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Notation

We denote

• scalars with lower-case, x ;

• vectors with bold-case, x;

• matrices with upper-case, X ;

• the elements of vectors or matrices with xi or Xij ;

• trace as tr(X ) =
∑

i=1 Xii for X ∈ Rn×n;

• determinant as |X | for X ∈ Rn×n;

• matrices Hadamard product as X � Y ;

• vector or matrix inner product with 〈·, ·〉.
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https://en.wikipedia.org/wiki/Hadamard_product_(matrices)


Background



Vector and Matrix Product

For any x ∈ Rn, y ∈ Rn and X ∈ Rm×n,Y ∈ Rm×n, we define their inner product as

• 〈x, y〉 = x>y =
∑n

i=1 xiyi .

• 〈X ,Y 〉 = tr(X>Y ) =
∑m

i=1

∑n
j=1 XijYij .

Remark:

• The second one is also known as matrix Frobenius inner product.

• Frobenius inner product is compatible with vector inner product in the sense that

when two matrices degrade to vectors Frobenius inner product equals to vector

inner product.

3



Properties of Frobenius inner product

For any X ∈ Rm×n,Y ∈ Rm×n,Z ∈ Rm×n, a ∈ R,

• 〈X ,Y 〉 = 〈Y ,X 〉.
• 〈aX ,Y 〉 = 〈X , aY 〉 = a〈X ,Y 〉.
• 〈X + Z ,Y 〉 = 〈X ,Y 〉+ 〈Z ,Y 〉.
• 〈X ,Y � Z 〉 = 〈X � Y ,Z 〉.
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Properties of Frobenius inner product

Suppose that A ∈ Rm×`1 ,C ∈ R`1×n,B ∈ Rm×`2 ,D ∈ R`2×n, then we have

• 〈AC ,BD〉 = 〈B>AC ,D〉 = 〈C ,A>BD〉,
• 〈AC ,BD〉 = 〈ACD>,B〉 = 〈A,BDC>〉.

Remark

• The first two equations can be summarized as moving left to left by transposing.

• The last two equations can be summarized as moving right to right by transposing.
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Properties of Frobenius inner product

Proof.

The first two equations are pretty obvious by using the definition of inner product; the

last two equations use the fact that tr(XY ) = tr(YX ) holds for any two matrices X ,Y

such that X> has the same size with Y .
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Matrix Derivative



Matrix Derivative

Let us denote f = f (X ) ∈ R.

First, consider a scalar x , we have

df = f ′(x)dx (1)

Similarly, for a vector x, we have that

df =
n∑

i=1

∂f

∂xi
dxi = 〈∇xf , dx〉 . (2)

The above form is easy to extend to matrix as

df =
m∑
i=1

n∑
j=1

∂f

∂Xij
dXij = 〈∇X f , dX 〉 . (3)
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Matrix Differentiation Rules



Matrix Differentiation Rules

1. d(X ± Y ) = dX ± dY , d(XY ) = (dX )Y + XdY , d(X>) = (dX )>

2. d tr(X ) = tr(dX )

3. dX−1 = −X−1(dX )X−1

4. d |X | = 〈adj(X )>, dX 〉, where adj(X ) is the adjoint matrix of X

5. d |X | = |X |〈(X−1)>, dX 〉 when X is invertible

6. d(X � Y ) = (dX )� Y + X � dY

7. dσ(X ) = σ′(X )� dX , where σ(·) is an element-wise function such as sigmoid.

Remark: (1) implies that d〈X ,Y 〉 = 〈dX ,Y 〉+ 〈X , dY 〉. (4) is known as Jacobi’s

formula.
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https://en.wikipedia.org/wiki/Jacobi%27s_formula
https://en.wikipedia.org/wiki/Jacobi%27s_formula


Method

The key idea is to use the properties of inner product and the matrix differentiation

rules to obtain the inner product form

df = 〈∇X f , dX 〉 .
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Machine Learning Examples



Quadratic Function Optimization

f (x) = 〈x,Ax〉.

df = 〈dx,Ax〉+ 〈x, dAx〉
= 〈Ax, dx〉+ 〈x,Adx〉
= 〈Ax, dx〉+ 〈A>x, dx〉
= 〈Ax + A>x, dx〉

Hence,

∇xf = Ax + A>x.
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Linear Regression

f (w) = 〈Xw − y,Xw − y〉.

df = 〈d(Xw − y),Xw − y〉+ 〈Xw − y, d(Xw − y)〉
= 2〈Xw − y, d(Xw − y)〉
= 2〈Xw − y,Xdw〉 = 2〈X>(Xw − y), dw〉.

Hence,

∇wf = 2X>(Xw − y).

And

∇wf = 0 =⇒ w∗ = (X>X )−1X>y.

11



Softmax Regression

In Softmax regression, y is a one-hot vector defining the class target distribution,

ŷ = softmax(Xw) is the model predicted distribution. The loss function is defined as

the cross-entropy between y and ŷ, i.e.,

f (w) = −〈y, log softmax(Xw)

= −
〈

y, log
exp(Xw)

〈1, exp(Xw)〉

〉
= −〈y,Xw − 1 log〈1, exp(Xw)〉〉
= −〈y,Xw〉+ log〈1, exp(Xw)〉 〈y, 1〉
= −〈y,Xw〉+ log〈1, exp(Xw)〉,

note that 〈y, 1〉 = 1.
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Softmax Regression

f (w) = −〈y,Xw〉+ log〈1, exp(Xw)〉.

df = −〈y,Xdw〉+
d〈1, exp(Xw)〉
〈1, exp(Xw)〉

= −〈y,Xdw〉+

〈
1

〈1, exp(Xw)〉
, exp(Xw)� d(Xw)

〉
= −〈y,Xdw〉+

〈
1� exp(Xw)

〈1, exp(Xw)〉
, d(Xw)

〉
= −〈y,Xdw〉+

〈
exp(Xw)

〈1, exp(Xw)〉
,Xdw

〉
= −

〈
X>

(
y − exp(Xw)

〈1, exp(Xw)〉

)
, dw

〉
Hence,

∇wf = X>
exp(Xw)

〈1, exp(Xw)〉
− −X>y.
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Estimating the Covariance of Gaussian Distribution

f (Σ) = log |Σ|+ 1
N

∑N
i=1

〈
xi − µ,Σ−1(xi − µ)

〉
. The first term

d log |Σ| = |Σ|−1d |Σ| = 〈Σ−1, dΣ〉.

The second term

d
1

N

N∑
i=1

〈
xi − µ,Σ−1(xi − µ)

〉
=

1

N

N∑
i=1

〈
xi − µ, dΣ−1(xi − µ)

〉
=

1

N

N∑
i=1

〈
xi − µ,Σ−1(dΣ)Σ−1(xi − µ)

〉
=

1

N

N∑
i=1

〈
Σ−1(xi − µ)(xi − µ)>Σ−1, dΣ

〉
.
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Estimating the Covariance of Gaussian Distribution

Let S = 1
N

∑N
i=1(xi − µ)(xi − µ)>, then

df =
〈
Σ−1 − Σ−1SΣ−1, dΣ

〉
.

Hence,

∇Σf = (Σ−1 − Σ−1SΣ−1)>.
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