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ABSTRACT
Over the past decade, smartphones have become indispensable
personal mobile devices, experiencing a remarkable surge in soft-
ware apps. These apps empower users to seamlessly connect with
various internet services, such as social communication and on-
line shopping. Accurately predicting smartphone app usage can
effectively improve user experience and optimize resource utiliza-
tion. However, existing models often treat app usage prediction as
a classification problem, which suffers from issues of app usage
imbalance and out-of-distribution (OOD) during deployment. To
address these challenges, this paper proposes a novel click-through
rate (CTR) ranking-based method for predicting app usage. By
transforming the classification problem into a CTR problem, we
can eliminate the negative impact of the app usage imbalance issue.
To address the OOD issue during deployment, we generate the app
click sequence and three types of discriminative features, which en-
able generalization on unseen apps. The app click sequence and the
three types of features serve as inputs for training a CTR estimation
model in the cloud, and the trained model is then deployed on the
user’s smartphone to predict the CTR for each installed app. The
decision-making process involves ranking these CTR values and
selecting the app with the highest CTR as the final prediction. Our
method has been extensively tested with large-scale app usage data.
The results demonstrate that our approach is able to outperform
state-of-the-art methods, with improvements over 4.93% in top-3
accuracy and 6.64% in top-5 accuracy. It achieves approximately
twice the accuracy in predicting apps with low usage frequencies
in comparison to baseline methods. Our method has been success-
fully deployed on the app recommendation system of a leading
smartphone manufacturer.
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1 INTRODUCTION
The rapid development of mobile networks and the widespread
adoption of smartphones have triggered an extraordinary surge in
the number of software apps. According to a report by Statista [1],
the number of apps in the Google Play Store has soared from 16,000
in December 2009 to 2,438,553 by December 2023. These apps have
become indispensable tools in shaping our daily routines, such as
social communication (e.g.,WeChat, Facebook) and online shopping
(e.g., Taobao, Amazon). Smartphone manufacturers are actively
exploring various optimization strategies to address accompanying
challenges, such as escalating resource demands and the growing
complexity of app usage patterns. Among them, optimizing the
smartphone app usage prediction approach can effectively improve
user experience and optimize resource utilization [8]. For example,
armed with knowledge of the next apps most likely to be used,
smartphones can selectively preload resources related to predicted
apps.

Many models have been developed to predict app usage in the
community, mainly including the modeling of app click data and the
integration of contextual information [5, 10–15, 17]. These models
approach app usage prediction as a classification problem, identi-
fying the app with the highest probability of classification among
all possible labels. However, classification models encounter two
challenges when dealing with a diverse range of apps: 1) App usage
imbalance: Users typically exhibit a noticeable imbalance in their
app usage, with a small subset of apps being heavily used. Conse-
quently, classification models grapple with severe label imbalance,
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excelling in predicting apps with high-frequency usage but strug-
gling to accurately predict those with medium to low frequencies.
In practice, smartphone manufacturers show a greater interest in
the model’s capability of accurately predicting apps across various
usage frequencies for providing personalized app recommendations.
2) Out-of-distribution during deployment: Smartphone manufactur-
ers usually train the app usage prediction model with all available
app labels at hand in the cloud and then deploy it to edge devices.
However, there may be unseen apps that emerge during deploy-
ment.

To address these issues, this paper proposes a novel method—
Click-Through Rate Ranking-based Application Usage Prediction
(CTR-RAD)—which transforms the classification problem into a
click-through rate (CTR) ranking problem. It involves generating
the app click sequence and three types of discriminative features
as inputs for training a CTR estimation model in the cloud. The
trained model is then deployed on the user’s smartphone to predict
the CTR for each installed app. The decision-making process entails
ranking these CTR values, ultimately designating the app with the
highest CTR as the final prediction. It is noteworthy that the CTR
estimation model can be replaced with any user behavior sequence-
based CTR estimation model. This interchangeability is attributed
to the universality of the created app click sequence and three types
of features (sequence feature, affinity feature, and context feature)
across these models. CTR-RAD demonstrates the following two
advantages: 1) Balanced performance across the entire spectrum of
frequencies: Unlike classification models trained with heavily im-
balanced app labels, the CTR estimation model is trained with only
two labels (click or not click) for the target app, thereby mitigating
the negative impact of the app usage imbalance issue. Additionally,
we introduce a high-frequency app suppression strategy to further
mitigate the imbalance among target apps. 2) Generalizing to un-
seen apps during deployment: We define app click sequence and
three types of features that are sharable across different apps and
enable generalization on unseen apps. Moreover, CTR-RAD is not
tied to specific users and exhibits adaptability to new users.

