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Abstract
Adapting vision-language models (VLMs) to
downstream tasks with pseudolabels has gained
increasing attention. A major obstacle is that the
pseudolabels generated by VLMs tend to be im-
balanced, leading to inferior performance. While
existing methods have explored various strategies
to address this, the underlying causes of imbal-
ance remain insufficiently investigated. To fill
this gap, we delve into imbalanced pseudolabels
and identify two primary contributing factors:
concept mismatch and concept confusion. To
mitigate these two issues, we propose a novel
framework incorporating concept alignment and
confusion-aware calibrated margin mechanisms.
The core of our approach lies in enhancing un-
derperforming classes and promoting balanced
predictions across categories, thus mitigating im-
balance. Extensive experiments on six benchmark
datasets with three learning paradigms demon-
strate that the proposed method effectively en-
hances the accuracy and balance of pseudola-
bels, achieving a relative improvement of 6.29%
over the SoTA method. Our code is avaliable at
https://github.com/Noahwangyuchen/CAP.

1. Introduction
Large vision-language models (VLMs; Radford et al., 2021;
Li et al., 2022; 2021; Alayrac et al., 2022; Zhang et al.,
2024a; Gao et al., 2024) pre-trained on extensive image-
text pairs achieve remarkable performance across a wide
range foundamental vision tasks, such as image classifica-
tion (Zhou et al., 2021), semantic segmentation (Xu et al.,
2022), and object detection (Gu et al., 2022). Nonetheless,
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Figure 1. left: The lowest 5 per-class accuracies in RESISC45,
right: The distribution of samples of them in clusters. The pink
bar represents samples in the cluster in which they appear most
frequently, the gray bar represents samples appear in other clusters.

previous research (Zhou et al., 2021; Gao et al., 2021; Zhang
et al., 2022) shows that they still require adaptation using
annotated data from downstream datasets to achieve optimal
performance, which incurs substantial annotation costs.

Building upon the observation that VLMs, such as CLIP,
inherently possess zero-shot image classification capabili-
ties, previous studies (Huang et al., 2022; Menghini et al.,
2023; Zhang et al., 2024b) explore adapting VLMs for down-
stream tasks by leveraging pseudolabels generated by the
VLMs themselves. A critical challenge is that VLMs have
biased preferences for different classes, which results in
imbalanced pseudolabels, thus suffering from confirmation
bias (Huang et al., 2022; Zhang et al., 2024b). While exist-
ing literature has explored strategies such as enforcing equal
number of pseudolabels assigned to all classes (Huang et al.,
2022; Menghini et al., 2023) and assigning a candidate set of
pseudolables to each sample (Zhang et al., 2024b), limited
research investigates the rationale behind the issue.

To fill this gap, we begin by studying the underlying causes
of the imbalanced pseudolabels. We identify that the im-
balance in pseudolabeling originates from the semantic
gap (Xing et al., 2023) inherent in VLMs, where certain
class names do not sufficiently correspond to visual con-
cepts. To illustrate this, we identify the five classes with
the lowest accuracies given by CLIP and visualize their per-
class accuracies along with the cluster distribution of cor-
responding image features1. As shown in Figure 1, despite

1We apply K-Means clustering to image features of samples in
RESISC45 extracted by the image encoder of CLIP, forming 45
clusters since there are 45 classes in RESISC45.
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Figure 2. left: concept mismatch. right: concept confusion. Please
see Appendix A for realistic examples of them.

the extremely low prediction accuracies for these classes,
their image features exhibit good clustering performance, as
they mostly concentrated in a single cluster. This indicates
that CLIP fails to relate the name of certain classes to the
corresponding visual concepts, thus resulting in imbalanced
classification accuracies in zero-shot predictions.

To further study the issue of semantic gap, we delve into
the erroneous classification results and identify that it leads
to two key consequences, as depicted in Figure 2: concept
mismatch and concept confusion2. Concept mismatch arises
from a severe form of the semantic gap, where the text
feature of a class is significantly misaligned with its corre-
sponding image features. This leads to incorrect samples
being assigned to the class during pseudolabeling based on
prediction confidence, resulting in persistently low accuracy
after fine-tuning. Concept confusion, on the other hand, is
more commonly observed between similar classes, when
the text features of the class names fail to capture the most
distinguishable visual concepts between them. This leads
to a bias seen in zero-shot prediction among these classes,
causing an imbalance in prediction and pseudolabels.

