715   0.115   0.279   3.757   0.188   0.286   1.572     Tiransformer   28   0.188   0.296   1.703   0.0978   0.273   4.879   0.173   0.258   1.402     CrossFormer   42   0.188   0.296   1.715   0.0972   0.273   4.879   0.168   0.255   1.370     Card [34]   0.186   0.285   1.610   0.0892   0.268   3.829   0.186   0.254   1.347     ESG [39]   0.189   0.295   1.691   0.0969   0.264   3.513   0.164   0.248   1.313     FDGWIRFORN   261   0.275   0.308   2.165   0.104   0.225   2.898   0.186   0.253   1.877     Sumba   0.178   0.253   1.560   0.0884   0.263   3.794   0.162   0.245   1.295     Method   EFT1   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            |                                                                                                                                                                                                              |
| Fireinformer [28]   0.188   0.296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                            |                                                                                                                                                                                                              |
| CrossFormer [42]         0,188         0,289         1,715         0,122         0,270         4,656         0,164         0,254         1,370           ESG [39]         0,189         0,285         1,601         0,099         0,264         3,513         0,164         0,224         1,331           FOurierGNN [40]         0,259         0,308         2,604         0,121         0,276         4,392         0,199         0,305         1,831           FOurierGNN [40]         0,259         0,308         2,165         0,104         0,228         2,898         0,166         0,225         1,577           Sumba         0,178         0,283         1,560         0,0884         0,263         3,794         0,162         0,245         1,275           MCMICA [33]         MaE         RNSE         MAPE(%)         MAE         RNSE         MAPE(%)         MAE         RNSE         MAPE(%)         MAE         RNSE         MAE         ANS         3,161         1,232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            |                                                                                                                                                                                                              |
| Card [34]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                            |                                                                                                                                                                                                              |
| ESG [39]   0.189   0.295   0.396   2.049   0.121   0.276   4.3513   0.164   0.248   1.313     FOurierGNN [40]   0.275   0.396   2.049   0.121   0.276   4.392   0.199   0.305   1.832     FOURIPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                            |                                                                                                                                                                                                              |
| FourierGNN  40    0.275   0.396   2.694   0.121   0.276   4.932   0.199   0.305   1.832                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                            |                                                                                                                                                                                                              |
| Sumba         0.178         0.283         1.560         0.0884         0.263         3.794         0.162         0.245         1.295           Method<br>(F = 12)         MAE         RMSE         MAPE(%)         MAE         RMSE         MAPE(%)         MAE         RMSE         MAPE(%)           MICN [33]         0.290         0.414         1.492         0.281         0.629         3.479         0.105         0.207         1.000           ModernTCN [29]         0.320         0.445         1.564         0.271         0.612         3.219         0.118         0.210         0.974           PatchTST [30]         0.237         3.374         1.135         0.250         0.520         0.520         0.520         0.520         0.722         3.840         0.204         0.292         1.289           FEDIormer [45]         0.360         0.526         1.481         0.361         0.735         3.400         0.094         0.292         1.289           S4 [12]         0.654         0.881         1.172         0.247         0.579         0.728         4.289         0.354         0.789         3.608         0.113         0.229         1.125           MegaCRNI [15]         0.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                            |                                                                                                                                                                                                              |
| Method<br>(F = 12)         MAE<br>(F = 18)         ETTh2<br>MAE<br>(F = 12)         MAE<br>RMSE         MAPE(%)<br>MAE<br>RMSE         MAPE(%)<br>MAPE(%)         Solar-Energy<br>MAPE(%)           MCN [33]<br>ModernTCN [29]         0.320<br>0.320<br>0.445<br>0.329<br>0.327<br>0.3374<br>0.345<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.352<br>0.                                                                                                                                                                                                                                                                                                                                                                             | TPGNN [26]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.165                                                                                                                                                                                                    | 0.104                                                                                                                                                                                                                                                                                                                     | 0.282                                                                                                                                                                                 | 2.898                                                                                                                                                                                                        | 0.186                                                                                                                                                                                                                                                                                               | 0.287                                                                                                                                                                                                      | 1.577                                                                                                                                                                                                        |
| MAE   RMSE   MAPE(%)   MAE   RMSE   MAPE(%)   MAE   RMSE   MAPE(%)   MICN [13]   0.290   0.414   1.492   0.281   0.629   3.479   0.105   0.207   1.000   0.000   0.237   0.374   1.135   0.250   0.582   2.559   0.122   0.243   1.054   0.217   0.612   3.219   0.118   0.210   0.974   0.0167   0.237   0.374   1.135   0.250   0.582   2.559   0.122   0.243   1.054   0.210   0.000   0.237   0.374   1.135   0.250   0.727   3.840   0.024   0.292   1.289   0.240   0.000   0.244   0.282   0.248   0.248   0.361   0.735   4.007   0.309   0.414   1.680   0.260   0.260   0.260   0.260   0.275   0.284   0.260   0.275   0.260   0.275   0.260   0.200   0.210   1.585   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sumba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.560                                                                                                                                                                                                    | 0.0884                                                                                                                                                                                                                                                                                                                    | 0.263                                                                                                                                                                                 | 3.794                                                                                                                                                                                                        | 0.162                                                                                                                                                                                                                                                                                               | 0.245                                                                                                                                                                                                      | 1.295                                                                                                                                                                                                        |
| MAE   RMSE   MAPE(%)   MAE   RMSE   MAPE(%)   MAE   RMSE   MAPE(%)   MICN [13]   0.290   0.414   1.492   0.281   0.629   3.479   0.105   0.207   1.000   0.000   0.237   0.374   1.135   0.250   0.582   2.559   0.122   0.243   1.054   0.217   0.612   3.219   0.118   0.210   0.974   0.0167   0.237   0.374   1.135   0.250   0.582   2.559   0.122   0.243   1.054   0.210   0.000   0.237   0.374   1.135   0.250   0.727   3.840   0.024   0.292   1.289   0.240   0.000   0.244   0.282   0.248   0.248   0.361   0.735   4.007   0.309   0.414   1.680   0.260   0.260   0.260   0.260   0.275   0.284   0.260   0.275   0.260   0.275   0.260   0.200   0.210   1.585   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0.260   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ETTh'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                           | Traffic                                                                                                                                                                               | ,                                                                                                                                                                                                            | •                                                                                                                                                                                                                                                                                                   | Solar-Ene                                                                                                                                                                                                  | erav                                                                                                                                                                                                         |
| ModernTCN [29]   0.320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          | MAE                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                       |                                                                                                                                                                                                              | MAE                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                            |                                                                                                                                                                                                              |
| ModernTCN [29]   0.320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ` ′ 1                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       | \ /                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                            |                                                                                                                                                                                                              |
| PatchTST [30]   0.237   0.374   1.135   0.250   0.582   2.559   0.122   0.243   1.054     FEDformer [45]   0.369   0.526   1.481   0.361   0.735   4.007   0.309   0.414   1.680     Reformer [19]   0.579   0.728   4.289   0.354   0.789   3.608   0.113   0.229   1.125     S4 [12]   0.634   0.846   2.768   0.307   0.749   3.079   0.137   0.210   1.585     MTGNN [38]   0.245   0.381   1.172   0.247   0.577   2.762   0.0975   0.214   1.007     MegaCRN [15]   0.332   0.465   1.519   0.367   0.784   4.397   0.116   0.226   1.088     ITransformer [28]   0.242   0.376   1.121   0.237   0.559   2.582   0.0974   0.211   0.993     CrossFormer [42]   0.307   0.446   1.467   0.238   0.666   2.497   0.0881   0.197   0.936     Card [34]   ESG [39]   0.313   0.454   1.151   0.323   0.465   0.762   2.455   0.0850   0.210   0.996     FourierGNN [40]   0.309   0.434   1.551   0.382   0.760   2.285   0.0850   0.210   0.996     FourierGNN [26]   0.269   0.427   1.283   0.302   0.780   2.507   0.107   0.208   1.098     TPGNN [26]   0.260   0.427   1.283   0.302   0.780   2.507   0.107   0.205   0.976     Sumba   0.234   0.369   1.045   0.225   0.569   2.358   0.0845   0.191   0.897     Mcthod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                            |                                                                                                                                                                                                              |
| FEDIOrmer   45   0.349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PatchTST [30]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.135                                                                                                                                                                                                    | 0.250                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                       | 2.559                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                     | 0.243                                                                                                                                                                                                      | 1.054                                                                                                                                                                                                        |
| Reformer [19]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FEDformer [45]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                          | 0.350                                                                                                                                                                                                                                                                                                                     | 0.727                                                                                                                                                                                 | 3.840                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                     | 0.292                                                                                                                                                                                                      | 1.289                                                                                                                                                                                                        |
| SAT   12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                            |                                                                                                                                                                                                              |
| MTGNN [15]   0.324   0.368   1.172   0.247   0.577   2.762   0.0975   0.214   1.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                            |                                                                                                                                                                                                              |
| MegaCRN   15   0.332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                            |                                                                                                                                                                                                              |
| ITransformer   Z8   0.242   0.376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                            |                                                                                                                                                                                                              |
| CrossFormer [42]         0.307         0.446         1.467         0.238         0.576         2.497         0.0881         0.197         0.996           Card [34]         0.238         0.378         1.076         0.228         0.576         2.455         0.0850         0.210         0.996           FourierGNN [40]         0.309         0.454         1.551         0.382         0.792         4.159         0.119         0.208         1.098           FPGNN [26]         0.269         0.427         1.283         0.302         0.780         2.507         0.107         0.205         0.976           Sumba         0.234         0.369         1.045         0.225         0.569         2.358         0.0845         0.191         0.897           Mcthod         Electricity         MaR         RMSE         MAPE(%)         MAE         RMSE         MAPE(%)           MICN [33]         ModernTCN [29]         0.221         0.331         1.945         0.151         0.306         7.100         0.197         0.292         1.582           PatchTST [30]         0.211         0.329         1.859         0.128         0.309         1.0480         0.246         0.345         1.611         0.366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                            |                                                                                                                                                                                                              |
| Card [34]         0.238         0.378         1.076         0.228         0.576         2.455         0.0850         0.210         0.996           ESG [39]         0.313         0.454         1.179         0.269         0.667         2.868         0.0935         0.204         0.962           FourierGNN [40]         0.309         0.454         1.551         0.382         0.792         4.159         0.119         0.208         1.098           Bumba         0.234         0.369         1.045         0.225         0.569         2.358         0.0845         0.119         0.208         1.098           Method         MCR         RMSE         MAPE(%)         MAE         RMSE         MAPE(%)         MAE <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                            |                                                                                                                                                                                                              |
| ESG[39]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                            |                                                                                                                                                                                                              |
| FourierGNN [40]   0.309   0.454   1.551   0.382   0.792   4.159   0.119   0.208   1.098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                            |                                                                                                                                                                                                              |
| TPGNN [26]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                            |                                                                                                                                                                                                              |