In summary, our primary contributions are as follows: 1) We
propose an innovative app usage prediction method based on click-
through rate ranking, addressing the challenges encountered by
traditional classification models. 2) Existing CTR estimation models
are typically tailored for product recommendations, leaving a re-
search gap in the field of app usage prediction. This paper fills this
gap by introducing the universal app click sequence and three types
of features adaptable to any user behavior sequence. 3) Through
extensive evaluation using app usage data, the results demonstrate
that CTR-RAD outperforms state-of-the-art methods, enhancing
top-3 accuracy by 4.93% and top-5 accuracy by 6.64%. Moreover,
compared to baseline methods, CTR-RAD achieves approximately
double the accuracy in predicting apps with low usage frequen-
cies. Notably, CTR-RAD has been successfully deployed on the app
recommendation system of a leading smartphone manufacturer.

2 RELATEDWORK
This section presents a brief overview of the existing literature
on app usage prediction. The fundamental benchmark methods
for predicting app usage typically include recognizing the most

frequently used (MFU) and most recently used (MRU) apps [12].
In the initial stages of research, probabilistic models such as the
Markov model [9] and the Bayesian model [2, 21] are commonly
employed to model app click sequences. Meanwhile, early studies
tend to enhance prediction performance by incorporating diverse
contextual information from sensors [4, 12, 18, 20]. Shin et al. [12]
conducted a comprehensive analysis of various sensor contextual
features associated with app usage. Do et al. [4] further predict
users’ future locations and app usage by exploiting rich contex-
tual information from smartphone sensors. Zhu et al. [20] propose
leveraging context logs to mine users’ personal context-aware pref-
erences. Moreover, Zhao et al. [18] extract features related to human
mobility from users’ trajectories and integrate them with app usage
sequences to train a classifier for predicting app usage. Thus, app
usage prediction primarily relied on diverse probabilistic models
and rich contextual information in the early stages.

To delve deeper into this field, researchers have employed a series
of deep learning-based models [3, 7, 10, 11, 13–17] for modeling app
usage data. AppUsage2Vec [17], as a classical deep learning-based
app usage prediction model, incorporates an app-attention mecha-
nism to quantify the impact of each app on the target app, along
with a dual-DNN module for predicting app usage. Subsequent
models predicting app usage based on deep learning can be broadly
divided into two main categories. The first line of approaches, re-
ferred to as sequence-based methods, employs various forms of
RNNs [7, 14, 15] to capture the temporal patterns underlying app
click sequences. Lee et al. [7] introduce a GRU-based multi-task
learning framework incorporating time and location contexts to
enhance app usage predictions. Similarly, Xu et al. [15] and Xia et
al. [14] use LSTM-based networks to model app click sequences
while also considering time and location contexts.

Another line of work, known as graph-based methods, harnesses
the graph embedding techniques to capture correlations among
apps, locations, and time [3, 10, 11, 13, 16]. Chen et al. [3] con-
struct three bipartite graphs to represent various relationships
(app-location, app-time, and app-app type). They then introduce
a heterogeneous graph embedding algorithm to map these graphs
into a shared latent space. However, this approach neglects the
dynamic nature of app usage. To overcome this limitation, Yu et
al. [16] design a graph with nodes representing app, time, and loca-
tion, where edges encapsulate their co-occurrence relations. They
subsequently exploit a GCN-based model to learn a semantic-aware
spatio-temporal representation. Simultaneously, to capture the dy-
namics of user interests over time, Ouyang et al. [10] model user
app usage behaviors as a dynamic graph. They propose a dynamic
usage graph network to acquire effective embeddings within this
dynamic graph. Furthermore, Shen et al. [11] construct an attribute-
aware directed graph and develop an attention-based aggregation
model to characterize patterns in app usage.

Recent research has shown a trend towards the integration
of sequence-based methods with graph-based methods. Wang et
al. [13] present SGFNN, a pioneering model that seamlessly inte-
grates these two domains and trains them in an end-to-end manner.
In summary, existing approaches prioritize the exploration of prob-
abilistic models and deep learning techniques, concurrently mak-
ing efforts to incorporate diverse contextual information for the
prediction of app usage. However, these methods treat app usage
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Table 1: Examples of Events

EventType Timestamp Value Date UserID

App Click 1648893782448 {app_name} 20220402 42839
Screen 1648891954527 {screen_on; screen_off } 20220402 42839
Headset 1648950513848 {headset_connected; headset_disconnected} 20220403 141
WiFi 1648803122971 {WiFi_connected; WiFi_disconnected} 20220401 23
Install 1648803122971 {install; uninstall; update} 20220401 27955
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Figure 1: The overall framework of CTR-RAD.

prediction as a classification problem, which suffers from the issues
of app usage imbalance and out-of-distribution during deployment.

3 METHOD
The overall framework of CTR-RAD is depicted in Figure 1. This
section initiates by explaining the preparation of the input data
for the CTR estimation model in Section 3.1. Subsequently, Sec-
tion 3.2 introduces the training of the click-through rate estimation
model using the constructed data. These data can be adapted to
any user behavior sequence-based CTR estimation model. To exem-
plify, we employ a classic model—Deep Interest Evolution Network
(DIEN) [19]. Finally, Section 3.3 ends with the prediction process of
CTR-RAD.