To address these, we propose a concept-adaptive pseudola-
beling (CAP) framework to fine-tune VLMs with balanced
pseudolabels of unlabeled data on downstream tasks. To
erase the concept mismatch, we propose a concept align-
ment strategy in which we employ iterative clustering to de-
tect concept-mismatched classes and utilize large language
models to generate enhanced textual descriptions. This ap-
proach aligns the text feature with the corresponding image
features, ensuring that more correct samples are assigned to
the class in the initialization stage. To tackle concept con-
fusion, we introduce a confusion-aware calibrated margin
that encourages the model to make more distinguishable
predictions between similar classes and more balanced pre-
dictions over all classes, thereby improving the accuracy of
pseudolabels. Moreover, we employ independent adapters
on the visual branch to separately learn from highly reliable
pseudolabels obtained through concept alignment and dy-
namically generated pseudolabels during training, thereby

2Take CLIP’s zero-shot prediction for RESISC45 as an exam-
ple, we discovered approximately 5% classes existing concept
mismatch, and about 30% classes suffer from concept confusion,
thus harming the accuracy.

mitigating the confirmation bias introduced by incorrect
pseudolabels arising in the training process.

We conduct experiments on six image classification bench-
marks across three learning paradigms, comparing our ap-
proach with previous methods. The results show that our
framework consistently improves performance, achieving
new state-of-the-art results. Further analysis confirms that
the proposed method effectively mitigates the issues of con-
cept mismatch and concept confusion, resulting in more
balanced pseudolabels. The contributions of this work can
be summarized as follows:

• We identify and analyze the causes of imbalance in
VLMs’ zero-shot predictions, attributing it to concept
mismatch and concept confusion.

• We propose concept alignment and confusion-aware
calibrated margin to address these issues, enhancing
pseudolabel balance and accuracy.

• We conduct extensive experiments across unsupervised
learning, semi-supervised learning, and transductive
zero-shot learning, achieving a relative improvement
of 6.29% over the SoTA method.

2. Related Works
Vision-Language Models. Recently, VLMs have demon-
strated impressive performance on various downstream vi-
sion tasks, such as image classification (Zhou et al., 2021;
Addepalli et al., 2024), semantic segmentation (Xu et al.,
2022; Shi et al., 2024), and object detection (Gu et al., 2022;
Kim et al., 2024; Wang et al., 2024). The key idea of VLMs
is to learn representations that bridge the gap between visual
and textual modalities, which facilitates general-purpose
understanding and reasoning between modalities (Van den
Oord et al., 2018), for example, CLIP (Radford et al., 2021),
ALIGN (Li et al., 2021), Florence (Yuan et al., 2021). De-
spite great success, recent research (Zhou et al., 2021; Zhang
et al., 2024a) indicates that a significant amount of labeled
data remains crucial for adaptating VLMs across various
downstream tasks, which incurs substantial labeling costs.
In this paper, we focus on fine-tuning CLIP – a widely
adopted VLM, in downstream tasks with abundant unla-
beled data, thus eliminating dependence on labeled data.

Learning from Unlabeled Data. In real-world downstream
applications, obtaining a considerable amount of labeled
data is expensive. With the zero-shot classification capa-
bility inherent in VLMs, recent work explores the use of
pseudolabeled data for task adaptation. For instance, UPL
(Huang et al., 2022), or FPL (Menghini et al., 2023) select
top-k confident samples for each class to form a balanced
distribution among classes. Building upon this idea, GRIP
(Menghini et al., 2023) exploits an iterative strategy, grad-
ually increasing the value of k with each iteration until all

2
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unlabeled data are incorporated in the final iteration. Mean-
while, CPL (Zhang et al., 2024b) takes a similar iterative
strategy to GRIP, assigning each sample a set of candidate
pseudolabels each iteration, expecting the true label to be
among them. Different from previous work which employ
post-hoc methods to optimize pseudolabels, we identify
the rationale behind the imbalanced pseudolabels and pro-
pose two approaches to address classes with inherently low
accuracy, encouraging the model to make more balanced
predictions among classes.