| Method<br>(F = 24)         Belectricity<br>MAE         Weather<br>RMSE         Weather<br>MAPE(%)         MAE         PEMS<br>RMSE         MAPE(%)           MICN [33]         0.261         0.375         2.595         0.149         0.309         5.026         0.197         0.292         1.646           ModernTCN [29]         0.222         0.331         1.945         0.151         0.306         7.100         0.197         0.290         1.582           PatchTST [30]         0.211         0.329         1.859         0.128         0.309         10.480         0.246         0.345         1.611           FEDformer [45]         0.281         0.400         2.782         0.254         0.407         10.152         0.282         0.394         1.983           Autoformer [19]         0.402         0.554         3.829         0.248         0.422         8.590         0.263         0.400         2.435           S 4 [12]         0.348         0.499         3.258         0.269         0.429         8.225         0.259         0.361         2.403           MTGNN [38]         0.194         0.311         1.777         0.119         0.331         8.730         0.209         0.307         1.617           MegaCRN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                            |                                                                                                                                                                                                              |
| (F = 24)         MAE         RMSE         MAPE(%)         MAE         RMSE         MAPE(%)         MAE         RMSE         MAPE(%)           MICN [33]         0.261         0.375         2.595         0.149         0.309         5.026         0.197         0.292         1.646           ModenTCN [29]         0.222         0.331         1.945         0.151         0.306         7.100         0.197         0.290         1.582           PatchTST [30]         0.211         0.329         1.859         0.128         0.309         1.0480         0.246         0.345         1.611           FEDformer [45]         0.281         0.400         2.782         0.254         0.407         10.152         0.282         0.348         1.983           Autoformer [35]         0.278         0.398         2.932         0.248         0.422         8.590         0.465         0.601         2.277           Reformer [19]         0.402         0.554         3.829         0.248         0.422         8.590         0.260         0.400         2.435           MTGNN [38]         0.194         0.311         1.777         0.119         0.321         1.944         0.311         7.949         0.230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sumba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.045                                                                                                                                                                                                    | 0.225                                                                                                                                                                                                                                                                                                                     | 0.569                                                                                                                                                                                 | 2.358                                                                                                                                                                                                        | 0.0845                                                                                                                                                                                                                                                                                              | 0.191                                                                                                                                                                                                      | 0.897                                                                                                                                                                                                        |
| (F = 24)         MAE         RMSE         MAPE(%)         MAE         RMSE         MAPE(%)         MAE         RMSE         MAPE(%)           MICN [33]         0.261         0.375         2.595         0.149         0.309         5.026         0.197         0.292         1.646           ModenTCN [29]         0.222         0.331         1.945         0.151         0.306         7.100         0.197         0.290         1.582           PatchTST [30]         0.211         0.329         1.859         0.128         0.309         1.0480         0.246         0.345         1.611           FEDformer [45]         0.281         0.400         2.782         0.254         0.407         10.152         0.282         0.348         1.983           Autoformer [35]         0.278         0.398         2.932         0.248         0.422         8.590         0.465         0.601         2.277           Reformer [19]         0.402         0.554         3.829         0.248         0.422         8.590         0.260         0.400         2.435           MTGNN [38]         0.194         0.311         1.777         0.119         0.321         1.944         0.311         7.949         0.230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                            |                                                                                                                                                                                                              |
| MICN [33]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Flectric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ity                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                         | Weath                                                                                                                                                                                 | or                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                   | DEM                                                                                                                                                                                                        | <u> </u>                                                                                                                                                                                                     |
| ModernTCN [29]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          | MAE                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                       |                                                                                                                                                                                                              | MAE                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                            |                                                                                                                                                                                                              |
| PatchTST [30]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (F=24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MAPE(%)                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                           | RMSE                                                                                                                                                                                  | MAPE(%)                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                     | RMSE                                                                                                                                                                                                       | MAPE(%)                                                                                                                                                                                                      |
| Autoformer [35]   0.278   0.398   2.932   0.234   0.389   9.728   0.455   0.601   2.277     Reformer [19]   0.402   0.554   3.829   0.248   0.422   8.590   0.263   0.400   2.435     S4 [12]   0.348   0.499   3.258   0.269   0.429   8.225   0.259   0.361   2.403     MTGNN [38]   0.194   0.311   1.777   0.119   0.331   8.730   0.209   0.307   1.617     MegaCRN [15]   0.337   0.483   2.593   0.144   0.311   7.949   0.230   0.343   1.937     ITransformer [28]   0.195   0.310   1.774   0.126   0.313   8.254   0.200   0.296   1.552     CrossFormer [42]   0.196   0.310   1.944   0.160   0.309   7.186   0.189   0.283   1.565     Card [34]   0.197   0.315   1.746   0.115   0.303   8.007   0.196   0.294   1.528     ESG [39]   0.196   0.314   1.729   0.127   0.294   5.227   0.182   0.296   1.507     FourierGNN [40]   0.360   0.396   2.409   0.133   0.259   11.606   0.245   0.367   1.518     TPGNN [26]   0.262   0.355   2.121   0.125   0.296   5.238   0.226   0.319   1.903     Sumba   0.189   0.303   1.696   0.115   0.295   8.593   0.186   0.281   1.488      Method   ETTh2   Traffic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (F = 24) MICN [33]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MAPE(%)<br>2.595                                                                                                                                                                                         | 0.149                                                                                                                                                                                                                                                                                                                     | 0.309                                                                                                                                                                                 | MAPE(%) <b>5.026</b>                                                                                                                                                                                         | 0.197                                                                                                                                                                                                                                                                                               | RMSE 0.292                                                                                                                                                                                                 | MAPE(%)<br>1.646                                                                                                                                                                                             |
| Reformer [19]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (F = 24)<br>MICN [33]<br>ModernTCN [29]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.261 0.222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.375<br>0.331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MAPE(%)<br>2.595<br>1.945                                                                                                                                                                                | 0.149 0.151                                                                                                                                                                                                                                                                                                               | 0.309<br>0.306                                                                                                                                                                        | MAPE(%)<br>5.026<br>7.100                                                                                                                                                                                    | 0.197                                                                                                                                                                                                                                                                                               | 0.292<br>0.290                                                                                                                                                                                             | MAPE(%)<br>1.646<br>1.582                                                                                                                                                                                    |
| S4 [12]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (F=24) MICN [33] ModernTCN [29] PatchTST [30]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.261<br>0.222<br>0.211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.375<br>0.331<br>0.329                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MAPE(%)<br>2.595<br>1.945<br>1.859                                                                                                                                                                       | 0.149<br>0.151<br>0.128                                                                                                                                                                                                                                                                                                   | 0.309<br>0.306<br>0.309                                                                                                                                                               | MAPE(%)<br>5.026<br>7.100<br>10.480                                                                                                                                                                          | 0.197<br>0.197<br>0.246                                                                                                                                                                                                                                                                             | 0.292<br>0.290<br>0.345                                                                                                                                                                                    | MAPE(%)<br>1.646<br>1.582<br>1.611                                                                                                                                                                           |
| MTGNN [38]         0.194         0.311         1.777         0.119         0.331         8.730         0.209         0.307         1.617           MegaCRN [15]         0.337         0.483         2.593         0.144         0.311         7.949         0.230         0.343         1.937           ITransformer [28]         0.195         0.310         1.774         0.126         0.313         8.254         0.200         0.296         1.552           CrossFormer [42]         0.195         0.310         1.774         0.126         0.313         8.254         0.200         0.296         1.552           Card [34]         0.197         0.315         1.746         0.115         0.303         8.007         0.196         0.294         1.528           ESG [39]         0.196         0.314         1.729         0.127 <b>0.294</b> 5.227 <b>0.182</b> 0.296         1.507           Fourier GNN [40]         0.316         0.396         2.409         0.133         0.259         11.606         0.245         0.367         1.518           TPGNN [26]         0.262         0.355         2.121         0.125         0.295         8.593         0.186 <b>0.281</b> 1.488 <td>(F=24) MICN [33] ModernTCN [29] PatchTST [30] FEDformer [45]</td> <td>0.261<br/>0.222<br/>0.211<br/>0.281<br/>0.278</td> <td>0.375<br/>0.331<br/>0.329<br/>0.400<br/>0.398</td> <td>MAPE(%) 2.595 1.945 1.859 2.782 2.932</td> <td>0.149<br/>0.151<br/>0.128<br/>0.254<br/>0.234</td> <td>0.309<br/>0.306<br/>0.309<br/>0.407<br/>0.389</td> <td><b>5.026</b> 7.100 10.480 10.152 9.728</td> <td>0.197<br/>0.197<br/>0.246<br/>0.282<br/>0.455</td> <td>0.292<br/>0.290<br/>0.345<br/>0.394<br/>0.601</td> <td>MAPE(%)  1.646 1.582 1.611 1.983 2.277</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (F=24) MICN [33] ModernTCN [29] PatchTST [30] FEDformer [45]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.261<br>0.222<br>0.211<br>0.281<br>0.278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.375<br>0.331<br>0.329<br>0.400<br>0.398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MAPE(%) 2.595 1.945 1.859 2.782 2.932                                                                                                                                                                    | 0.149<br>0.151<br>0.128<br>0.254<br>0.234                                                                                                                                                                                                                                                                                 | 0.309<br>0.306<br>0.309<br>0.407<br>0.389                                                                                                                                             | <b>5.026</b> 7.100 10.480 10.152 9.728                                                                                                                                                                       | 0.197<br>0.197<br>0.246<br>0.282<br>0.455                                                                                                                                                                                                                                                           | 0.292<br>0.290<br>0.345<br>0.394<br>0.601                                                                                                                                                                  | MAPE(%)  1.646 1.582 1.611 1.983 2.277                                                                                                                                                                       |
| MegaCRN [15]   0.337   0.483   2.593   0.144   0.311   7.949   0.230   0.343   1.937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $(F=24) \\ \begin{tabular}{ll} MICN [33] \\ ModernTCN [29] \\ PatchTST [30] \\ FEDformer [45] \\ Autoformer [35] \\ Reformer [19] \\ \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.261<br>0.222<br>0.211<br>0.281<br>0.278<br>0.402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RMSE<br>0.375<br>0.331<br>0.329<br>0.400<br>0.398<br>0.554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829                                                                                                                                                              | 0.149<br>0.151<br>0.128<br>0.254<br>0.234<br>0.248                                                                                                                                                                                                                                                                        | RMSE<br>0.309<br>0.306<br>0.309<br>0.407<br>0.389<br>0.422                                                                                                                            | MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590                                                                                                                                                                | 0.197<br>0.197<br>0.246<br>0.282<br>0.455<br>0.263                                                                                                                                                                                                                                                  | RMSE<br>0.292<br>0.290<br>0.345<br>0.394<br>0.601<br>0.400                                                                                                                                                 | MAPE(%)  1.646 1.582 1.611 1.983 2.277 2.435                                                                                                                                                                 |
| Transformer   128   0.195   0.310   1.774   0.126   0.313   8.254   0.200   0.296   1.552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(F=24) \\ \begin{tabular}{l} MICN [33] \\ ModernTCN [29] \\ PatchTST [30] \\ FEDformer [45] \\ Autoformer [35] \\ Reformer [19] \\ S4 [12] \\ \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.261<br>0.222<br>0.211<br>0.281<br>0.278<br>0.402<br>0.348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.375<br>0.331<br>0.329<br>0.400<br>0.398<br>0.554<br>0.499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829 3.258                                                                                                                                                        | 0.149<br>0.151<br>0.128<br>0.254<br>0.234<br>0.248<br>0.269                                                                                                                                                                                                                                                               | 0.309<br>0.306<br>0.309<br>0.407<br>0.389<br>0.422<br>0.429                                                                                                                           | MAPE(%)<br>5.026<br>7.100<br>10.480<br>10.152<br>9.728<br>8.590<br>8.225                                                                                                                                     | 0.197<br>0.197<br>0.246<br>0.282<br>0.455<br>0.263<br>0.259                                                                                                                                                                                                                                         | 0.292<br>0.290<br>0.345<br>0.394<br>0.601<br>0.400<br>0.361                                                                                                                                                | MAPE(%) 1.646 1.582 1.611 1.983 2.277 2.435 2.403                                                                                                                                                            |