3.1 Data Preparation
We adopt five types of events, namely, App Click, Screen, Headset,
WiFi, and Install, to generate the input data. Each event is a tuple
consisting of (EventType, Timestamp, Value, Date, UserID). Table 1
presents five instances of events with different types. The raw
data is preprocessed to construct the app click sequence and three
distinct types of features, serving as input for the click-through
rate estimation model in Section 3.2.

3.1.1 App click sequence. Based on the App Click event, we ini-
tially collect the sequence of app clicks sorted by their timestamps
in ascending order. Then, we generate training samples using a
window size of𝑀 and a duration limit of 𝐷 . This means that each
training example consists of𝑀 apps and the cumulative duration
of these apps within the window does not exceed 𝐷 . In each train-
ing example, denoted as 𝑎1:𝑛+1 = (𝑎1, . . . , 𝑎𝑛+1), 𝑎𝑛+1 represents
the final clicked app, serving as the target for the model, while

𝑎1:𝑛 represents all preceding clicked apps, regarded as input. Each
𝑎1:𝑛+1 is accompanied by its corresponding click time sequence
𝑡1:𝑛+1 = (𝑡1, . . . , 𝑡𝑛+1), where 𝑡𝑛+1 denotes the prediction time.

3.1.2 Sequence feature. Sequence features refer to the character-
istics associated with the order of app clicks. We experimentally
identified two valuable ones:

1) Time gap feature, which captures the duration between the
app click and the prediction time. For every app click within the
sequence 𝑎1:𝑛+1, a corresponding time gap feature is defined as
𝑔1:𝑛+1 = (𝑔1, . . . , 𝑔𝑛+1). Each time gap feature is calculated as fol-
lows:

𝑔𝑖 = 𝑡𝑛+1 − 𝑡𝑖 , 1 ≤ 𝑖 ≤ 𝑛 + 1. (1)
2) Screen feature, which captures the app’s position in the se-

quence of clicks following the activation of the screen. For every
app within the sequence 𝑎1:𝑛+1, a corresponding screen feature is
defined as 𝑠1:𝑛+1 = (𝑠1, . . . , 𝑠𝑛+1). To determine the screen feature
for each 𝑎𝑖 in 𝑎1:𝑛+1, we first identify the time 𝑡screen_on when the
Screen event with a value of screen_on occurs, either at 𝑡𝑖 or the
closest time preceding 𝑡𝑖 :

𝑡screen_on = max{𝑡 | 𝑡 ≤ 𝑡𝑖 and Screen(t)=screen_on}. (2)

Next, we obtain the sequence of app clicks occurring within the
time interval [𝑡screen_on, 𝑡𝑖 ]. Thus, 𝑠𝑖 is equivalent to the length of
the sequence within [𝑡screen_on, 𝑡𝑖 ]:

𝑠𝑖 = |{𝑎 𝑗 | 𝑡screen_on ≤ 𝑡 𝑗 ≤ 𝑡𝑖 }|. (3)

3.1.3 Context feature. Context feature refers to certain contex-
tual information corresponding to the prediction time 𝑡𝑛+1. We
experimentally identified three valuable ones:

1) Headset feature, denoted as 𝐻 (𝑡𝑛+1), which indicates the con-
nection status of the headset at time 𝑡𝑛+1. This status is character-
ized by two values: headset_connected and headset_disconnected, as
outlined in Table 1. We initially identify the time 𝑡headset when the
values of the Headset event occur, either at 𝑡𝑛+1 or the closest time
preceding 𝑡𝑛+1:

𝑡headset = max{𝑡 | 𝑡 ≤ 𝑡𝑛+1 and Headset(t) exists value}. (4)

Then, the value of the Headset event at time 𝑡headset is defined as
the headset feature 𝐻 (𝑡𝑛+1) at 𝑡𝑛+1.

2) WiFi feature, referred to as𝑊 (𝑡𝑛+1), which indicates the con-
nection status of WiFi at time 𝑡𝑛+1. This status contains two distinct
values:WiFi_connected andWiFi_disconnected, as shown in Table 1.
We first identify the time 𝑡WiFi when the values of theWiFi event
occur, either at 𝑡𝑛+1 or the closest time preceding 𝑡𝑛+1:

𝑡WiFi = max{𝑡 | 𝑡 ≤ 𝑡𝑛+1 andWiFi(t) exists value}. (5)
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Figure 2: The framework of DIEN using the app click sequence and three types of features.

Then, the value of the WiFi event at time 𝑡WiFi is defined as the
WiFi feature𝑊 (𝑡𝑛+1) at 𝑡𝑛+1.

3) Install feature, identified as 𝐿(𝑡𝑛+1), which represents the
values of the Install event at time 𝑡𝑛+1. We select two valid values
for this event: install and update, as outlined in Table 1. Initially,
we identify the time 𝑡install at which the values of the Install event
occur, either at 𝑡𝑛+1 or the closest time preceding 𝑡𝑛+1:

𝑡install = max{𝑡 | 𝑡 ≤ 𝑡𝑛+1 and Install(t) exists value}. (6)

Then, the value of the Install event at time 𝑡install is defined as the
the install feature 𝐿(𝑡𝑛+1) at 𝑡𝑛+1.