Prompt Tuning. This strategy was initially applied to large
language models as a replacement for manually designed
prompts and served as a fine-tuning method to provide task-
specific information. With CoOp (Zhou et al., 2021) pi-
oneering the application of prompt tuning for fine-tuning
CLIP, this technique has been increasingly adopted in VLMs
(Zhou et al., 2022; Bahng et al., 2022; Zang et al., 2022).
Prompt tuning applied to different modalities has been ex-
plored. CoOp concatenate a group of continuous vectors to
the input at the textual branch, optimizing these vectors to
complete fine-tuning. VPT (Jia et al., 2022) introduces a
small budget of additional parameters to the image encoder,
which are prepended into the input sequence of each layer.
MaPLe (Khattak et al., 2023) proposes a joint prompting
approach by learning context prompts in the textual branch,
and projecting them to the visual branch through a linear
projection. In this paper, we adopt MaPLe as the prompt
tuning method, as it allows learning from both modalities.

3. Methodology
Problem Definition. This paper studies how to adapt CLIP
to downstream tasks without human-annotated data. For-
mally, given a collection of downstream unlabeled data
denoted as DUL = {(xi)}Ni=1, comprising N instances,
we explore how to assign accurate pseudolabels to each
instance within a classification label space Y = {c}Cc=1.
The obtained datasets are then utilized to fine-tune CLIP,
enhancing its applicability to the downstream tasks. We
consider three learning paradigms: unsupervised learning
(UL), semi-supervised learning (SSL) (Zhang et al., 2021;
Chen et al., 2023; Wang et al., 2023), and transductive zero-
shot learning (TRZSL), since all the paradigms explore the
exploitation of unlabeled data.

Motivation. While VLMs have exhibited inherent zero-
shot capabilities for pseudolabel generation, the semantic
gap inherent in VLMs significantly restricts the accuracy of
generated pseudolabel. We conduct an in-depth study on the
semantic gap and observe that it manifests two phenomena:
concept mismatch and concept confusion. In this paper,
we first address concept mismatch through a detect-then-
enhance framework; Subsequently, we alleviate concept
confusion with a confusion-aware calibrated margin which
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Figure 3. The process of concept alignment. We first take an itera-
tive clustering strategy to detect the concept-mismatched classes.
We then utilize LLMs to generate enhanced descriptions for them,
and obtain images with top-k similar image features to the en-
hanced text feature each class as pseudolabeled samples.

guides VLMs to generate more distinguishable predictions.

Overview. The overall workflow of our method can be
divided into three steps: 1) we employ concept align-
ment (§3.1) to refine pseudolabels for concept-mismatched
classes by detecting them and enhancing their text descrip-
tions via a large language model, aligning the descriptions
with visual concepts; 2) we then alleviate concept confusion
with a confusion-aware calibrated margin (§3.2). This mar-
gin, derived from similarity between classes and model pre-
diction tendencies, encourages the model to produce more
discriminative and balanced predictions; 3) we propose a
fine-tuning framework (§3.3) that utilizes both the pseu-
dolabeled data generated in the concept alignment step and
the remaining unlabeled data. We deploy main and pseudo
adapters on the visual branch to learn from pseudolabeled
and unlabeled data separately, and use the confusion-aware
calibrated margin to compute the loss.

3.1. Concept Alignment

As illustrated in Figure 1 and Figure 2, concept mismatch
leads to markedly low accuracy for certain classes. Conse-
quently, very few correct pseudolabels are assigned to these
classes and the accuracy for these classes remains exception-
ally low after fine-tuning. To address this issue, we propose
a concept alignment process designed to assign more pre-
cise pseudolabels to the concept-mismatched classes. As
depicted in Figure 3, the process initiates with a mismatch
detection algorithm that iteratively excludes well-matched
classes, thereby isolating the concept-mismatched instances
and their corresponding labels. Subsequently, it utilize a
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Algorithm 1 Mismatch Detection
Input: Image feature set I = {vi}Ni=1, text feature set
T = {wj}Mj=1, class labels Y = {c}Cc=1, threshold t
Output: Remaining image feature set Ifinal, remaining
class labels Yfinal
while |Y| ≥ t do
C = {cj}|T |

j=1 = KMeans(I, |T |)
ST C
ij = sim(wi, cj), ∀wi ∈ T , cj ∈ C

PT C
i,: = softmax(ST C

i,: )