| CrossFormer [42]         0.196         0.310         1.944         0.160         0.309         7.186         0.189         0.283         1.565           Card [34]         0.197         0.315         1.746         0.115         0.303         8.007         0.196         0.294         1.528           ESG [39]         0.196         0.314         1.729         0.127         0.294         5.227         0.182         0.296         1.507           FourierGNN [40]         0.316         0.396         2.409         0.133         0.259         11.606         0.245         0.367         1.518           TPGNN [26]         0.262         0.355         2.121         0.125         0.296         5.238         0.226         0.319         1.903           Method         ETTh2         Traffic         Solar-Energy           (F = 24)         MAE         MAPE(%)         MAE         RMSE         MAPE(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $(F=24) \\ \begin{tabular}{ll} MICN [33] \\ ModernTCN [29] \\ PatchTST [30] \\ FEDformer [45] \\ Autoformer [35] \\ Reformer [19] \\ S4 [12] \\ MTGNN [38] \\ \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.261<br>0.222<br>0.211<br>0.281<br>0.278<br>0.402<br>0.348<br>0.194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.375<br>0.331<br>0.329<br>0.400<br>0.398<br>0.554<br>0.499<br>0.311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MAPE(%)  2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777                                                                                                                                                 | 0.149<br>0.151<br>0.128<br>0.254<br>0.234<br>0.248<br>0.269<br>0.119                                                                                                                                                                                                                                                      | RMSE<br>0.309<br>0.306<br>0.309<br>0.407<br>0.389<br>0.422<br>0.429<br>0.331                                                                                                          | MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730                                                                                                                                                    | 0.197<br>0.197<br>0.246<br>0.282<br>0.455<br>0.263<br>0.259<br>0.209                                                                                                                                                                                                                                | 0.292<br>0.290<br>0.345<br>0.394<br>0.601<br>0.400<br>0.361<br>0.307                                                                                                                                       | MAPE(%)  1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617                                                                                                                                                     |
| Card [34]         0.197         0.315         1.746         0.115         0.303         8.007         0.196         0.294         1.528           ESG [39]         0.196         0.314         1.729         0.127         0.294         5.227         0.182         0.296         1.507           FourierGNN [40]         0.316         0.396         2.409         0.133         0.259         11.606         0.245         0.367         1.518           TPGNN [26]         0.262         0.355         2.121         0.125         0.296         5.238         0.226         0.319         1.903           Sumba         0.189         0.303         1.696         0.115         0.295         8.593         0.186         0.281         1.488           Method<br>(F = 24)         MAE         RMSE         MAPE(%)         MAE         RMSE         MAPE(%)         MAE         RMSE         MAPE(%)           MICN [33]         0.313         0.464         1.345         0.294         0.693         3.107         0.146         0.284         1.216           ModernTCN [29]         0.479         0.631         3.095         0.281         0.626         3.261         0.160         0.279         1.176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{split} &(F=24)\\ &\text{MICN [33]}\\ &\text{ModernTCN [29]}\\ &\text{PatchTST [30]}\\ &\text{FEDformer [45]}\\ &\text{Autoformer [35]}\\ &\text{Reformer [19]}\\ &\text{S4 [12]}\\ &\text{MTGNN [38]}\\ &\text{MegaCRN [15]} \end{split} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.261<br>0.222<br>0.211<br>0.281<br>0.278<br>0.402<br>0.348<br>0.194<br>0.337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RMSE<br>0.375<br>0.331<br>0.329<br>0.400<br>0.398<br>0.554<br>0.499<br>0.311<br>0.483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MAPE(%)  2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593                                                                                                                                           | 0.149<br>0.151<br>0.128<br>0.254<br>0.234<br>0.248<br>0.269<br>0.119<br>0.144                                                                                                                                                                                                                                             | RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.331 0.311                                                                                                                            | MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949                                                                                                                                              | 0.197<br>0.197<br>0.246<br>0.282<br>0.455<br>0.263<br>0.259<br>0.209<br>0.230                                                                                                                                                                                                                       | RMSE<br>0.292<br>0.290<br>0.345<br>0.394<br>0.601<br>0.400<br>0.361<br>0.307<br>0.343                                                                                                                      | MAPE(%)  1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937                                                                                                                                               |
| ESG [39]         0.196         0.314         1.729         0.127         0.294         5.227         0.182         0.296         1.507           FourierGNN [26]         0.316         0.396         2.409         0.133         0.259         11.606         0.245         0.367         1.518           TPGNN [26]         0.262         0.355         2.121         0.125         0.296         5.238         0.226         0.319         1.903           Sumba         0.189         0.303         1.696         0.115         0.295         8.593         0.186         0.281         1.488           Method (F = 24)         MAE         RMSE         MAPE(%)         MAE         RMSE         MAPE(%)         MAE         RMSE         MAPE(%)           MICN [33]         0.313         0.464         1.345         0.294         0.693         3.107         0.146         0.284         1.216           ModernTCN [29]         0.479         0.631         3.095         0.281         0.626         3.261         0.160         0.279         1.176           PatchTST [30]         0.281         0.440         1.233         0.258         0.594         2.613         0.166         0.310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{l} (F=24) \\ \hline \text{MICN [33]} \\ \hline \text{ModernTCN [29]} \\ \hline \text{PatchTST [30]} \\ \hline \text{FEDformer [45]} \\ \hline \text{Autoformer [33]} \\ \hline \text{Reformer [19]} \\ \hline \text{S4 [12]} \\ \hline \hline \text{MTGNN [38]} \\ \hline \text{MegaCRN [15]} \\ \hline \text{iTransformer [28]} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.261<br>0.222<br>0.211<br>0.281<br>0.278<br>0.402<br>0.348<br>0.194<br>0.337<br>0.195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RMSE  0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.483 0.310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774                                                                                                                                      | 0.149<br>0.151<br>0.128<br>0.254<br>0.234<br>0.248<br>0.269<br>0.119<br>0.144<br>0.126                                                                                                                                                                                                                                    | 0.309<br>0.306<br>0.309<br>0.407<br>0.389<br>0.422<br>0.429<br>0.331<br>0.311                                                                                                         | MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254                                                                                                                                        | 0.197<br>0.197<br>0.246<br>0.282<br>0.455<br>0.263<br>0.259<br>0.209<br>0.230<br>0.200                                                                                                                                                                                                              | 0.292<br>0.290<br>0.345<br>0.394<br>0.601<br>0.400<br>0.361<br>0.307<br>0.343<br>0.296                                                                                                                     | MAPE(%)  1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552                                                                                                                                         |
| FourierGNN [40]   0.316   0.396   2.409   0.133   0.259   11.606   0.245   0.367   1.518     TPGNN [26]   0.262   0.355   2.121   0.125   0.296   5.238   0.226   0.319   1.903     Sumba   0.189   0.303   1.696   0.115   0.295   8.593   0.186   0.281   1.488     Method   ETTh2   Traffic   Traffic   Solar-Energy   (F = 24)   MAE   RMSE   MAPE(%)   MAE   RMSE   MAPE(%)   MAE   RMSE   MAPE(%)     MICN [33]   0.313   0.464   1.345   0.294   0.693   3.107   0.146   0.284   1.216     ModernTCN [29]   0.479   0.631   3.095   0.281   0.626   3.261   0.160   0.279   1.176     PatchTST [30]   0.281   0.440   1.233   0.258   0.594   2.613   0.166   0.310   1.219     FEDformer [45]   0.368   0.542   1.651   0.353   0.740   4.142   0.229   0.345   1.533     Autoformer [35]   0.398   0.579   1.690   0.354   0.743   3.519   0.355   0.502   1.929     Reformer [19]   0.754   0.955   5.485   0.378   0.815   3.982   0.189   0.328   1.585     S4 [12]   0.6378   0.841   2.844   0.313   0.754   3.291   0.174   0.272   2.124     MTGNN [38]   0.288   0.452   1.267   0.266   0.602   3.117   0.138   0.286   1.224     MegaCRN [15]   0.363   0.516   1.738   0.415   0.833   4.990   0.151   0.296   1.508     Tiransformer [28]   0.276   0.436   1.251   0.247   0.577   2.762   0.137   0.290   1.210     CrossFormer [42]   0.407   0.588   1.774   0.248   0.676   2.675   0.121   0.278   1.121     Card [34]   0.274   0.439   1.196   0.247   0.578   2.481   0.122   0.294   1.278     ESG [39]   0.308   0.457   1.271   0.275   0.689   2.715   0.124   0.271   1.166     FourierGNN [40]   0.326   0.515   1.374   0.427   0.794   4.189   0.162   0.307   1.571     TPGNN [26]   0.293   0.445   1.271   0.349   0.728   3.319   0.140   0.277   1.253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{l} (F=24)\\ \hline \text{MICN [33]}\\ \hline \text{ModernTCN [29]}\\ \hline \text{PatchTST [30]}\\ \hline \text{FEDformer [45]}\\ \hline \text{Autoformer [35]}\\ \hline \text{Reformer [19]}\\ \hline \text{S4 [12]}\\ \hline \hline \text{MTGNN [38]}\\ \hline \text{MegaCRN [15]}\\ \hline \text{iTransformer [28]}\\ \hline \text{CrossFormer [42]} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                        | 0.261<br>0.222<br>0.211<br>0.281<br>0.278<br>0.402<br>0.348<br>0.194<br>0.337<br>0.195<br>0.196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RMSE  0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944                                                                                                                                | 0.149<br>0.151<br>0.128<br>0.254<br>0.234<br>0.248<br>0.269<br>0.119<br>0.144<br>0.126<br>0.160                                                                                                                                                                                                                           | 0.309<br>0.306<br>0.309<br>0.407<br>0.389<br>0.422<br>0.429<br>0.331<br>0.311<br>0.313                                                                                                | MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186                                                                                                                                  | 0.197<br>0.197<br>0.246<br>0.282<br>0.455<br>0.263<br>0.259<br>0.209<br>0.230<br>0.200<br>0.189                                                                                                                                                                                                     | 0.292<br>0.290<br>0.345<br>0.601<br>0.400<br>0.361<br>0.307<br>0.343<br>0.296<br>0.283                                                                                                                     | MAPE(%)  1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565                                                                                                                                   |
| TPGNN [26]         0.262         0.355         2.121         0.125         0.296         5.238         0.226         0.319         1.903           Sumba         0.189         0.303         1.696         0.115         0.295         8.593         0.186         0.281         1.488           Method<br>(F = 24)         ETTh2<br>MAE         RMSE         MAPE(%)         MAE         RMSE         MAPE(%)         MAE         RMSE         MAPE(%)           MICN [33]         0.313         0.464         1.345         0.294         0.693         3.107         0.146         0.284         1.216           ModernTCN [29]         0.479         0.631         3.095         0.281         0.693         3.107         0.146         0.284         1.216           PatchTST [30]         0.281         0.440         1.233         0.258         0.594         2.613         0.166         0.310         1.219           FEDformer [45]         0.368         0.542         1.651         0.353         0.740         4.142         0.229         0.345         1.533           Autoformer [35]         0.398         0.579         1.690         0.354         0.743         3.519         0.355         0.502         1.929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{l} (F=24)\\ \hline \text{MICN [33]}\\ \hline \text{ModernTCN [29]}\\ \hline \text{PatchTST [30]}\\ \hline \text{FEDformer [45]}\\ \hline \text{Autoformer [35]}\\ \hline \text{Reformer [19]}\\ \hline \text{S4 [12]}\\ \hline \hline \text{MTGNN [38]}\\ \hline \text{MegaCRN [15]}\\ \hline \text{iTransformer [28]}\\ \hline \text{CrossFormer [42]}\\ \hline \text{Card [34]} \end{array}$                                                                                                                                                                                                                                                                                                                                                                              | 0.261<br>0.222<br>0.211<br>0.281<br>0.278<br>0.402<br>0.348<br>0.194<br>0.337<br>0.195<br>0.196<br>0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RMSE  0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.310 0.315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746                                                                                                                          | 0.149<br>0.151<br>0.128<br>0.254<br>0.234<br>0.248<br>0.269<br>0.119<br>0.144<br>0.126<br>0.160<br><b>0.115</b>                                                                                                                                                                                                           | RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.331 0.311 0.313 0.309 0.303                                                                                                          | MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007                                                                                                                            | 0.197<br>0.197<br>0.246<br>0.282<br>0.455<br>0.263<br>0.259<br>0.209<br>0.230<br>0.200<br>0.189<br>0.196                                                                                                                                                                                            | RMSE 0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.283 0.294                                                                                                                               | MAPE(%)  1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528                                                                                                                             |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{l} (F=24)\\ \hline \text{MICN [33]}\\ \hline \text{ModernTCN [29]}\\ \hline \text{PatchTST [30]}\\ \hline \text{FEDformer [45]}\\ \hline \text{Autoformer [35]}\\ \hline \text{Reformer [19]}\\ \hline \text{S4 [12]}\\ \hline \hline \text{MTGNN [38]}\\ \hline \text{MegaCRN [15]}\\ \hline \hline \text{irransformer [28]}\\ \hline \\ \hline \text{CrossFormer [42]}\\ \hline \\ \hline \text{Card [34]}\\ \hline \\ \hline \text{ESG [39]} \end{array}$                                                                                                                                                                                                                                                                                                                | 0.261<br>0.222<br>0.211<br>0.281<br>0.278<br>0.402<br>0.348<br><u>0.194</u><br>0.337<br>0.195<br>0.196<br>0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RMSE  0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.310 0.315 0.314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MAPE(%)  2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 1.729                                                                                                                   | 0.149<br>0.151<br>0.128<br>0.254<br>0.234<br>0.248<br>0.269<br>0.119<br>0.144<br>0.126<br>0.160<br><b>0.115</b>                                                                                                                                                                                                           | RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.331 0.311 0.313 0.309 0.303 0.294                                                                                                    | MAPE(%)  5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 5.227                                                                                                                     | 0.197<br>0.197<br>0.246<br>0.282<br>0.455<br>0.263<br>0.259<br>0.209<br>0.230<br>0.200<br>0.189<br>0.196<br><b>0.182</b>                                                                                                                                                                            | RMSE 0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.283 0.294 0.296                                                                                                                         | MAPE(%)  1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 1.507                                                                                                                       |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{split} &(F=24)\\ &\text{MICN [33]}\\ &\text{ModernTCN [29]}\\ &\text{PatchTST [30]}\\ &\text{FEDformer [45]}\\ &\text{Autoformer [35]}\\ &\text{Reformer [19]}\\ &\text{S4 [12]}\\ &\text{MTGNN [38]}\\ &\text{MegaCRN [15]}\\ &\text{irransformer [28]}\\ &\text{CrossFormer [42]}\\ &\text{Card [34]}\\ &\text{ESG [39]}\\ &\text{FourierGNN [40]} \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.261<br>0.222<br>0.211<br>0.281<br>0.278<br>0.402<br>0.348<br>0.194<br>0.377<br>0.195<br>0.196<br>0.197<br>0.196<br>0.316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RMSE  0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.310 0.315 0.314 0.396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MAPE(%)  2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 