3.1.4 Affinity feature. Affinity feature, described as 𝐹 (𝑎𝑛+1), which
reflects the user’s inclination towards the target app 𝑎𝑛+1. As users
exhibit distinct preferences for different apps, we quantify the
user’s affinity for the target app 𝑎𝑛+1 by employing the base-2
logarithm (log2) of the historical click counts associated with this
app (Click_counts(𝑎𝑛+1)):

𝐹 (𝑎𝑛+1) = ⌊log2 (Click_counts(𝑎𝑛+1))⌋ . (7)

3.2 Learning
In this section, we present the training process of DIEN [19], a
classic user behavior sequence-based CTR estimation model. The
framework of DIEN, using the constructed app click sequences
and three types of features, is depicted in Figure 2. The input of
DIEN includes sequence data (𝑎1:𝑛 , 𝑔1:𝑛 , 𝑠1:𝑛), target data (𝑎𝑛+1,
𝑔𝑛+1, 𝑠𝑛+1), affinity feature (𝐹 (𝑎𝑛+1)), prediction time (𝑡𝑛+1), and

context feature (𝐻 (𝑡𝑛+1),𝑊 (𝑡𝑛+1), 𝐿(𝑡𝑛+1)), with the output being
the click-through rate for the target app 𝑎𝑛+1.

3.2.1 High-frequency app suppression. In the numerous available
apps, only a small number of apps are used very frequently, leaving
the majority with moderate or low frequencies. Consequently, there
exists a pronounced imbalance in the distribution of the target app
𝑎𝑛+1 within the training samples. To some extent, CTR-RAD par-
tially alleviates the negative impact of imbalanced app distribution
as the CTR estimation model is trained with only two labels (click
or not click). To further mitigate this concern, we propose a strategy
to suppress the number of training samples whose target apps have
high-frequency usage. This suppression can be implemented using
Equation 8:

𝑃 (𝑎𝑛+1) =
(√︂

𝑤 (𝑎𝑛+1)
𝜏

+ 1

)
· 𝜏

𝑤 (𝑎𝑛+1)
, (8)

where 𝑃 (𝑎𝑛+1) denotes the probability of choosing samples with the
target app 𝑎𝑛+1 as positive samples.𝑤 (𝑎𝑛+1) represents the usage
frequency of the target app 𝑎𝑛+1, calculated using Equation 9:

𝑤 (𝑎𝑛+1) =
Click_counts(𝑎𝑛+1)
All_click_counts

, (9)

where Click_counts(𝑎𝑛+1) represents the historical click counts of
𝑎𝑛+1, and All_click_counts signifies the total click counts of all apps
during the same historical period. Overall, the probability 𝑃 (𝑎𝑛+1)
inversely correlates with the usage frequency𝑤 (𝑎𝑛+1) of the target
app.
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3.2.2 Training. As illustrated in Figure 2, the embedding layer
processes the sequence data (𝑎1:𝑛 , 𝑔1:𝑛 , 𝑠1:𝑛) to produce a dense em-
bedding representation denoted as e(1 : 𝑛)𝑛×3𝑑 , where 𝑑 represents
the embedding dimension. Simultaneously, the embedding layer
processes the context feature (𝐻 (𝑡𝑛+1),𝑊 (𝑡𝑛+1), 𝐿(𝑡𝑛+1)), generat-
ing an embedding representation e(𝑐)3𝑑 . Similarly, the embedding
layer encodes the target data (𝑎𝑛+1, 𝑔𝑛+1, 𝑠𝑛+1) into the embed-
ding representation e(𝑛 + 1)3𝑑 , while 𝐹 (𝑎𝑛+1) is encoded as the
embedding representation e(𝑓 )𝑑 , and 𝑡𝑛+1 is represented as e(𝑡)𝑑 .

Initially, the sequence data embedding e(1 : 𝑛)𝑛×3𝑑 serves as the
input to the sequential network in the user behavior sequence-based
CTR estimation model. In DIEN, the sequence data embedding is
fed into a GRU network, which produces hidden states h(1 : 𝑛)𝑛×𝑛ℎ
(where 𝑛ℎ represents the hidden size). Subsequently, the hidden
states h(1 : 𝑛)𝑛×𝑛ℎ and the target data embedding e(𝑛+1)3𝑑 are fed
into an attention unit, which calculates attention scores 𝛼 (1 : 𝑛).
The scores reflect the relationship between the target data and the
sequence data, with higher scores indicating stronger relevance.
Following this, the hidden states h(1 : 𝑛)𝑛×𝑛ℎ and the attention
scores 𝛼 (1 : 𝑛) are input to a GRU with attentional update gate
(AUGRU) [19]. The AUGRU seamlessly integrates the attention
mechanism with the GRU. The last hidden state of the AUGRU is
denoted as h′ (𝑛).