(i∗, j∗) = argmax
i,j

PT C
ij

Ij∗ = {vk | vk ∈ I, k ∈ Clusterj∗}
T ← T \ {wi∗}, I ← I \ Ij∗ , Y ← Y \ {i∗}

end while
Ifinal = I, Yfinal = Y

large language model to enhance text descriptions, ensuring
more accurate alignment with their respective visual con-
cepts. In this way, it reduces the occurrence of mismatches
between visual data and their associated pseudolabels.

Given the text encoder ψ and the image encoder ϕ of CLIP,
we obtain the image feature vi of each image in DUL and
text feature wc of each class label with the template “a photo
of a [CLS]”, forming:

I = {(vi)}Ni=1, vi = ϕ(xi),

T = {(wc)}Cc=1, wc = ψ(template(c)).

We started by detecting the concept-mismatched classes by
an iterative clustering algorithm based on I, T , and Y . The
mismatch detection algorithm is presented in Algorithm 1.
In this algorithm, we gradually remove the image features
and text features of well-matched classes, thereby retaining
only the concept-mismatched classes. For each iteration,
we begin by applying K-means clustering to I , forming |T |
clusters and obtain the centroids C. We then compute the
similarity matrix ST C and probability matrix PT C of T and
C. Finally, we figure out the pair of text feature and centroid
with the highest confidence score, wi∗ and cj∗ , and we
remove the image features in the cluster corresponding to
cj∗ from I, the text feature wi∗ from T , the corresponding
class label i∗ from Y , since we assume that i∗ relates to the
best-matched class in this iteration.

The algorithm terminates when the size of Y falls below
a predefined threshold t. We denote the remaining image
features and class labels as Ifinal and Yfinal. We further
obtain the classes with the fewest-t samples predicted to
be as Ylow−t, and finally identify the concept-mismatched
classes as YMM = Yfinal ∩ Ylow−t.

For the classes in YMM, we then perform text augmentation
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Figure 4. Density curve of confidence score for samples in concept-
confused groups by left: zero-shot CLIP and right: CLIP fine-tuned
with confusion-aware calibrated margin.

using a large language model (LLM) to generate enhanced
text descriptions. Specifically, for each class c in YMM, we
query the LLM n times to generate n corresponding descrip-
tions. Akin to a step in Alg. 1, we identify the optimal
description as the one that exhibits the highest similarity to
one of the centroids derived from clustering on Ifinal.

Finally, for each class in YMM, we assign corresponding im-
ages of the image features with top-k cosine similarity to the
text feature of enhanced description as pseudolabeled sam-
ples of this class. For each class inY\YMM, we follow previ-
ous work (Menghini et al., 2023) by assigning pesudolabels
based on the top-k confidence scores obtained through zero-
shot CLIP. We denote pseudolabeled samples generated this
stage as DPL = {(x, ỹ)} with size M = k × C. Please
refer to Appendix B for more details of concept alignment.

3.2. Confusion-Aware Calibrated Margin

Confusion frequently arises among similar classes, imped-
ing the model’s ability to distinguish these classes. This
further leads to biased predictions that lean towards one
class, disrupting the balance of the pseudolabels. To ad-
dress this, we propose a confusion-aware calibrated margin
inspired by logit adjustment (Menon et al., 2021), which
gradually reduces concept confusion by improving local
calibration among confused groups.

As shown in Figure 4, zero-shot CLIP often makes incor-
rect predictions with high confidence due to concept confu-
sion. A 0.6 threshold for pseudo-labeling would introduce
many errors and amplify confirmation bias. In contrast, our
confusion-aware calibrated margin provides local calibra-
tion, reducing confidence for incorrect predictions, making
pseudo-labels selected at the same threshold more accurate
and improving learning stability.