1.729 2.409                                                                                                             | 0.149<br>0.151<br>0.128<br>0.254<br>0.234<br>0.248<br>0.269<br>0.119<br>0.1144<br>0.126<br>0.160<br>0.115<br>0.127<br>0.133                                                                                                                                                                                               | RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.331 0.311 0.313 0.309 0.303 0.294 0.259                                                                                              | MAPE(%)  5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 5.227 11.606                                                                                                              | 0.197<br>0.197<br>0.246<br>0.282<br>0.455<br>0.263<br>0.259<br>0.209<br>0.200<br>0.189<br>0.196<br><b>0.182</b><br>0.245                                                                                                                                                                            | RMSE 0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.283 0.294 0.296 0.367                                                                                                                   | MAPE(%)  1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 1.507 1.518                                                                                                                 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{split} &(F=24)\\ &\text{MICN [33]}\\ &\text{ModernTCN [29]}\\ &\text{PatchTST [30]}\\ &\text{FEDformer [45]}\\ &\text{Autoformer [35]}\\ &\text{Reformer [19]}\\ &\text{S4 [12]}\\ &\text{MTGNN [38]}\\ &\text{MegaCRN [15]}\\ &\text{iTransformer [28]}\\ &\text{CrossFormer [42]}\\ &\text{Card [34]}\\ &\text{ESG [39]}\\ &\text{FourierGNN [40]}\\ &\text{TPGNN [26]} \end{split}$                                                                                                                                                                                                                                                                                                                                                                                             | 0.261<br>0.222<br>0.211<br>0.281<br>0.278<br>0.402<br>0.348<br>0.195<br>0.195<br>0.196<br>0.197<br>0.196<br>0.316<br>0.262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RMSE  0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.315 0.314 0.396 0.355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MAPE(%)  2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 1.729 2.409 2.121                                                                                                       | 0.149<br>0.151<br>0.128<br>0.254<br>0.234<br>0.248<br>0.269<br>0.119<br>0.144<br>0.126<br>0.160<br><b>0.115</b><br>0.127<br>0.133<br>0.125                                                                                                                                                                                | RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.331 0.311 0.313 0.309 0.303 0.294 0.259 0.296                                                                                        | 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 5.227 11.606 5.238                                                                                                                 | 0.197<br>0.197<br>0.246<br>0.282<br>0.455<br>0.263<br>0.259<br>0.209<br>0.230<br>0.200<br>0.189<br>0.196<br><b>0.182</b><br>0.245<br>0.226                                                                                                                                                          | RMSE 0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.283 0.294 0.296 0.367 0.319                                                                                                             | MAPE(%)  1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 1.507 1.518 1.903                                                                                                           |
| MICN [33]         0.313         0.464         1.345         0.294         0.693         3.107         0.146         0.284         1.216           ModernTCN [29]         0.479         0.631         3.095         0.281         0.626         3.261         0.160         0.279         1.176           PatchTST [30]         0.281         0.440         1.233         0.258         0.594         2.613         0.166         0.310         1.219           FEDformer [45]         0.368         0.542         1.651         0.353         0.740         4.142         0.229         0.345         1.533           Autoformer [35]         0.398         0.579         1.690         0.354         0.743         3.519         0.355         0.502         1.929           Reformer [19]         0.754         0.955         5.485         0.378         0.815         3.982         0.189         0.328         1.585           S4 [12]         0.6378         0.841         2.844         0.313         0.754         3.291         0.174         0.272         2.124           MTGNN [38]         0.288         0.452         1.267         0.266         0.602         3.117         0.138         0.286         1.224 </td <td><math display="block">(F=24) \\ \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \text{S4 [12]} \\ \text{MTGNN [38]} \\ \text{MegaCRN [15]} \\ \text{iTransformer [28]} \\ \text{CrossFormer [42]} \\ \text{Card [34]} \\ \text{ESG [39]} \\ \text{FourierGNN [40]} \\ \text{TPGNN [26]} \\ \\ \text{Sumba}</math></td> <td>0.261<br/>0.222<br/>0.211<br/>0.281<br/>0.278<br/>0.402<br/>0.348<br/>0.195<br/>0.195<br/>0.196<br/>0.197<br/>0.196<br/>0.316<br/>0.262</td> <td>RMSE 0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.310 0.315 0.314 0.396 0.355</td> <td>MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 1.729 2.409 2.121 1.696</td> <td>0.149<br/>0.151<br/>0.128<br/>0.254<br/>0.234<br/>0.248<br/>0.269<br/>0.119<br/>0.144<br/>0.126<br/>0.160<br/><b>0.115</b><br/>0.127<br/>0.133<br/>0.125</td> <td>RMSE 0.309 0.306 0.309 0.407 0.389 0.429 0.331 0.311 0.313 0.309 0.303 0.294 0.259 0.296</td> <td>MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 5.227 11.606 5.238 8.593</td> <td>0.197<br/>0.197<br/>0.246<br/>0.282<br/>0.455<br/>0.263<br/>0.259<br/>0.209<br/>0.230<br/>0.200<br/>0.189<br/>0.196<br/><b>0.182</b><br/>0.245<br/>0.226</td> <td>RMSE 0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.296 0.294 0.296 0.367 0.319 0.281</td> <td>MAPE(%)  1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 1.507 1.518 1.903 1.488</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $(F=24) \\ \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \text{S4 [12]} \\ \text{MTGNN [38]} \\ \text{MegaCRN [15]} \\ \text{iTransformer [28]} \\ \text{CrossFormer [42]} \\ \text{Card [34]} \\ \text{ESG [39]} \\ \text{FourierGNN [40]} \\ \text{TPGNN [26]} \\ \\ \text{Sumba}$                                                                                                                                                                                                                                                                                                                                                                                                     | 0.261<br>0.222<br>0.211<br>0.281<br>0.278<br>0.402<br>0.348<br>0.195<br>0.195<br>0.196<br>0.197<br>0.196<br>0.316<br>0.262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RMSE 0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.310 0.315 0.314 0.396 0.355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MAPE(%) 2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 1.729 2.409 2.121 1.696                                                                                                  | 0.149<br>0.151<br>0.128<br>0.254<br>0.234<br>0.248<br>0.269<br>0.119<br>0.144<br>0.126<br>0.160<br><b>0.115</b><br>0.127<br>0.133<br>0.125                                                                                                                                                                                | RMSE 0.309 0.306 0.309 0.407 0.389 0.429 0.331 0.311 0.313 0.309 0.303 0.294 0.259 0.296                                                                                              | MAPE(%) 5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 5.227 11.606 5.238 8.593                                                                                                   | 0.197<br>0.197<br>0.246<br>0.282<br>0.455<br>0.263<br>0.259<br>0.209<br>0.230<br>0.200<br>0.189<br>0.196<br><b>0.182</b><br>0.245<br>0.226                                                                                                                                                          | RMSE 0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.296 0.294 0.296 0.367 0.319 0.281                                                                                                       | MAPE(%)  1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 1.507 1.518 1.903 1.488                                                                                                     |
| ModernTCN [29]         0.479         0.631         3.095         0.281         0.626         3.261         0.160         0.279         1.176           PatchTST [30]         0.281         0.440         1.233         0.258         0.594         2.613         0.166         0.310         1.219           FEDformer [45]         0.368         0.542         1.651         0.353         0.740         4.142         0.229         0.345         1.533           Autoformer [35]         0.398         0.579         1.690         0.354         0.743         3.519         0.355         0.502         1.929           Reformer [19]         0.754         0.955         5.485         0.378         0.815         3.982         0.189         0.328         1.585           S4 [12]         0.6378         0.841         2.844         0.313         0.754         3.291         0.174         0.272         2.124           MTGNN [38]         0.288         0.452         1.267         0.266         0.602         3.117         0.138         0.286         1.224           MegaCRN [15]         0.363         0.516         1.738         0.415         0.833         4.990         0.151         0.296         1.508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $(F=24) \\ \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \text{S4 [12]} \\ \text{MTGNN [38]} \\ \text{MegaCRN [15]} \\ \text{iTransformer [28]} \\ \text{CrossFormer [42]} \\ \text{Card [34]} \\ \text{ESG [39]} \\ \text{FourierGNN [40]} \\ \text{TPGNN [26]} \\ \\ \text{Sumba} \\ \\ \text{Method}$                                                                                                                                                                                                                                                                                                                                                                                 | 0.261<br>  0.222<br>  0.211<br>  0.281<br>  0.278<br>  0.402<br>  0.348<br>  0.194<br>  0.337<br>  0.195<br>  0.196<br>  0.197<br>  0.196<br>  0.316<br>  0.262<br>  0.189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RMSE  0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.315 0.314 0.396 0.355  0.303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MAPE(%)  2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 1.729 2.409 2.121 1.696                                                                                                 | 0.149<br>  0.151<br>  0.128<br>  0.254<br>  0.234<br>  0.248<br>  0.269<br>  0.119<br>  0.144<br>  0.126<br>  0.160<br>  0.115<br>  0.127<br>  0.133<br>  0.125<br>  0.115                                                                                                                                                | RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.331 0.311 0.313 0.309 0.303 0.294 0.295 Traff                                                                                        | MAPE(%)  5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 5.227 11.606 5.238 8.593                                                                                                  | 0.197<br>  0.197<br>  0.246<br>  0.282<br>  0.455<br>  0.263<br>  0.259<br>  0.200<br>  0.230<br>  0.200<br>  0.189<br>  0.196<br>  0.182<br>  0.226<br>  0.226                                                                                                                                     | RMSE 0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.283 0.294 0.296 0.367 0.319 0.281 Solar-En                                                                                              | MAPE(%)  1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 1.507 1.518 1.903 1.488 ergy                                                                                                |
| PatchTST [30]         0.281         0.440         1.233         0.258         0.594         2.613         0.166         0.310         1.219           FEDformer [45]         0.368         0.542         1.651         0.353         0.740         4.142         0.229         0.345         1.533           Autoformer [35]         0.398         0.579         1.690         0.354         0.743         3.519         0.355         0.502         1.929           Reformer [19]         0.754         0.955         5.485         0.378         0.815         3.982         0.189         0.328         1.585           S4 [12]         0.6378         0.841         2.844         0.313         0.754         3.291         0.174         0.272         2.124           MTGNN [38]         0.288         0.452         1.267         0.266         0.602         3.117         0.138         0.286         1.224           MegaCRN [15]         0.363         0.516         1.738         0.415         0.833         4.990         0.151         0.296         1.508           iTransformer [28]         0.276         0.436         1.251         0.247         0.577         2.762         0.137         0.290         1.210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(F=24) \\ \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \text{S4 [12]} \\ \text{MTGNN [38]} \\ \text{MegaCRN [15]} \\ \text{iTransformer [28]} \\ \text{CrossFormer [42]} \\ \text{Card [34]} \\ \text{ESG [39]} \\ \text{FourierGNN [40]} \\ \text{TPGNN [26]} \\ \\ \text{Sumba} \\ \\ \text{Method} \\ (F=24) \\$                                                                                                                                                                                                                                                                                                                                                                    | 0.261<br>  0.222<br>  0.211<br>  0.281<br>  0.278<br>  0.402<br>  0.348<br>  0.194<br>  0.337<br>  0.195<br>  0.196<br>  0.197<br>  0.196<br>  0.316<br>  0.262<br>  0.189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RMSE  0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.315 0.314 0.396 0.355  0.303  ETTh RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MAPE(%)  2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 1.729 2.409 2.121 1.696                                                                                                 | 0.149<br>  0.151<br>  0.128<br>  0.254<br>  0.234<br>  0.248<br>  0.269<br>  0.119<br>  0.144<br>  0.126<br>  0.160<br>  0.115<br>  0.127<br>  0.133<br>  0.125<br>  0.115                                                                                                                                                | RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.331 0.311 0.313 0.309 0.303 0.294 0.259 0.296 0.295  Traff RMSE                                                                      | MAPE(%)  5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 5.227 11.606 5.238 8.593                                                                                                  | 0.197<br>  0.197<br>  0.246<br>  0.282<br>  0.455<br>  0.263<br>  0.259<br>  0.209<br>  0.230<br>  0.200<br>  0.189<br>  0.196<br>  0.182<br>  0.245<br>  0.226<br>  0.186                                                                                                                          | RMSE 0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.283 0.294 0.296 0.367 0.319  0.281  Solar-En                                                                                            | MAPE(%)  1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 1.507 1.518 1.903  1.488  ergy MAPE(%)                                                                                      |
| FEDformer [45]         0.368         0.542         1.651         0.353         0.740         4.142         0.229         0.345         1.533           Autoformer [35]         0.398         0.579         1.690         0.354         0.743         3.519         0.355         0.502         1.929           Reformer [19]         0.754         0.955         5.485         0.378         0.815         3.982         0.189         0.328         1.585           S4 [12]         0.6378         0.841         2.844         0.313         0.754         3.291         0.174         0.272         2.124           MTGNN [38]         0.288         0.452         1.267         0.266         0.602         3.117         0.138         0.286         1.224           MegaCRN [15]         0.363         0.516         1.738         0.415         0.833         4.990         0.151         0.296         1.508           iTransformer [28]         0.276         0.436         1.251         0.247         0.577         2.762         0.137         0.290         1.210           CrossFormer [42]         0.407         0.588         1.774         0.248         0.676         2.675         0.121         0.278         1.121 <td><math display="block"> (F = 24) \\ \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \text{S4 [12]} \\ \text{MTGNN [38]} \\ \text{MegaCRN [15]} \\ \text{iTransformer [28]} \\ \text{CrossFormer [42]} \\ \text{Card [34]} \\ \text{ESG [39]} \\ \text{FourierGNN [40]} \\ \text{TPGNN [26]} \\ \\ \text{Sumba} \\ \\ \text{Method} \\ (F = 24) \\ \\ \text{MICN [33]} </math></td> <td>  0.261<br/>  0.222<br/>  0.211<br/>  0.281<br/>  0.278<br/>  0.402<br/>  0.348<br/>  0.194<br/>  0.337<br/>  0.195<br/>  0.196<br/>  0.197<br/>  0.196<br/>  0.316<br/>  0.262<br/>  0.189<br/>  MAE<br/>  0.313</td> <td>RMSE  0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.315 0.314 0.396 0.355  0.303  ETTh RMSE  0.464</td> <td>MAPE(%)  2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 1.729 2.409 2.121 1.696  2 MAPE(%) 1.345</td> <td>  0.149<br/>  0.151<br/>  0.128<br/>  0.254<br/>  0.234<br/>  0.248<br/>  0.269<br/>  0.119<br/>  0.144<br/>  0.126<br/>  0.160<br/>  0.115<br/>  0.127<br/>  0.133<br/>  0.125<br/>  0.115<br/>  0.115<br/>  0.115</td> <td>RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.331 0.311 0.313 0.309 0.303 0.294 0.295 Trafff RMSE 0.693</td> <td>MAPE(%)  5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 5.227 11.606 5.238 8.593</td> <td>  0.197<br/>  0.197<br/>  0.246<br/>  0.282<br/>  0.455<br/>  0.263<br/>  0.259<br/>  0.200<br/>  0.230<br/>  0.200<br/>  0.196<br/>  0.182<br/>  0.245<br/>  0.226<br/>  0.186<br/>  MAE<br/>  0.146</td> <td>RMSE 0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.283 0.294 0.296 0.367 0.319 0.281  Solar-En RMSE 0.284</td> <td>MAPE(%)  1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 1.507 1.518 1.903 1.488  ergy MAPE(%) 1.216</td>                                                                                                                                   | $ (F = 24) \\ \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \text{S4 [12]} \\ \text{MTGNN [38]} \\ \text{MegaCRN [15]} \\ \text{iTransformer [28]} \\ \text{CrossFormer [42]} \\ \text{Card [34]} \\ \text{ESG [39]} \\ \text{FourierGNN [40]} \\ \text{TPGNN [26]} \\ \\ \text{Sumba} \\ \\ \text{Method} \\ (F = 24) \\ \\ \text{MICN [33]} $                                                                                                                                                                                                                                                                                                                                          | 0.261<br>  0.222<br>  0.211<br>  0.281<br>  0.278<br>  0.402<br>  0.348<br>  0.194<br>  0.337<br>  0.195<br>  0.196<br>  0.197<br>  0.196<br>  0.316<br>  0.262<br>  0.189<br>  MAE<br>  0.313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RMSE  0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.315 0.314 0.396 0.355  0.303  ETTh RMSE  0.464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MAPE(%)  2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 1.729 2.409 2.121 1.696  2 MAPE(%) 1.345                                                                                | 0.149<br>  0.151<br>  0.128<br>  0.254<br>  0.234<br>  0.248<br>  0.269<br>  0.119<br>  0.144<br>  0.126<br>  0.160<br>  0.115<br>  0.127<br>  0.133<br>  0.125<br>  0.115<br>  0.115<br>  0.115                                                                                                                          | RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.331 0.311 0.313 0.309 0.303 0.294 0.295 Trafff RMSE 0.693                                                                            | MAPE(%)  5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 5.227 11.606 5.238 8.593                                                                                                  | 0.197<br>  0.197<br>  0.246<br>  0.282<br>  0.455<br>  0.263<br>  0.259<br>  0.200<br>  0.230<br>  0.200<br>  0.196<br>  0.182<br>  0.245<br>  0.226<br>  0.186<br>  MAE<br>  0.146                                                                                                                 | RMSE 0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.283 0.294 0.296 0.367 0.319 0.281  Solar-En RMSE 0.284                                                                                  | MAPE(%)  1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 1.507 1.518 1.903 1.488  ergy MAPE(%) 1.216                                                                                 |