Finally, the vectors h′ (𝑛), e(𝑛 + 1), e(𝑓 ), e(𝑡), and e(𝑐) are con-
catenated to form x. The concatenated vector x is then fed into an
MLP layer for the final prediction. Each training sample is labeled
as y ∈ {0, 1}, with 0 corresponding to a negative sample and 1 cor-
responding to a positive sample. The commonly used loss function
in CTR estimation models is the negative log-likelihood function:

L = − 1
𝑁

𝑁∑︁
(y log 𝑝 (x) + (1 − y) log(1 − 𝑝 (x))), (10)

where 𝑁 is the number of training samples, and 𝑝 (𝑥), referred
to as click-through rate, denotes the final output of the network,
indicating the predicted probability of the user clicking on the target
app.

3.3 Predicting
As illustrated in Figure 1, when the trained model in Section 3.2 is
deployed on the user’s smartphone, it anticipates the click-through
rates (C = {𝐶𝑇𝑅(𝐴1), . . . ,𝐶𝑇𝑅(𝐴𝑇 )}) for each installed app (A =

{𝐴1, . . . , 𝐴𝑇 }, where 𝑇 is the total number of apps on the user’s
smartphone). These CTR values are then ranked in descending
order, and the top K ranked CTR values (TopK(C)) determine the
final predictions:

PA = {𝐴𝑖 | 1 ≤ 𝑖 ≤ 𝑇 and 𝐶𝑇𝑅(𝐴𝑖 ) ∈ TopK(C)}, (11)

where PA represents the predicted top K apps.

4 EXPERIMENTS
In this section, we initially present an overview of the datasets,
training setup, evaluation metrics, and baseline methods in Sec-
tion 4.1. Then, we conduct a comprehensive evaluation of CTR-RAD
using extensive app usage data in Section 4.2.

Table 2: Summary of Two-Version Datasets

Version Period Users Apps

V1-data 2022/03/02-2022/04/27 50,000 76,460
V2-data 2023/02/05-2023/05/05 200,000 180,671

4.1 Datasets and Implementation Details
4.1.1 Datasets. The app usage data comprises two versions of
datasets collected at different periods, denoted as V1-data and V2-
data, respectively. The details of these two-version datasets are
outlined in Table 2. Each app within the datasets is classified into
one of 18 specific categories, including Education, Games, Utilities,
Entertainment, Health, News, Navigation, Social, Shopping, Music,
Finance, Lifestyle, Sports, Video, Tools, Business, Travel, and Photog-
raphy. It is important to note that these datasets exclude any per-
sonally identifiable information. The user ID has been anonymized,
and all user metadata has been removed.

4.1.2 Training setup. The hidden state size is set to 32, and the
embedding size is set to 16. The model is trained for 100 epochs
using the Adam optimizer [6] with a learning rate of 0.001, and a
batch size of 200 is employed.

4.1.3 Evaluation metrics. We employ top-K accuracy as our evalu-
ation metric, a widely adopted measure in the field of app usage
prediction. Here, K denotes the number of predicted apps (PA ), as
detailed in Section 3.3. The top-K accuracy is calculated as follows:

top-K accuracy =
𝑁 (𝑎𝑛+1 ∈ PA )

𝑁ALL
, (12)

where 𝑁ALL denotes the total number of test samples, and the
numerator represents the count of correctly predicted test sam-
ples. A test sample is deemed correctly predicted if the target app
𝑎𝑛+1 is within PA . In our subsequent experiments, we primarily
focus on top-1 accuracy (Top1), top-3 accuracy (Top3), and top-5
accuracy (Top5). It is noteworthy that smartphone manufacturers
prioritize Top3 and Top5 metrics, as recommending 3 or 5 apps is
more meaningful for users. To ensure fair evaluation, we conducted
five experiments and then calculated the average as the final result.

4.1.4 Baselines. We compare CTR-RAD with the following base-
line methods: 1) MFU (Most Frequently Used), which identifies
the app most frequently used by a user. 2) MRU (Most Recently
Used), which identifies the app most recently utilized by a user.
3) DNN [17], which uses two hidden layers for predicting the target
app. 4) RNN-Attention [17], which employs an attention mecha-
nism to learn the weights of the hidden states at each time step. A
softmax activation is then applied to the weighted sum of these hid-
den states, which is connected to a fully connected layer to predict
the target app. 5) AppUsage2Vec [17], which is a classical app usage
prediction model that incorporates an app-attention mechanism
and temporal context. 6) SGFNN [13], which is a pioneering model
that integrates the sequence-based method with the graph-based
method.
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Table 3: Hyperparameter Study