Specifically, we compute the confusion-aware calibrated
margin based on the similarity of classes and the model’s
prediction tendency. Given an instance x, we obtain the
logit output by CLIP as z. With the instance’s label y,
the confusion-aware calibrated margin can be defined as a
variant of cross-entropy loss:

Lm(y,z) = − log
ezy

ezy +
∑

c̸=y e
zc+Myc

, (1)
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where M is the margin matrix, which is constructed from
the similarity matrix S and the class-wise margin scales m.

We start by computing the similarity matrix S of all classes.
Given CLIP with learnable parameters θ, the image features
of samples with pseudolabel c are calculated as

Ic = {vj | vj = ϕθ(xj), (xj , c) ∈ DPL}.

We then compute the prototypes of all classes to further
obtain their similarity. The visual prototypes I are computed
as the average of all image features corresponding to a
certain class, and the text prototypes T are text features
extracted by the model:

I = {(vc)}Cc=1, vc = avg(Ic).

T = {(wc)}Cc=1, wc = ψθ(c).

Then, we obtain the similarity matrix S by computing the
maximum similarity between visual prototypes and textual
prototypes for each pair of classes as

Sij = max(sim(vi,vj), sim(wi,wj)). (2)

To determine the class-wise margin scales m, we first com-
pute σ(c), the number of samples in DPL that are classified
as class c with a confidence exceeding a threshold τ :

σ(c) =

M∑
i=1

I(max(pi) ≥ τ) · I(argmax(pi) = c). (3)

Based on σ(c), the model’s class-wise tendency δc and the
overall imbalanced degree ∆ can be calculated as

δc = 1− σ(c)

max(σ(j))
, c, j ∈ Y (4)

∆ = max
c

(δc) (5)

For all classes, we define the class-wise margin scale as

m = (m1,m2, . . . ,mC)
⊤, mc = m×∆× δc (6)

where m is a predefined margin scale.

Finally, we compute margin matrix M using similarity ma-
trix S obtained in Eq. 2 and class-wise margin scale m
obtained in Eq. 6 by

M = S⊙m, (7)

where ⊙ represents the hadamard product. The margin
matrix M is a combination of inter-class similarity and the
class-wise prediction tendency of the model, thus providing
a margin that adaptively adjusts between classes based on
their similarity and the model’s prediction behavior. By
incorporating M to cross-entropy loss, as defined in Eq. 1,

it encourages the model to make more confident predictions
between classes with high similarity and in classes with
low tendency, thus enhancing the model’s discriminative
ability for these classes. It should be noted that the margin
matrix M is updated at each epoch, thereby facilitating the
progressive alleviation of concpet confusion in the generated
pseudolabels and improving their accuracy.

3.3. Fine-Tuning with Pseudolabels

Figure 5 illustrates the overall fine-tuning framework of our
method. We use MaPLe (Khattak et al., 2023) as our prompt
tuning strategy, which learns context prompts separately
each layer from layer 1 to layer L, from both textual and
visual branches of CLIP. Different from GRIP (Menghini
et al., 2023) and CPL (Zhang et al., 2024b) which only
train on pseudolabeled data generated in initialization, we
also utilize the remaining unlabeled data by dynamically
generating pseudolabels for them during training. Thus,
we separate the training data into two parts, the unlabeled
samples DUL and the pseudolabeled samples DPL, as DPL

is obtained in Section 3.1.

To better utilize the high label accuracy ofDPL and the abun-
dance of DUL, we deploy the main adapter and the pseudo
adapter on the visual branch. The main adapter learns only
from DPL and is used to generate pseudolabels for DUL,
while the pseudo adapter learns from only DUL under the
supervision of these pseudolabels. Since the main adapter
only learns from DPL with highly accurate pseudolabels,
this strategy avoids the accumulation of errors introduced
by the pseudo adapter which learns from less accurate pseu-
dolabels. We also deploy an adapter on the textual branch.
It is worth noting that we disable all adapters in inference.