| Autoformer [35]         0.398         0.579         1.690         0.354         0.743         3.519         0.355         0.502         1.929           Reformer [19]         0.754         0.955         5.485         0.378         0.815         3.982         0.189         0.328         1.585           S4 [12]         0.6378         0.841         2.844         0.313         0.754         3.291         0.174         0.272         2.124           MTGNN [38]         0.288         0.452         1.267         0.266         0.602         3.117         0.138         0.286         1.224           MegaCRN [15]         0.363         0.516         1.738         0.415         0.833         4.990         0.151         0.296         1.508           iTransformer [28]         0.276         0.436         1.251         0.247         0.577         2.762         0.137         0.290         1.210           CrossFormer [42]         0.407         0.588         1.774         0.248         0.676         2.675         0.121         0.278         1.121           Card [34]         0.274         0.439         1.196         0.247         0.578         2.481         0.122         0.294         1.278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ (F = 24) \\ \hline {\rm MICN [33]} \\ {\rm ModernTCN [29]} \\ {\rm PatchTST [30]} \\ {\rm FEDformer [45]} \\ {\rm Autoformer [35]} \\ {\rm Reformer [19]} \\ {\rm S4 [12]} \\ \hline {\rm MTGNN [38]} \\ {\rm MegaCRN [15]} \\ {\rm iTransformer [28]} \\ {\rm CrossFormer [42]} \\ {\rm Card [34]} \\ {\rm ESG [39]} \\ {\rm FourierGNN [40]} \\ {\rm TPGNN [26]} \\ \\ {\rm Sumba} \\ \hline {\rm Method} \\ (F = 24) \\ \hline {\rm MICN [33]} \\ {\rm ModernTCN [29]} \\ \hline $                                                                                                                                                                                                                                                                                                    | 0.261<br>  0.222<br>  0.211<br>  0.281<br>  0.278<br>  0.402<br>  0.337<br>  0.195<br>  0.196<br>  0.197<br>  0.196<br>  0.316<br>  0.262<br>  0.189<br>  MAE<br>  0.313<br>  0.479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RMSE  0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.315 0.314 0.396 0.355  0.303  ETTh RMSE  0.464 0.631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MAPE(%)  2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 1.729 2.409 2.121 1.696  2 MAPE(%) 1.345 3.095                                                                          | 0.149<br>  0.151<br>  0.128<br>  0.254<br>  0.234<br>  0.248<br>  0.269<br>  0.119<br>  0.144<br>  0.126<br>  0.160<br>  0.115<br>  0.127<br>  0.133<br>  0.125<br>  0.115<br>  MAE<br>  0.294<br>  0.281                                                                                                                 | RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.331 0.311 0.313 0.309 0.303 0.294 0.259 0.296 0.295  Traff RMSE 0.693 0.626                                                          | MAPE(%)  5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 5.227 11.606 5.238 8.593  ic MAPE(%) 3.107 3.261                                                                          | 0.197<br>  0.197<br>  0.246<br>  0.282<br>  0.455<br>  0.263<br>  0.259<br>  0.200<br>  0.230<br>  0.200<br>  0.189<br>  0.196<br>  0.182<br>  0.245<br>  0.226<br>  0.186<br>  MAE                                                                                                                 | RMSE 0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.283 0.294 0.296 0.367 0.319 0.281  Solar-En RMSE 0.284 0.279                                                                            | MAPE(%)  1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 1.507 1.518 1.903  1.488  ergy  MAPE(%) 1.216 1.176                                                                         |
| S4 [12]         0.6378         0.841         2.844         0.313         0.754         3.291         0.174         0.272         2.124           MTGNN [38]         0.288         0.452         1.267         0.266         0.602         3.117         0.138         0.286         1.224           MegaCRN [15]         0.363         0.516         1.738         0.415         0.833         4.990         0.151         0.296         1.508           iTransformer [28]         0.276         0.436         1.251         0.247         0.577         2.762         0.137         0.290         1.210           CrossFormer [42]         0.407         0.588         1.774         0.248         0.676         2.675         0.121         0.278         1.121           Card [34]         0.274         0.439         1.196         0.247         0.578         2.481         0.122         0.294         1.278           ESG [39]         0.308         0.457         1.271         0.275         0.689         2.715         0.124         0.271         1.166           FourierGNN [40]         0.326         0.515         1.374         0.427         0.794         4.189         0.162         0.307         1.571 <td><math display="block">(F=24) \\ \text{MICN } [33] \\ \text{ModernTCN } [29] \\ \text{PatchTST } [30] \\ \text{FEDformer } [45] \\ \text{Autoformer } [35] \\ \text{Reformer } [19] \\ \text{S4 } [12] \\ \text{MTGNN } [38] \\ \text{MegaCRN } [15] \\ \text{iTransformer } [28] \\ \text{CrossFormer } [42] \\ \text{Card } [34] \\ \text{ESG } [39] \\ \text{FourierGNN } [40] \\ \text{TPGNN } [26] \\ \\ \text{Sumba} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\</math></td> <td>  0.261<br/>  0.222<br/>  0.211<br/>  0.281<br/>  0.278<br/>  0.402<br/>  0.337<br/>  0.195<br/>  0.196<br/>  0.197<br/>  0.196<br/>  0.316<br/>  0.262<br/>  0.189<br/>  MAE<br/>  0.313<br/>  0.479<br/>  0.281</td> <td>RMSE  0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.315 0.314 0.396 0.355  0.303  ETTh RMSE  0.464 0.631 0.440</td> <td>MAPE(%)  2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 1.729 2.409 2.121 1.696  2 MAPE(%)  1.345 3.095 1.233</td> <td>  0.149<br/>  0.151<br/>  0.128<br/>  0.254<br/>  0.234<br/>  0.248<br/>  0.269<br/>  0.114<br/>  0.126<br/>  0.160<br/>  0.115<br/>  0.127<br/>  0.133<br/>  0.125<br/>  0.115<br/>  MAE<br/>  0.294<br/>  0.281<br/>  0.258</td> <td>RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.331 0.311 0.313 0.309 0.303 0.294 0.259 0.296 0.295  Traff RMSE 0.693 0.626 0.594</td> <td>MAPE(%)  5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 5.227 11.606 5.238 8.593  ic MAPE(%) 3.107 3.261 2.613</td> <td>  0.197<br/>  0.197<br/>  0.246<br/>  0.282<br/>  0.455<br/>  0.263<br/>  0.259<br/>  0.209<br/>  0.230<br/>  0.196<br/>  0.182<br/>  0.245<br/>  0.226<br/>  0.186<br/>  MAE<br/>  0.146<br/>  0.160<br/>  0.166</td> <td>RMSE 0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.283 0.294 0.296 0.367 0.319  0.281  Solar-En RMSE 0.284 0.279 0.310</td> <td>MAPE(%)  1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 1.507 1.518 1.903 1.488  ergy MAPE(%)  1.216 1.176 1.219</td> | $(F=24) \\ \text{MICN } [33] \\ \text{ModernTCN } [29] \\ \text{PatchTST } [30] \\ \text{FEDformer } [45] \\ \text{Autoformer } [35] \\ \text{Reformer } [19] \\ \text{S4 } [12] \\ \text{MTGNN } [38] \\ \text{MegaCRN } [15] \\ \text{iTransformer } [28] \\ \text{CrossFormer } [42] \\ \text{Card } [34] \\ \text{ESG } [39] \\ \text{FourierGNN } [40] \\ \text{TPGNN } [26] \\ \\ \text{Sumba} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                             | 0.261<br>  0.222<br>  0.211<br>  0.281<br>  0.278<br>  0.402<br>  0.337<br>  0.195<br>  0.196<br>  0.197<br>  0.196<br>  0.316<br>  0.262<br>  0.189<br>  MAE<br>  0.313<br>  0.479<br>  0.281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RMSE  0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.315 0.314 0.396 0.355  0.303  ETTh RMSE  0.464 0.631 0.440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MAPE(%)  2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 1.729 2.409 2.121 1.696  2 MAPE(%)  1.345 3.095 1.233                                                                   | 0.149<br>  0.151<br>  0.128<br>  0.254<br>  0.234<br>  0.248<br>  0.269<br>  0.114<br>  0.126<br>  0.160<br>  0.115<br>  0.127<br>  0.133<br>  0.125<br>  0.115<br>  MAE<br>  0.294<br>  0.281<br>  0.258                                                                                                                 | RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.331 0.311 0.313 0.309 0.303 0.294 0.259 0.296 0.295  Traff RMSE 0.693 0.626 0.594                                                    | MAPE(%)  5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 5.227 11.606 5.238 8.593  ic MAPE(%) 3.107 3.261 2.613                                                                    | 0.197<br>  0.197<br>  0.246<br>  0.282<br>  0.455<br>  0.263<br>  0.259<br>  0.209<br>  0.230<br>  0.196<br>  0.182<br>  0.245<br>  0.226<br>  0.186<br>  MAE<br>  0.146<br>  0.160<br>  0.166                                                                                                      | RMSE 0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.283 0.294 0.296 0.367 0.319  0.281  Solar-En RMSE 0.284 0.279 0.310                                                                     | MAPE(%)  1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 1.507 1.518 1.903 1.488  ergy MAPE(%)  1.216 1.176 1.219                                                                    |
| MTGNN [38]         0.288         0.452         1.267         0.266         0.602         3.117         0.138         0.286         1.224           MegaCRN [15]         0.363         0.516         1.738         0.415         0.833         4.990         0.151         0.296         1.508           iTransformer [28]         0.276         0.436         1.251         0.247         0.577         2.762         0.137         0.290         1.210           CrossFormer [42]         0.407         0.588         1.774         0.248         0.676         2.675         0.121         0.278         1.121           Card [34]         0.274         0.439         1.196         0.247         0.578         2.481         0.122         0.294         1.278           ESG [39]         0.308         0.457         1.271         0.275         0.689         2.715         0.124         0.271         1.166           FourierGNN [40]         0.326         0.515         1.374         0.427         0.794         4.189         0.162         0.307         1.571           TPGNN [26]         0.293         0.445         1.271         0.349         0.728         3.319         0.140         0.277         1.253     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $(F=24) \\ \text{MICN } [33] \\ \text{ModernTCN } [29] \\ \text{PatchTST } [30] \\ \text{FEDformer } [45] \\ \text{Autoformer } [35] \\ \text{Reformer } [19] \\ \text{S4 } [12] \\ \text{MTGNN } [38] \\ \text{MegaCRN } [15] \\ \text{iTransformer } [28] \\ \text{CrossFormer } [42] \\ \text{Card } [34] \\ \text{ESG } [39] \\ \text{FourierGNN } [40] \\ \text{TPGNN } [26] \\ \text{Sumba} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                | 0.261<br>  0.222<br>  0.211<br>  0.281<br>  0.278<br>  0.402<br>  0.348<br>  0.194<br>  0.337<br>  0.195<br>  0.196<br>  0.197<br>  0.196<br>  0.316<br>  0.262<br>  0.189<br>  MAE<br>  0.313<br>  0.479<br>  0.281<br>  0.368<br>  0.398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RMSE  0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.315 0.314 0.396 0.355  0.303  ETTh RMSE  0.464 0.631 0.440 0.542 0.579                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MAPE(%)  2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 1.729 2.409 2.121 1.696  2 MAPE(%)  1.345 3.095 1.233 1.651 1.690                                                       | 0.149<br>  0.151<br>  0.128<br>  0.254<br>  0.234<br>  0.248<br>  0.269<br>  0.119<br>  0.144<br>  0.126<br>  0.160<br>  0.115<br>  0.127<br>  0.133<br>  0.125<br>  0.115<br>  0.125<br>  0.115<br>  0.294<br>  0.294<br>  0.298<br>  0.258<br>  0.353<br>  0.354                                                        | RMSE  0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.331 0.311 0.313 0.309 0.303 0.294 0.259 0.296 0.295  Trafff RMSE 0.693 0.626 0.594 0.740 0.743                                      | MAPE(%)  5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 5.227 11.606 5.238 8.593  fic MAPE(%) 3.107 3.261 2.613 4.142 3.519                                                       | 0.197<br>  0.197<br>  0.246<br>  0.282<br>  0.455<br>  0.263<br>  0.259<br>  0.200<br>  0.200<br>  0.189<br>  0.196<br>  0.182<br>  0.245<br>  0.226<br>  0.186<br>  0.166<br>  0.160<br>  0.166<br>  0.229<br>  0.355                                                                              | RMSE 0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.283 0.294 0.296 0.367 0.319 0.281  Solar-En RMSE 0.284 0.279 0.310 0.345 0.502                                                          | MAPE(%)  1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 1.507 1.518 1.903  1.488  ergy MAPE(%)  1.216 1.176 1.219 1.533 1.929                                                       |
| MegaCRN [15]         0.363         0.516         1.738         0.415         0.833         4.990         0.151         0.296         1.508           iTransformer [28]         0.276         0.436         1.251         0.247         0.577         2.762         0.137         0.290         1.210           CrossFormer [42]         0.407         0.588         1.774         0.248         0.676         2.675         0.121         0.278         1.121           Card [34]         0.274         0.439         1.196         0.247         0.578         2.481         0.122         0.294         1.278           ESG [39]         0.308         0.457         1.271         0.275         0.689         2.715         0.124         0.271         1.166           FourierGNN [40]         0.326         0.515         1.374         0.427         0.794         4.189         0.162         0.307         1.571           TPGNN [26]         0.293         0.445         1.271         0.349         0.728         3.319         0.140         0.277         1.253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $(F=24) \\ \text{MICN } [33] \\ \text{ModernTCN } [29] \\ \text{PatchTST } [30] \\ \text{FEDformer } [45] \\ \text{Autoformer } [35] \\ \text{Reformer } [19] \\ \text{S4 } [12] \\ \text{MTGNN } [38] \\ \text{MegaCRN } [15] \\ \text{iTransformer } [28] \\ \text{CrossFormer } [42] \\ \text{Card } [34] \\ \text{ESG } [39] \\ \text{FourierGNN } [40] \\ \text{TPGNN } [26] \\ \text{Sumba} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                | 0.261<br>  0.222<br>  0.211<br>  0.281<br>  0.278<br>  0.402<br>  0.348<br>  0.194<br>  0.195<br>  0.196<br>  0.197<br>  0.196<br>  0.316<br>  0.262<br>  0.189<br>  MAE<br>  0.313<br>  0.479<br>  0.281<br>  0.368<br>  0.398<br>  0.398<br>  0.754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RMSE  0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.315 0.314 0.396 0.355   Call Barry | MAPE(%)  2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 1.729 2.409 2.121 1.696  2 MAPE(%)  1.345 3.095 1.233 1.651 1.690 5.485                                                 | 0.149<br>  0.151<br>  0.128<br>  0.254<br>  0.234<br>  0.248<br>  0.269<br>  0.119<br>  0.114<br>  0.126<br>  0.160<br>  0.115<br>  0.127<br>  0.133<br>  0.125<br>  0.115<br>  0.125<br>  0.294<br>  0.281<br>  0.258<br>  0.353<br>  0.354<br>  0.378                                                                   | RMSE  0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.331 0.313 0.309 0.303 0.294 0.259 0.296 0.295  Traff RMSE 0.693 0.626 0.594 0.740 0.743 0.815                                       | MAPE(%)  5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 5.227 11.606 5.238 8.593  ic  MAPE(%) 3.107 3.261 2.613 4.142 3.519 3.982                                                 | 0.197<br>  0.197<br>  0.246<br>  0.282<br>  0.455<br>  0.263<br>  0.259<br>  0.209<br>  0.200<br>  0.189<br>  0.196<br>  0.182<br>  0.245<br>  0.226<br>  0.186<br>  0.166<br>  0.166<br>  0.229<br>  0.355<br>  0.189                                                                              | RMSE  0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.283 0.294 0.296 0.367 0.319  0.281  Solar-En RMSE 0.284 0.279 0.310 0.345 0.502 0.328                                                  | MAPE(%)  1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 1.507 1.518 1.903  1.488  ergy MAPE(%)  1.216 1.176 1.219 1.533 1.929 1.585                                                 |
| iTransformer [28]         0.276         0.436         1.251         0.247         0.577         2.762         0.137         0.290         1.210           CrossFormer [42]         0.407         0.588         1.774         0.248         0.676         2.675         0.121         0.278         1.121           Card [34]         0.274         0.439         1.196         0.247         0.578         2.481         0.122         0.294         1.278           ESG [39]         0.308         0.457         1.271         0.275         0.689         2.715         0.124         0.271         1.166           FourierGNN [40]         0.326         0.515         1.374         0.427         0.794         4.189         0.162         0.307         1.571           TPGNN [26]         0.293         0.445         1.271         0.349         0.728         3.319         0.140         0.277         1.253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(F = 24) \\ \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [35]} \\ \text{Reformer [19]} \\ \text{S4 [12]} \\ \text{MTGNN [38]} \\ \text{MegaCRN [15]} \\ \text{iTransformer [28]} \\ \text{CrossFormer [42]} \\ \text{Card [34]} \\ \text{ESG [39]} \\ \text{FourierGNN [40]} \\ \text{TPGNN [26]} \\ \\ \text{Sumba} \\ \\ \text{Method} \\ (F = 24) \\ \\ \text{MICN [33]} \\ \text{ModernTCN [29]} \\ \text{PatchTST [30]} \\ \text{FEDformer [45]} \\ \text{Autoformer [45]} \\ \text{Autoformer [19]} \\ \text{S4 [12]} \\ $                                                                                                                                                                                        | 0.261<br>  0.222<br>  0.211<br>  0.281<br>  0.278<br>  0.402<br>  0.348<br>  0.194<br>  0.377<br>  0.195<br>  0.196<br>  0.197<br>  0.196<br>  0.316<br>  0.262<br>  0.189<br>  0.313<br>  0.479<br>  0.281<br>  0.368<br>  0.398<br>  0.754<br>  0.6378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RMSE  0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.315 0.314 0.396 0.355  0.303  ETTh RMSE  0.464 0.631 0.440 0.542 0.579 0.955 0.841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MAPE(%)  2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 1.729 2.409 2.121 1.696  2 MAPE(%)  1.345 3.095 1.233 1.651 1.690 5.485 2.844                                           | 0.149<br>  0.151<br>  0.128<br>  0.254<br>  0.234<br>  0.248<br>  0.269<br>  0.119<br>  0.114<br>  0.126<br>  0.160<br>  0.115<br>  0.127<br>  0.133<br>  0.125<br>  0.115<br>  0.294<br>  0.281<br>  0.281<br>  0.283<br>  0.353<br>  0.354<br>  0.378<br>  0.313                                                        | RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.331 0.311 0.313 0.309 0.303 0.294 0.259 Traff RMSE 0.693 0.626 0.594 0.740 0.743 0.815 0.754                                         | MAPE(%)  5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 5.227 11.606 5.238 8.593  ic MAPE(%)  3.107 3.261 2.613 4.142 3.519 3.982 3.291                                           | 0.197<br>  0.197<br>  0.246<br>  0.282<br>  0.455<br>  0.263<br>  0.259<br>  0.200<br>  0.200<br>  0.189<br>  0.196<br>  0.186<br>  0.146<br>  0.166<br>  0.166<br>  0.229<br>  0.355<br>  0.189<br>  0.174                                                                                         | RMSE  0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.283 0.294 0.296 0.367 0.319  0.281  Solar-En RMSE  0.284 0.279 0.310 0.345 0.502 0.328 0.272                                           | MAPE(%)  1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 1.507 1.518 1.903  1.488  ergy MAPE(%)  1.216 1.176 1.219 1.533 1.929 1.585 2.124                                           |