𝑃 𝑉
V1-data V2-data

Top1 Top3 Top5 Top1 Top3 Top5

𝜏

0.01 47.28 78.21 85.11 47.66 78.05 84.71
0.05 48.28 78.65 85.35 48.63 78.48 84.89
0.1 49.07 78.72 85.43 49.28 78.57 84.99

t-slot
15 48.84 78.73 85.43 49.12 78.62 85.04
10 48.82 78.73 85.46 49.07 78.59 85.04
5 48.93 78.73 85.43 49.15 78.59 85.01

g-slot
5 49.45 78.83 85.47 49.61 78.67 85.07
2 49.85 79.01 85.59 50.03 78.80 85.14
1 49.81 79.00 85.61 49.95 78.82 85.17

𝐷train

1 45.94 77.84 84.78 46.39 77.91 84.52
7 49.07 78.72 85.43 49.28 78.57 84.99
14 49.97 78.78 85.45 49.96 78.70 85.07

𝐷𝐹 (𝑎𝑛+1 )

1 49.47 80.53 88.20 49.89 81.04 88.63
7 49.55 80.76 88.59 49.90 81.19 88.89
14 49.43 80.78 88.59 49.90 81.19 88.85

𝐷

8 49.48 78.98 85.54 49.39 78.42 84.73
15 49.07 78.72 85.43 49.28 78.57 84.99
30 47.90 78.36 85.23 48.55 78.44 84.89
60 47.13 77.99 85.05 47.81 78.14 84.81

𝑀

8 48.67 78.61 85.21 48.78 78.33 84.66
16 49.07 78.72 85.43 49.28 78.57 84.99
32 48.88 78.64 85.37 49.12 78.51 84.94

4.2 Results
4.2.1 Hyperparameter study. As shown in Table 3, we perform a set
of experiments to identify the optimal values for the hyperparame-
ters 𝑃 = {𝜏 , t-slot, g-slot,𝐷train,𝐷𝐹 (𝑎𝑛+1 ) ,𝐷 ,𝑀}. We explore different
values (𝑉 ) for each hyperparameter, and the selected values for our
subsequent experiments are highlighted in bold in Table 3. The
details of each hyperparameter are outlined as follows: 1) 𝜏 : It is the
hyperparameter of Equation 8, adjusting the extent of suppression
for training samples with the high-frequency target app. A larger
𝜏 indicates a reduced degree of suppression. We opt for a value of
0.1. 2) t-slot: It denotes the granularity used for discretizing the
prediction timestamp, measured in minutes. We select a value of 10
minutes. 3) g-slot: It represents the granularity used for discretizing
the time gap feature, measured in minutes. We choose a value of
2 minutes. 4) 𝐷𝑡𝑟𝑎𝑖𝑛 : It refers to the days of app usage data used
for training. We observed that the results plateau when the num-
ber of days of app usage data increases to 14. Thus, we utilize 7
days of app usage data for training. Specifically, we use data from
April 1st to April 7th, 2022, for training, and data from April 8th,
2022, for validation. To evaluate the model’s generalization, we
randomly select one day of test data from each of the V1-data and
V2-data. 5) 𝐷𝐹 (𝑎𝑛+1 ) : It denotes the historical days of app usage
data utilized to derive the affinity feature. We can observe that the
results plateau when the number of days extends to 14. Therefore,
we use 7 historical days of app usage data, from March 25th to

Table 4: Results Across Different Features

V1-data V2-data
Top1 Top3 Top5 Top1 Top3 Top5

𝑎1:𝑛 48.87 78.69 85.42 49.11 78.57 85.02
+headset 48.98 78.74 85.49 49.21 78.61 85.08
+WiFi 48.92 78.77 85.46 49.13 78.63 85.04
+install 48.95 78.69 85.43 49.15 78.57 85.04
+screen 49.93 78.87 85.56 50.13 78.70 85.12
+time gap 49.95 79.00 85.58 50.11 78.82 85.15

+sequence 50.76 79.17 85.71 50.88 78.94 85.27
+context 49.11 78.74 85.50 49.33 78.62 85.12
+affinity 49.50 80.74 88.59 49.90 81.24 88.94

CTR-RAD 51.59 81.37 88.95 51.90 81.78 89.23

Figure 3: Gain differences across various features.

March 31st, 2022, to obtain the affinity feature. In all subsequent
experiments, the user ID is set to 0. 6) 𝐷 &𝑀 : We generate training
samples by considering a window size of𝑀 with a duration limit of
𝐷 (measured in minutes). Each training example consists of a total
of𝑀 apps, ensuring that the combined duration of the apps within
the window does not exceed 𝐷 . Experimentally, we find that setting
𝑀 to 16 and 𝐷 to 15 maximizes the number of training samples,
yielding optimal results.

4.2.2 Ablation study. To highlight the impact of distinct features,
we compare CTR-RAD with its variants, as presented in Table 4.
Additionally, Figure 3 visually depicts the gain differences between
using pure app click sequence input (𝑎1:𝑛) and inputs incorporating
each feature. Both results demonstrate that each feature improves
performance to varying extents. Specifically, the context feature
generally has a weak influence, while the sequence feature posi-
tively affects Top1, and the affinity feature notably enhances Top3
and Top5. Moreover, the combination of all features as input per-
forms the best across all metrics.