Formally, at each iteration, we have {(xpl
i , y

pl
i )}bi=1 and

{(xu
i )}bi=1, where b is the batch size, as subsets of DPL and

DUL, respectively. We use ψa to denote CLIP’s text encoder
with adapter, and ϕm and ϕp CLIP’s image encoder with
main adapter and pseudo adapter, respectively. For each
sample in {(xpl

i , y
pl
i )}bi=1, we compute the logit zpl as

zpl = (z1, z2, . . . , zC), zc = sim(ϕm(xpl), ψa(c)). (8)

We then compute the loss on pseudolabeled samples using
Lm defined in Eq. 1:

LPL =
1

b

b∑
i=1

Lm(zpl
i , y

pl
i ) (9)

For samples in {(xu
i )}bi=1, we first follow FixMatch (Sohn

et al., 2020) to generate their corresponding pseudolabels,
denoted as {(ŷu

i )}bi=1, using a confidence threshold τ .

Next, we compute the logit as

zu = (z1, z2, . . . , zC), zc = sim(ϕp(Ω(xu)), ψa(c)),
(10)
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Figure 5. Overview of our framework. In the initialization stage, we use concept alignment to obtain DPL. In the fine-tuning stage,
we deploy the main adapter and pseudo adapter to the visual branch, allowing for separate learning from pseudolabeled and unlabeled
samples, and we utilize the confusion-aware calibrated margin matrix M to compute the loss.

where Ω represents image augmentation operation, and com-
pute the loss on unlabeled data by

LUL =
1

b′

b′∑
i=1

Lm(zu
i , ŷ

u
i ), (11)

where b′ is the number of samples with pseudolabels.

Finally, the overall loss is formulated as

L = LPL + LUL. (12)

In the manner of semi-supervised learning and transductive
zero-shot learning, we also have access to labeled samples
{(xl

i, y
l
i)}bi=1. After we obtain zl similarly in Eq. 8, we

compute LL as

LL =
1

b

b∑
i=1

Lm(zl
i, y

l
i), (13)

and add it to the overall loss:

L = LPL + LUL + LL. (14)

4. Experiments
To examine the effectiveness of the proposed method, we
conduct extensive experiments under three different learning
paradigms across six benchmarks and compare our method
with SoTA methods (§4.2). Moreover, we conduct ablation
study (§4.3) and analysis (§4.4) to explore how the proposed
method improve the performance on downstream tasks.

4.1. Experimental Settings

Datasets. We consider six image classification datasets
covering diverse domains, including RESISC45 (Cheng

et al., 2017), DTD (Cimpoi et al., 2014), EuroSAT (Helber
et al., 2019), FGVC-Aircraft (Maji et al., 2013), CUB (Wah
et al., 2011), Flowers102 (Nilsback & Zisserman, 2008).

Learning Paradigms. To ensure a thorough evaluation,
we investigated three distinct learning paradigms: 1) un-
supervised learning (UL) which provides with unlabeled
data without any prior labels; 2) semi-supervised learning
(SSL) which combines 2 labeled data per class with a larger
pool of unlabeled data; 3) transductive zero-shot learning
(TRZSL) in which classes are devided into seen classes with
fully labeled data and unseen classes with fully unlabeled
data. We set the ratio of seen to unseen classes at 62-38.

Model Configuration. In concept alignment, we set t =
⌈ C10⌉ to determine the concept-mismatched classes. We use
ChatGPT 4o-mini and set the query times n = 5 to obtain
the enhanced descriptions. We set k = 16 to generate
DPL. We set m = 12 as the predefined margin scale to
compute the confusion-aware calibrated margin. Please
refer to Appendix C.1 for more details.

Baselines. We compare our method with three existing
methods, namely, Few Pseudolabels (FPL; Menghini et al.,
2023), Grow and Refine Iteratively Pseudolabels (GRIP;
Menghini et al., 2023), and Candidate Pseudo-Labeling
(CPL; Zhang et al., 2024b). Since these methods can be ap-
plied with different prompting modalities, we report the re-
sults for the modality with the highest overall performance.

Evaluation Metric. Following CPL (Zhang et al., 2024b),
we employ accuracy as the metric for evaluating model per-
formance on test sets. We report the harmonic mean of the
accuracies of seen and unseen classes in TRZSL. Specif-
ically, we report the performance by calculating the test
accuracy averaged over three seeds with standard deviation.
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Table 1. Comparison results of test accuracy (%) on six benchmarks. The highest accuracies are bold.