| CrossFormer [42]         0.407         0.588         1.774         0.248         0.676         2.675         0.121         0.278         1.121           Card [34]         0.274         0.439         1.196         0.247         0.578         2.481         0.122         0.294         1.278           ESG [39]         0.308         0.457         1.271         0.275         0.689         2.715         0.124         0.271         1.166           FourierGNN [40]         0.326         0.515         1.374         0.427         0.794         4.189         0.162         0.307         1.571           TPGNN [26]         0.293         0.445         1.271         0.349         0.728         3.319         0.140         0.277         1.253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $(F = 24) \\ \text{MICN } [33] \\ \text{ModernTCN } [29] \\ \text{PatchTST } [30] \\ \text{FEDformer } [45] \\ \text{Autoformer } [35] \\ \text{Reformer } [19] \\ \text{S4 } [12] \\ \text{MTGNN } [38] \\ \text{MegaCRN } [15] \\ \text{iTransformer } [28] \\ \text{CrossFormer } [42] \\ \text{Card } [34] \\ \text{ESG } [39] \\ \text{FourierGNN } [40] \\ \text{TPGNN } [26] \\ \\ \text{Sumba} \\ \\ \text{MICN } [33] \\ \text{ModernTCN } [29] \\ \text{PatchTST } [30] \\ \text{FEDformer } [45] \\ \text{Autoformer } [35] \\ \text{Reformer } [19] \\ \text{S4 } [12] \\ \text{MTGNN } [38] \\ \\$                                                                                                                                                                            | 0.261<br>  0.222<br>  0.211<br>  0.281<br>  0.278<br>  0.402<br>  0.337<br>  0.195<br>  0.196<br>  0.197<br>  0.196<br>  0.316<br>  0.262<br>  0.189<br>  MAE<br>  0.313<br>  0.479<br>  0.281<br>  0.368<br>  0.398<br>  0.398  | RMSE  0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.315 0.314 0.398 0.355  0.303  ETTh RMSE  0.464 0.631 0.440 0.542 0.579 0.955 0.841 0.452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MAPE(%)  2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 1.729 2.409 2.121 1.696  2 MAPE(%)  1.345 3.095 1.233 1.651 1.690 5.485 2.844 1.267                                     | 0.149<br>  0.151<br>  0.128<br>  0.254<br>  0.234<br>  0.248<br>  0.269<br>  0.119<br>  0.144<br>  0.126<br>  0.160<br>  0.115<br>  0.127<br>  0.133<br>  0.125<br>  0.15<br>  0.258<br>  0.258<br>  0.353<br>  0.354<br>  0.378<br>  0.313<br>  0.266                                                                    | RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.331 0.311 0.313 0.309 0.303 0.294 0.295 Traff RMSE 0.693 0.626 0.594 0.740 0.743 0.815 0.754 0.602                                   | MAPE(%)  5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 5.227 11.606 5.238 8.593  ic MAPE(%) 3.107 3.261 2.613 4.142 3.519 3.982 3.291 3.117                                      | 0.197<br>  0.197<br>  0.246<br>  0.282<br>  0.455<br>  0.263<br>  0.259<br>  0.200<br>  0.189<br>  0.196<br>  0.182<br>  0.245<br>  0.226<br>  0.186<br>  0.166<br>  0.166<br>  0.229<br>  0.355<br>  0.189<br>  0.174<br>  0.138                                                                   | RMSE 0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.283 0.294 0.296 0.367 0.319  0.281  Solar-En RMSE 0.284 0.279 0.310 0.345 0.502 0.328 0.272 0.286                                       | MAPE(%)  1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 1.507 1.518 1.903  1.488  ergy MAPE(%)  1.216 1.176 1.219 1.533 1.929 1.585 2.124 1.224                                     |
| Card [34]         0.274         0.439         1.196         0.247         0.578         2.481         0.122         0.294         1.278           ESG [39]         0.308         0.457         1.271         0.275         0.689         2.715         0.124         0.271         1.166           FourierGNN [40]         0.326         0.515         1.374         0.427         0.794         4.189         0.162         0.307         1.571           TPGNN [26]         0.293         0.445         1.271         0.349         0.728         3.319         0.140         0.277         1.253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ (F = 24) \\ \hline {\rm MICN [33]} \\ {\rm ModernTCN [29]} \\ {\rm PatchTST [30]} \\ {\rm FEDformer [45]} \\ {\rm Autoformer [35]} \\ {\rm Reformer [19]} \\ {\rm S4 [12]} \\ {\rm MTGNN [38]} \\ {\rm MegaCRN [15]} \\ {\rm iTransformer [28]} \\ {\rm CrossFormer [42]} \\ {\rm Card [34]} \\ {\rm ESG [39]} \\ {\rm FourierGNN [40]} \\ {\rm TPGNN [26]} \\ \\ {\rm Sumba} \\ \hline {\rm MICN [33]} \\ {\rm ModernTCN [29]} \\ {\rm PatchTST [30]} \\ {\rm FEDformer [45]} \\ {\rm Autoformer [35]} \\ {\rm Reformer [19]} \\ {\rm S4 [12]} \\ {\rm MTGNN [38]} \\ {\rm MegaCRN [15]} \\ \\ {\rm MegaCRN [15]} \\ $                                                                                                                                                                  | 0.261<br>  0.222<br>  0.211<br>  0.281<br>  0.278<br>  0.402<br>  0.337<br>  0.195<br>  0.196<br>  0.197<br>  0.196<br>  0.316<br>  0.262<br>  0.189<br>  MAE<br>  0.313<br>  0.479<br>  0.281<br>  0.368<br>  0.398<br>  0.754<br>  0.6378<br>  0.288<br>  0.363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RMSE  0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.315 0.314 0.395  0.303  ETTh RMSE  0.464 0.631 0.440 0.542 0.579 0.955 0.841 0.452 0.516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MAPE(%)  2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 1.729 2.409 2.121 1.696  2 MAPE(%)  1.345 3.095 1.233 1.651 1.690 5.485 2.844 1.267 1.738                               | 0.149<br>  0.151<br>  0.128<br>  0.254<br>  0.234<br>  0.248<br>  0.269<br>  0.119<br>  0.144<br>  0.126<br>  0.160<br>  0.115<br>  0.127<br>  0.133<br>  0.125<br>  0.115<br>  0.294<br>  0.281<br>  0.258<br>  0.353<br>  0.354<br>  0.378<br>  0.378<br>  0.378<br>  0.3166<br>  0.415                                 | RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.331 0.311 0.313 0.309 0.294 0.259 0.296 0.295  Traff RMSE 0.693 0.626 0.594 0.740 0.743 0.815 0.754 0.602 0.833                      | MAPE(%)  5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 5.227 11.606 5.238 8.593  ic MAPE(%) 3.107 3.261 2.613 4.142 3.519 3.982 3.291 3.117 4.990                                | 0.197<br>  0.197<br>  0.246<br>  0.282<br>  0.455<br>  0.263<br>  0.259<br>  0.200<br>  0.230<br>  0.200<br>  0.189<br>  0.196<br>  0.182<br>  0.245<br>  0.226<br>  0.186<br>  0.160<br>  0.166<br>  0.229<br>  0.355<br>  0.189<br>  0.174<br>  0.138<br>  0.151                                  | RMSE  0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.283 0.294 0.296 0.367 0.319  0.281  Solar-En RMSE  0.284 0.279 0.310 0.345 0.502 0.328 0.272 0.286 0.296                               | MAPE(%)  1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 1.507 1.518 1.903  1.488  ergy MAPE(%)  1.216 1.176 1.219 1.533 1.929 1.585 2.124 1.508                                     |
| ESG [39]         0.308         0.457         1.271         0.275         0.689         2.715         0.124         0.271         1.166           FourierGNN [40]         0.326         0.515         1.374         0.427         0.794         4.189         0.162         0.307         1.571           TPGNN [26]         0.293         0.445         1.271         0.349         0.728         3.319         0.140         0.277         1.253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $(F = 24) \\ \hline {\rm MICN [33]} \\ {\rm ModernTCN [29]} \\ {\rm PatchTST [30]} \\ {\rm FEDformer [45]} \\ {\rm Autoformer [35]} \\ {\rm Reformer [19]} \\ {\rm S4 [12]} \\ {\rm MTGNN [38]} \\ {\rm MegaCRN [15]} \\ {\rm iTransformer [28]} \\ {\rm CrossFormer [42]} \\ {\rm Card [34]} \\ {\rm ESG [39]} \\ {\rm FourierGNN [40]} \\ {\rm TPGNN [26]} \\ \\ {\rm Sumba} \\ \hline {\rm Method} \\ (F = 24) \\ \hline {\rm MICN [33]} \\ {\rm ModernTCN [29]} \\ {\rm PatchTST [30]} \\ {\rm FEDformer [45]} \\ {\rm Autoformer [35]} \\ {\rm Reformer [19]} \\ {\rm S4 [12]} \\ {\rm MTGNN [38]} \\ {\rm MegaCRN [15]} \\ {\rm iTransformer [28]} \\ \hline {\rm iTransformer [28]} \\ \hline $                                                                                     | 0.261<br>  0.222<br>  0.211<br>  0.281<br>  0.278<br>  0.402<br>  0.337<br>  0.195<br>  0.196<br>  0.197<br>  0.196<br>  0.316<br>  0.262<br>  0.189<br>  MAE<br>  0.313<br>  0.479<br>  0.281<br>  0.368<br>  0.398<br>  0.754<br>  0.6378<br>  0.263<br>  0.263<br>  0.276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RMSE  0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.315 0.314 0.396 0.355   Comparison of the comparison | MAPE(%)  2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 1.729 2.409 2.121 1.696  2 MAPE(%)  1.345 3.095 1.233 1.651 1.690 5.485 2.844 1.267 1.738 1.251                         | 0.149<br>  0.151<br>  0.128<br>  0.254<br>  0.234<br>  0.248<br>  0.269<br>  0.114<br>  0.126<br>  0.160<br>  0.115<br>  0.127<br>  0.133<br>  0.125<br>  0.115<br>  0.294<br>  0.281<br>  0.258<br>  0.353<br>  0.354<br>  0.378<br>  0.313<br>  0.266<br>  0.415<br>  0.247                                             | RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.331 0.311 0.313 0.309 0.294 0.259 0.296 0.295  Traff RMSE 0.693 0.626 0.594 0.740 0.743 0.815 0.754 0.602 0.833 0.577                | MAPE(%)  5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 5.227 11.606 5.238 8.593 6 MAPE(%) 3.107 3.261 2.613 4.142 3.519 3.982 3.291 3.117 4.990 2.762                            | 0.197<br>  0.197<br>  0.246<br>  0.282<br>  0.455<br>  0.263<br>  0.259<br>  0.200<br>  0.230<br>  0.200<br>  0.189<br>  0.196<br>  0.182<br>  0.245<br>  0.226<br>  0.186<br>  0.166<br>  0.166<br>  0.229<br>  0.355<br>  0.174<br>  0.138<br>  0.151<br>  0.137                                  | RMSE  0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.283 0.294 0.296 0.367 0.319  0.281  Solar-En RMSE  0.284 0.279 0.310 0.345 0.502 0.328 0.272 0.286 0.296 0.290                         | MAPE(%)  1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 1.507 1.518 1.903  1.488  ergy MAPE(%)  1.216 1.176 1.219 1.533 1.929 1.585 2.124 1.508 1.210                               |
| FourierGNN [40]         0.326         0.515         1.374         0.427         0.794         4.189         0.162         0.307         1.571           TPGNN [26]         0.293         0.445         1.271         0.349         0.728         3.319         0.140         0.277         1.253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $(F = 24) \\ \hline {\rm MICN [33]} \\ {\rm ModernTCN [29]} \\ {\rm PatchTST [30]} \\ {\rm FEDformer [45]} \\ {\rm Autoformer [35]} \\ {\rm Reformer [19]} \\ {\rm S4 [12]} \\ {\rm MTGNN [38]} \\ {\rm MegaCRN [15]} \\ {\rm iTransformer [28]} \\ {\rm CrossFormer [42]} \\ {\rm Card [34]} \\ {\rm ESG [39]} \\ {\rm FourierGNN [40]} \\ {\rm TPGNN [26]} \\ \\ {\rm Sumba} \\ \hline {\rm MicN [33]} \\ {\rm ModernTCN [29]} \\ {\rm PatchTST [30]} \\ {\rm FEDformer [45]} \\ {\rm Autoformer [35]} \\ {\rm Reformer [19]} \\ {\rm S4 [12]} \\ {\rm MTGNN [38]} \\ {\rm MegaCRN [15]} \\ {\rm iTransformer [28]} \\ {\rm CrossFormer [42]} \\ \\ {\rm CrossFormer [442]} \\ \hline }$                                                                                                 | 0.261<br>  0.222<br>  0.211<br>  0.281<br>  0.278<br>  0.402<br>  0.348<br>  0.195<br>  0.196<br>  0.197<br>  0.196<br>  0.316<br>  0.262<br>  0.189<br>  MAE<br>  0.313<br>  0.479<br>  0.281<br>  0.368<br>  0.398<br>  0.754<br>  0.6378<br>  0.288<br>  0.363<br>  0.276<br>  0.407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RMSE  0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.315 0.314 0.396 0.355   Comparison of the comparison | MAPE(%)  2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 1.729 2.409 2.121 1.696  2 MAPE(%)  1.345 3.095 1.233 1.651 1.690 5.485 2.844 1.267 1.738 1.251 1.774                   | 0.149<br>  0.151<br>  0.128<br>  0.254<br>  0.234<br>  0.248<br>  0.269<br>  0.119<br>  0.146<br>  0.160<br>  0.115<br>  0.127<br>  0.133<br>  0.125<br>  0.115<br>  0.294<br>  0.281<br>  0.294<br>  0.353<br>  0.354<br>  0.378<br>  0.313<br>  0.266<br>  0.415<br>  0.247<br>  0.248                                  | RMSE  0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.331 0.311 0.313 0.309 0.303 0.294 0.259 0.296 0.295  Trafff RMSE  0.693 0.626 0.594 0.740 0.743 0.815 0.754 0.602 0.833 0.577 0.676 | MAPE(%)  5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 5.227 11.606 5.238 8.593 6 MAPE(%) 3.107 3.261 2.613 4.142 3.519 3.982 3.291 3.117 4.990 2.762 2.675                      | 0.197<br>  0.197<br>  0.246<br>  0.282<br>  0.455<br>  0.263<br>  0.259<br>  0.200<br>  0.196<br>  0.196<br>  0.182<br>  0.245<br>  0.245<br>  0.26<br>  0.166<br>  0.166<br>  0.166<br>  0.229<br>  0.355<br>  0.198<br>  0.196<br>  0.135<br>  0.196<br>  0.135<br>  0.151<br>  0.137<br>  0.121  | RMSE  0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.283 0.294 0.296 0.367 0.319  0.281  Solar-En RMSE  0.284 0.279 0.310 0.345 0.502 0.328 0.272 0.286 0.296 0.296 0.296 0.278             | MAPE(%)  1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 1.507 1.518 1.903  1.488  ergy MAPE(%)  1.216 1.176 1.219 1.533 1.929 1.585 2.124 1.224 1.508 1.210 1.121                   |
| TPGNN [26]         0.293         0.445         1.271         0.349         0.728         3.319         0.140         0.277         1.253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $(F = 24) \\ \begin{tabular}{ll} MICN [33] \\ ModernTCN [29] \\ PatchTST [30] \\ FEDformer [45] \\ Autoformer [35] \\ Reformer [19] \\ S4 [12] \\ MTGNN [38] \\ MegaCRN [15] \\ iTransformer [28] \\ CrossFormer [42] \\ Card [34] \\ ESG [39] \\ FourierGNN [40] \\ TPGNN [26] \\ Sumba \\ \begin{tabular}{ll} Method \\ (F = 24) \\ MICN [33] \\ ModernTCN [29] \\ PatchTST [30] \\ FEDformer [45] \\ Autoformer [35] \\ Reformer [19] \\ S4 [12] \\ MTGNN [38] \\ MegaCRN [15] \\ iTransformer [28] \\ CrossFormer [42] \\ Card [34] \\ \end{tabular}$                                                                                                                                                                                                                                  | 0.261<br>  0.222<br>  0.211<br>  0.281<br>  0.278<br>  0.402<br>  0.348<br>  0.194<br>  0.337<br>  0.195<br>  0.196<br>  0.197<br>  0.196<br>  0.316<br>  0.262<br>  0.189<br>  MAE<br>  0.313<br>  0.479<br>  0.281<br>  0.368<br>  0.398<br>  0.754<br>  0.6378<br>  0.262<br>  0.368<br>  0.398<br>  0.754<br>  0.6378<br>  0.262<br>  0.368<br>  0.36 | RMSE  0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.315 0.314 0.396 0.355   Colored Co | MAPE(%)  2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 1.729 2.409 2.121  1.696  2  MAPE(%)  1.345 3.095 1.233 1.651 1.690 5.485 2.844 1.267 1.738 1.251 1.774 1.196           | 0.149<br>  0.151<br>  0.128<br>  0.254<br>  0.234<br>  0.248<br>  0.269<br>  0.119<br>  0.144<br>  0.126<br>  0.160<br>  0.115<br>  0.127<br>  0.133<br>  0.125<br>  0.115<br>  0.294<br>  0.281<br>  0.298<br>  0.353<br>  0.354<br>  0.378<br>  0.313<br>  0.266<br>  0.415<br>  0.247<br>  0.248<br>  0.247            | RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.331 0.311 0.313 0.309 0.294 0.259 0.296 0.295  Trafff RMSE 0.693 0.626 0.594 0.740 0.743 0.815 0.754 0.602 0.833 0.577 0.676 0.578   | MAPE(%)  5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 5.227 11.606 5.238 8.593  ic MAPE(%) 3.107 3.261 2.613 4.142 3.519 3.982 3.291 3.117 4.990 2.762 2.675 2.481              | 0.197<br>  0.197<br>  0.246<br>  0.282<br>  0.455<br>  0.263<br>  0.259<br>  0.200<br>  0.189<br>  0.196<br>  0.182<br>  0.245<br>  0.226<br>  0.186<br>  0.166<br>  0.166<br>  0.160<br>  0.166<br>  0.229<br>  0.355<br>  0.189<br>  0.174<br>  0.138<br>  0.151<br>  0.137<br>  0.121<br>  0.122 | RMSE  0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.283 0.294 0.296 0.367 0.319  0.281  Solar-En RMSE 0.284 0.279 0.310 0.345 0.502 0.328 0.272 0.286 0.296 0.296 0.296 0.299 0.278 0.294  | MAPE(%)  1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 1.507 1.518 1.903  1.488  ergy MAPE(%)  1.216 1.176 1.219 1.533 1.929 1.585 2.124 1.224 1.508 1.210 1.121 1.278             |
| Sumba   0.273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(F = 24) \\ \text{MICN } [33] \\ \text{ModernTCN } [29] \\ \text{PatchTST } [30] \\ \text{FEDformer } [45] \\ \text{Autoformer } [35] \\ \text{Reformer } [19] \\ \text{S4 } [12] \\ \text{MTGNN } [38] \\ \text{MegaCRN } [15] \\ \text{iTransformer } [28] \\ \text{CrossFormer } [42] \\ \text{Card } [34] \\ \text{ESG } [39] \\ \text{FourierGNN } [40] \\ \text{TPGNN } [26] \\ \\ \text{Sumba} \\ \\ \text{Method} \\ (F = 24) \\ \\ \text{MICN } [33] \\ \text{ModernTCN } [29] \\ \text{PatchTST } [30] \\ \text{FEDformer } [45] \\ \text{Autoformer } [35] \\ \text{Reformer } [19] \\ \text{S4 } [12] \\ \text{MTGNN } [38] \\ \\ \text{MegaCRN } [15] \\ \text{iTransformer } [28] \\ \text{CrossFormer } [42] \\ \text{Card } [34] \\ \text{ESG } [39] \\ \\ \end{aligned}$ | 0.261<br>  0.222<br>  0.211<br>  0.281<br>  0.278<br>  0.402<br>  0.348<br>  0.194<br>  0.337<br>  0.195<br>  0.196<br>  0.197<br>  0.196<br>  0.316<br>  0.262<br>  0.189<br>  0.313<br>  0.479<br>  0.281<br>  0.368<br>  0.398<br>  0.754<br>  0.6378<br>  0.262<br>  0.407<br>  0.281<br>  0.363<br>  0.3 | RMSE  0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.315 0.314 0.396 0.355  0.303  ETTh RMSE  0.464 0.631 0.440 0.542 0.579 0.955 0.841 0.452 0.516 0.458 0.458 0.439 0.457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MAPE(%)  2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 1.729 2.409 2.121 1.696  2 MAPE(%)  1.345 3.095 1.233 1.651 1.690 5.485 2.844 1.267 1.738 1.251 1.774 1.196 1.271       | 0.149<br>  0.151<br>  0.128<br>  0.254<br>  0.234<br>  0.248<br>  0.269<br>  0.119<br>  0.127<br>  0.133<br>  0.125<br>  0.115<br>  0.127<br>  0.135<br>  0.294<br>  0.281<br>  0.294<br>  0.353<br>  0.353<br>  0.354<br>  0.378<br>  0.313<br>  0.266<br>  0.415<br>  0.247<br>  0.248<br>  0.247<br>  0.247<br>  0.275 | RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.331 0.311 0.313 0.309 0.205 Traff RMSE 0.693 0.626 0.594 0.743 0.815 0.754 0.602 0.833 0.577 0.676 0.578 0.689                       | MAPE(%)  5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 5.227 11.606 5.238 8.593  ic MAPE(%)  3.107 3.261 2.613 4.142 3.519 3.982 3.291 3.117 4.990 2.762 2.675 2.481 2.715       | 0.197<br>  0.197<br>  0.246<br>  0.282<br>  0.455<br>  0.263<br>  0.259<br>  0.200<br>  0.200<br>  0.189<br>  0.196<br>  0.182<br>  0.245<br>  0.226<br>  0.186<br>  0.166<br>  0.166<br>  0.166<br>  0.229<br>  0.355<br>  0.174<br>  0.138<br>  0.151<br>  0.138<br>  0.151<br>  0.122<br>  0.124 | RMSE  0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.283 0.294 0.296 0.367 0.319  0.281  Solar-En RMSE  0.284 0.279 0.310 0.345 0.502 0.328 0.272 0.286 0.296 0.296 0.290 0.278 0.294 0.271 | MAPE(%)  1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 1.507 1.518 1.903  1.488  ergy MAPE(%)  1.216 1.176 1.219 1.533 1.929 1.585 2.124 1.224 1.508 1.210 1.121 1.278 1.166       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $(F = 24) \\ \begin{tabular}{ll} MICN [33] \\ ModernTCN [29] \\ PatchTST [30] \\ FEDformer [45] \\ Autoformer [35] \\ Reformer [19] \\ S4 [12] \\ MTGNN [38] \\ MegaCRN [15] \\ iTransformer [28] \\ CrossFormer [42] \\ Card [34] \\ ESG [39] \\ FourierGNN [40] \\ TPGNN [26] \\ Sumba \\ \begin{tabular}{ll} Method \\ (F = 24) \\ MICN [33] \\ ModernTCN [29] \\ PatchTST [30] \\ FEDformer [45] \\ Autoformer [35] \\ Reformer [19] \\ S4 [12] \\ MTGNN [38] \\ MegaCRN [15] \\ iTransformer [28] \\ CrossFormer [42] \\ Card [34] \\ ESG [39] \\ FourierGNN [40] \\ \end{tabular}$                                                                                                                                                                                                   | 0.261<br>  0.222<br>  0.211<br>  0.281<br>  0.278<br>  0.402<br>  0.337<br>  0.195<br>  0.196<br>  0.197<br>  0.196<br>  0.316<br>  0.262<br>  0.189<br>  MAE<br>  0.313<br>  0.479<br>  0.281<br>  0.368<br>  0.398<br>  0.398  | RMSE  0.375 0.331 0.329 0.400 0.398 0.554 0.499 0.311 0.483 0.310 0.315 0.315 0.315 0.363  ETTh RMSE  0.464 0.631 0.440 0.542 0.579 0.955 0.841 0.452 0.516 0.436 0.588 0.439 0.457 0.515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MAPE(%)  2.595 1.945 1.859 2.782 2.932 3.829 3.258 1.777 2.593 1.774 1.944 1.746 1.729 2.409 2.121 1.696  2 MAPE(%)  1.345 3.095 1.233 1.651 1.690 5.485 2.844 1.267 1.738 1.251 1.774 1.196 1.271 1.374 | 0.149<br>  0.151<br>  0.128<br>  0.254<br>  0.234<br>  0.248<br>  0.269<br>  0.119<br>  0.115<br>  0.127<br>  0.133<br>  0.125<br>  0.115<br>  0.294<br>  0.281<br>  0.258<br>  0.353<br>  0.354<br>  0.375<br>  0.313<br>  0.266<br>  0.415<br>  0.247<br>  0.248<br>  0.247<br>  0.247<br>  0.275<br>  0.427            | RMSE 0.309 0.306 0.309 0.407 0.389 0.422 0.429 0.331 0.311 0.313 0.309 0.205 Traff RMSE 0.693 0.626 0.594 0.740 0.743 0.815 0.754 0.602 0.833 0.577 0.676 0.578 0.689 0.794           | MAPE(%)  5.026 7.100 10.480 10.152 9.728 8.590 8.225 8.730 7.949 8.254 7.186 8.007 5.227 11.606 5.238 8.593  ic MAPE(%)  3.107 3.261 2.613 4.142 3.519 3.982 3.291 3.117 4.990 2.762 2.675 2.481 2.715 4.189 | 0.197<br>  0.197<br>  0.246<br>  0.282<br>  0.455<br>  0.263<br>  0.209<br>  0.200<br>  0.189<br>  0.196<br>  0.182<br>  0.226<br>  0.186<br>  0.166<br>  0.166<br>  0.229<br>  0.355<br>  0.189<br>  0.174<br>  0.138<br>  0.174<br>  0.138<br>  0.151<br>  0.137<br>  0.122<br>  0.124<br>  0.162 | RMSE  0.292 0.290 0.345 0.394 0.601 0.400 0.361 0.307 0.343 0.296 0.283 0.294 0.296 0.319  Solar-En RMSE  0.284 0.279 0.310 0.345 0.502 0.328 0.272 0.286 0.296 0.290 0.278 0.294 0.271 0.307              | MAPE(%)  1.646 1.582 1.611 1.983 2.277 2.435 2.403 1.617 1.937 1.552 1.565 1.528 1.507 1.518 1.903  1.488  ergy MAPE(%)  1.216 1.176 1.219 1.533 1.929 1.585 2.124 1.224 1.508 1.210 1.121 1.278 1.166 1.571 |