To further investigate the performance contribution of feature
interplay, we study the model performance changes using different
feature combinations. Table 6 summarizes the results: ‘0’ means
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Table 5: Performance Comparison with Baselines

Methods V1-data V2-data
Top1 Top3 Top5 Top1 Top3 Top5

MFU 36.18 70.97 76.80 36.33 70.62 76.09
MRU 22.29 66.45 74.13 22.71 65.85 73.56
DNN [17] 48.30 76.70 82.58 48.48 76.26 82.00
RNN-Attention [17] 50.39 78.51 84.40 50.33 77.94 83.68
AppUsage2Vec [17] 42.27 74.95 81.90 42.65 74.56 81.22
SGFNN [13] 49.59 77.39 83.51 49.89 76.99 82.86
CTR-RAD (w/o features) 48.87 78.69 85.42 49.11 78.57 85.02
CTR-RAD 51.59 81.37 88.95 51.90 81.78 89.23

Improvement (%) 2.37 3.65 5.40 3.12 4.93 6.64

Figure 4: Performance comparison across various app usage frequencies.

Table 6: Performance with Different Feature Combinations

Features headset WiFi install screen time gap affinity

headset - 2 1 2 1 1
WiFi 2 - 0 2 1 2
install 1 0 - 1 2 2
screen 2 2 1 - 2 2
time gap 1 1 2 2 - 2
affinity 1 2 2 2 2 -

performance worse than individual features, ‘1’ means performance
better than a single feature, and ‘2’ means superior performance
compared to both individual features. We found that combining
the screen feature with other features, excluding the install feature,
consistently yields superior results. Furthermore, combining the
install and affinity features demonstrates enhanced performance,
potentially because the install feature offsets the lack of historical
preference data for newly installed apps. However, combining the
install feature with an unrelated WiFi feature yields worse results.

4.2.3 Results compared with baselines. In Table 5, we compare
the performance of CTR-RAD with baseline methods across two

datasets. The results demonstrate the superior performance of CTR-
RAD in terms of Top1, Top3, and Top5 metrics, with particularly
notable improvements in the Top3 and Top5 metrics. Specifically,
CTR-RAD outperforms state-of-the-art methods by 4.93% in Top3
and 6.64% in Top5. Notably, CTR-RAD (w/o features), which relies
solely on the app click sequence input, still outperforms baseline
methods that incorporate additional features in terms of Top3 and
Top5. Furthermore, we conduct a comparative analysis between
CTR-RAD and baseline methods across apps with varying usage
frequencies, as depicted in Figure 4. The x-axis represents the base-2
logarithm (log2) of the app usage frequency, calculated by Equa-
tion 9, where larger values indicate higher app usage frequency.
By comparing the bars, it is evident that CTR-RAD surpasses the
classification models, achieving approximately twice the accuracy
in predicting low-frequency apps. By comparing the lines, it is ob-
served that as the app frequency increases, the top-5 accuracy of
CTR-RAD remains relatively stable across all frequencies. In sum-
mary, classification models excel in predicting high-frequency apps
but face challenges in predicting medium to low-frequency ones.
However, CTR-RAD demonstrates balanced performance across
the entire spectrum of frequencies.

4.2.4 Case study. In this section, we conduct a comprehensive anal-
ysis of each feature, emphasizing how each one impacts CTR-RAD
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(a) Headset (b) WiFi (c) Install

Figure 5: The analysis of context features.

Figure 6: The Top5 gain difference of the affinity feature.

in predicting which apps, categories, and app usage frequencies. We
compare the top 1 predicted results incorporating the context fea-
tures 𝐻 (𝑡𝑛+1),𝑊 (𝑡𝑛+1), and 𝐿(𝑡𝑛+1) with those derived solely from
the app click sequence input. Figure 5-(a) illustrates the percentage
of apps that are accurately predicted by incorporating the 𝐻 (𝑡𝑛+1)
feature, while being inaccurately predicted by only utilizing app
click sequence input. It can be observed that Music or Video apps
(e.g., KuGou Music) can be predicted more accurately when integrat-
ing the headset feature. This finding aligns with users’ daily habits,
indicating that they commonly wear headphones when using these
apps.

Figure 7: The Top1 gain difference of the sequence feature.

Figure 5-(b) presents the percentage of apps accurately predicted
by incorporating the𝑊 (𝑡𝑛+1) feature, while being inaccurately pre-
dicted by solely relying on the app click sequence input. It can be
found that Video apps (e.g., TikTok) can be predicted more accu-
rately when integrating the WiFi feature. This aligns with users’
habits as they commonly use WiFi for resource-intensive apps.
Figure 5-(c) shows the percentage of apps accurately predicted by
incorporating the 𝐿(𝑡𝑛+1) feature, but inaccurately predicted by
only relying on the app click sequence input. The results indicate
that Tool or Shopping apps (e.g., PinDuoDuo, DingTalk) can be pre-
dicted more accurately when integrating the install feature. This is
consistent with our daily habits because users often click on these
apps immediately after installing them.