Table 5: The results with forecasting horizon 96.

| Method            | Electricity |       |          | Weather |       |          | PEMS  |       |              |
|-------------------|-------------|-------|----------|---------|-------|----------|-------|-------|--------------|
| Method            | MAE         | RMSE  | MAPE (%) | MAE     | RMSE  | MAPE (%) | MAE   | RMSE  | MAPE (%)     |
| PatchTST [30]     | 0.241       | 0.378 | 2.383    | 0.206   | 0.404 | 13.692   | 0.354 | 0.497 | 1.906        |
| FEDformer [45]    | 0.308       | 0.438 | 3.223    | 0.346   | 0.525 | 8.949    | 0.482 | 0.631 | 3.182        |
| Autoformer [35]   | 0.303       | 0.433 | 2.923    | 0.339   | 0.518 | 21.389   | 0.721 | 0.927 | 3.447        |
| Reformer [19]     | 0.389       | 0.549 | 3.675    | 0.470   | 0.695 | 11.815   | 0.403 | 0.534 | 3.151        |
| iTransformer [28] | 0.229       | 0.367 | 2.248    | 0.213   | 0.411 | 13.009   | 0.311 | 0.446 | 2.055        |
| Crossformer [42]  | 0.232       | 0.366 | 2.465    | 0.211   | 0.384 | 7.745    | 0.271 | 0.405 | 2.421        |
| Card [34]         | 0.225       | 0.364 | 2.310    | 0.191   | 0.389 | 9.293    | 0.283 | 0.414 | <u>1.871</u> |
| Sumba             | 0.234       | 0.373 | 2.675    | 0.185   | 0.383 | 11.561   | 0.253 | 0.377 | 1.700        |