Figure 3 indicates that the affinity feature has a significant impact
on Top3 and Top5. Thus, we compare the top 5 predicted results
incorporating the affinity feature 𝐹 (𝑎𝑛+1) with those derived only
from the app click sequence input. Figure 6 presents the differ-
ence in the top-5 accuracy between pure app click sequence input
and inputs incorporated with the affinity feature. It demonstrates
that News and Games apps can be predicted more accurately when
integrating the affinity feature. These categories exhibit users’ pref-
erences; for example, some user groups prefer gaming apps, while
others favor news-related apps.



Optimizing Smartphone App Usage Prediction: A Click-Through Rate Ranking Approach KDD ’24, August 25–29, 2024, Barcelona, Spain

Table 7: The cost against various dataset sizes

𝐷train #Records Model size (MB) Training time (h)

1 660,506 15.6 0.92
7 4,349,482 15.7 2.28
14 8,827,062 16.0 3.95

Figure 8: Inference times of different models.

Meanwhile, the sequence feature has a relatively large impact on
Top1 compared to Top3 and Top5, as shown in Figure 3. Therefore,
we compare the top 1 predicted results incorporating the sequence
features 𝑠1:𝑛 and 𝑔1:𝑛 with those derived only from the app click
sequence input. Figure 7 presents the difference in top-1 accuracy
between pure app click sequence input and inputs incorporated
with the sequence features across different app usage frequencies.
It demonstrates that the sequence feature leads to stable improve-
ments in predicting medium-frequency apps.

4.2.5 Complexity analysis. The algorithmic complexity of CTR-
RAD is approximately O(𝑅𝑁 ), where 𝑅 represents the number of
records and 𝑁 indicates the number of input apps. Through empiri-
cal analysis, as depicted in both Table 7 and Table 3, we compare the
performance between 𝐷train=7 and 𝐷train=14. Despite noticeable
increases in both model size and training time with 𝐷train=14, we
observe slight performance improvements. This suggests a favor-
able trade-off between model performance and training cost when
𝐷train=7. Figure 8 illustrates empirical inference times (for 10,000
Records) of different models. Our approach, which exclusively pre-
dicts the CTR of the target app, exhibits notably lower inference
time compared to baseline methods. Furthermore, although pre-
dicting CTRs for all apps installed on the user’s phone (averaging
around 60) is necessary, we can enhance efficiency by executing
predictions in parallel.

4.2.6 Unseen apps prediction. During actual deployment, we allo-
cate 300 feature values for potentially newly introduced apps. Based
on our configuration experience, the number of new apps intro-
duced per user generally remains within this threshold. However,
despite allocating an equal number of feature values to the classi-
fication models, they still cannot predict unseen apps. Our model
predicts the CTR of the target app using the target app itself as
input. If the target app is newly introduced, our proposed method
can still predict its CTR based on the input app click sequence

Table 8: Unseen apps prediction results

Records with unseen target apps Top1 Top3 Top5

CTR-RAD (w/o features) 24.07 59.05 67.96
CTR-RAD 27.44 72.06 83.35

(e.g., if the new app was clicked in the user’s history) and features
(e.g., if the new app was clicked immediately after the screen lights
up). Table 8 presents the performance of CTR-RAD (trained on
V1-data) in predicting those records whose target apps are newly
introduced apps in V2-data, totaling 24,086. The results indicate
that our approach accurately predicts these apps using solely app
click sequences as input and further improves upon integrating
additional features.

4.2.7 Limitation analysis. The development of CTR-RAD relies on
initial features extracted and constructed from raw user behavioral
data. Two potential limitations of our proposed method are: 1)
the present feature engineering heavily relies on the expertise of
professionals, and 2) parts of the extracted features are platform-
specific, which may increase the cost of extending the model to
new app platforms.

5 CONCLUSION
In this paper, we conclude that existing research commonly ap-
proaches app usage prediction as a classification problem, encoun-
tering challenges such as app usage imbalance and the out-of-
distribution issue during deployment. To address these limitations,
we introduce an innovative click-through rate ranking-basedmethod
for predicting app usage. Our approach involves using the app click
sequence and three distinct types of features to train a CTR esti-
mation model in the cloud. The trained model is then utilized to
predict the CTR of each app installed on the user’s smartphone.
The decision-making process includes ranking these CTR values
and selecting the app with the highest click-through rate as the
final prediction. Extensive experiments and analysis demonstrate
that our proposed method outperforms state-of-the-art methods,
achieving approximately double the accuracy in predicting apps
with low usage frequencies. Furthermore, this method has been suc-
cessfully deployed in the app recommendation system of a leading
smartphone manufacturer. In the future, we will further enhance
our feature engineering by incorporating additional data, such as
Points of Interest (POI) data and physical activity events (e.g., run-
ning, walking). We also aim to federate our method with other
advanced click-through rate estimation models to achieve better
prediction results.
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