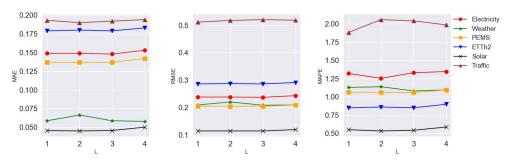



Figure 4: The sensitivity of our method to the number of blocks L.

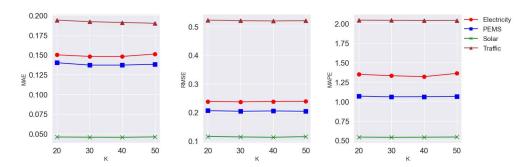



Figure 5: The sensitivity of our method to rank K.

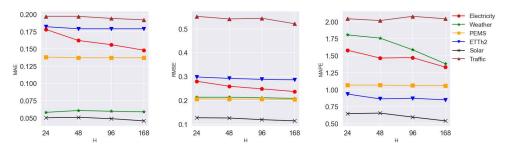



Figure 6: The sensitivity of our method to the history window H.

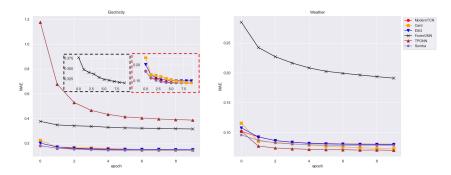



Figure 7: The training curves on Electricity and Weather datasets with prediction length F=3.

| Method                | Complexity                  |
|-----------------------|-----------------------------|
| MTGNN [38]            | $O(N^2D)$                   |
| MegaCRN [15]          | $\mathcal{O}(N^2D)$         |
| iTransformer [28]     | $\mathcal{O}(N^2D)$         |
| CrossFormer [42]      | $\mathcal{O}(NrD)$          |
| Card [34]             | $\mathcal{O}(NrD)$          |
| ESG [39]              | $\mathcal{O}(N^2D)$         |
| FourierGNN [40]       | $\mathcal{O}(NH\log(NH))$   |
| TPGNN [26]            | $\mathcal{O}(N^{\bar{2}}D)$ |
| w/o. Common U-V basis | O(MNKD)                     |
| Sumba                 | $\mathcal{O}(NKD)$          |

Table 6: The complexity of different methods.

# **E** Convergence Speed and Computational Complexity

**Convergence Speed** Figure 7 illustrates the training curves for the first 10 epochs on the Electricity and Weather datasets. Sumba, ModernTCN, and ESG exhibit fast convergence, achieving it within 5 epochs. In contrast, methods such as Card, FourierGNN, and TPGNN take several tens of epochs to reach convergence.

Computational Complexity As shown in Table 6, we analyze the computational complexity of different methods in capturing spatial dependencies, where N is the number of nodes, M is the dimension of the matrix basis, D is the dimension of node embedding or hidden representation,  $r \ll N$  and  $K \ll N$ . MTGNN, MegaCRN, iTransformer, ESG, and TPGNN build the graph structure via inner product of static or dynamic node embedding, leading to a computation complexity of  $\mathcal{O}(N^2D)$ . Crossformer and Card employ router mechanism and summarized token, respectively, in spatial correlation modeling, reducing the complexity to  $\mathcal{O}(Nrd)$ . FourierGNN has complexity of  $\mathcal{O}(NH\log(NH))$  due to building a hypervariable graph. Our proposed Sumba leverages low-rank approximation and common coordinate transformations strategy, achieving the complexity of  $\mathcal{O}(KND)$  whereas the computational cost for the model without a common U-V basis is  $\mathcal{O}(MKND)$ . Thus, our model has low complexity, especially when N is large.

### **F** Limitations

Although our proposed Sumba demonstrates superior performance in multivariate time series forecasting, the dimension of matrix basis M is empirically tuned in our experiments. Besides, the long-term forecasting capability of the proposed model requires further enhancement.

# **G** Broader Impact

In this paper, we propose a novel time series forecasting method to capture dynamic spatial correlations with a structured matrix basis. Our research aims to contribute to the advancement of the relevant community without any negative social impact.

# **NeurIPS Paper Checklist**

### 1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]
Justification:
Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals
  are not attained by the paper.

#### 2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Appendix F.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

### 3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: See Appendix A.2.

### Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

# 4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Section 3 and Section 4.

#### Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
- (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

### 5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Our code is available at: https://anonymous.4open.science/r/Sumba/. Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be
  possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
  including code, unless this is central to the contribution (e.g., for a new open-source
  benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

# 6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: See Section 4 and Appendix B

### Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
  material.

### 7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We repeat each experiment 3 times and report the mean results.

### Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.

- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

### 8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: See Section 4.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

### 9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We make sure to preserve anonymity.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

### 10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: See Appendix G.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied
  to particular applications, let alone deployments. However, if there is a direct path to
  any negative applications, the authors should point it out. For example, it is legitimate
  to point out that an improvement in the quality of generative models could be used to

generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.

- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

### 11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

#### Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
  not require this, but we encourage authors to take this into account and make a best
  faith effort.

# 12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited, and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We cite the original paper that produced the code package or dataset. See Section 2 and Section 4.

### Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

### 13. New Assets

Ouestion: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

#### Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

### 14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

### 15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human **Subjects**

Ouestion: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.