Flowers102 RESISC45 DTD

Methods SSL UL TRZSL SSL UL TRZSL SSL UL TRZSL

zero-shot CLIP 63.670.00 63.400.00 54.480.00 54.460.00 43.240.00 43.450.00
FPL (Menghini et al., 2023) 75.960.74 65.670.23 80.970.00 68.130.55 63.070.38 72.110.00 37.105.45 44.960.55 46.300.03
GRIP (Menghini et al., 2023) 83.600.48 69.841.06 86.260.00 74.110.68 70.550.88 81.070.00 56.070.85 46.091.06 65.300.01
CPL (Zhang et al., 2024b) 89.660.36 72.900.78 87.350.76 80.980.11 77.390.44 85.850.49 61.210.56 51.910.71 68.000.34
CAP (Ours) 89.960.46 76.800.84 89.530.70 83.320.58 81.480.45 88.820.18 62.330.58 55.290.31 69.550.51

EuroSAT CUB FGVCAircraft

Methods SSL UL TRZSL SSL UL TRZSL SSL UL TRZSL

zero-shot CLIP 32.880.00 30.540.00 51.820.00 51.570.00 17.580.00 17.860.00
FPL (Menghini et al., 2023) 62.051.64 48.961.49 53.7026.87 55.290.59 53.040.53 55.440.20 20.020.77 16.620.67 17.550.37
GRIP (Menghini et al., 2023) 58.662.64 57.211.77 92.330.69 56.650.33 51.420.21 59.480.38 16.980.82 15.220.71 26.080.25
CPL (Zhang et al., 2024b) 77.510.80 67.260.47 93.780.12 58.530.24 53.470.36 66.200.50 22.480.63 18.350.27 30.860.70

CAP (Ours) 92.780.34 75.011.94 96.640.27 58.040.23 55.760.26 61.350.05 21.790.16 18.420.13 29.030.49

4.2. Main Results

Table 1 compares the performance of different methods un-
der vairous learning settings. We compare the proposed
method with zero-shot CLIP, FPL, GRIP, and CPL across
six datasets. It can be observed that the proposed method
consistently surpasses existing methods under UL setting.
Notably, our approach achieves significant improvements on
Flowers102, RESISC45, and EuroSAT datasets, surpassing
the CPL baseline by 3.90%, 4.09%, and 7.75%, respec-
tively. These results underscore the efficacy of our method
in leveraging unlabeled data to achieve superior classifi-
cation outcomes. Moreover, our approach demonstrates
competitive performance under the SSL setting across all
datasets. This indicates that our method is capable of effec-
tively integrating scarce labeled data with unlabeled data to
enhance model performance. Under the TRZSL setting, our
method surpasses CPL on Flowers102, RESISC45, DTD
and EuroSAT by 2.18%, 2.97%, 1.55% and 2.86%, respec-
tively. This suggests the capability of our method to leverage
abundant labeled data with unlabeled data, further validating
its versatility regarding different paradigms.

In addition, as illustrated in Figure 14, our method forms
remarkably more balanced predictions compared to the base-
line, which is inline with our motivation. Furthermore, our
method is considerably less time-consuming than CPL and
GRIP, achieving about 3.5 times the speedup over GRIP.
Please refer to Appendix D.1 and D.2 for more details.

4.3. Ablation Study

Ablation of Concept Alignment and Confusion-Aware
Calibrated Margin. To evaluate the effectiveness of each
component of our method, we conducted an ablation study
by independently removing each module and assessing the
model’s performance across three datasets under the UL
setting. As shown in Table 2, both components individu-
ally result in noticeable performance improvements over the

Table 2. Ablation results of Concept Alignment (CA) and
Confusion-Aware Calibrated Margin (CACM).

CA CACM RESISC45 DTD Flowers102

✗ ✗ 68.41 49.57 70.85
✓ ✗ 72.48 53.13 72.58
✗ ✓ 78.77 52.76 74.49
✓ ✓ 82.03 55.26 76.77

Table 3. Ablation results of Independent Adapters (IA).

Dataset CPL w/ IA w/o IA

DTD 51.9 55.3 54.6
RESISC45 77.4 81.5 80.6
EuroSAT 72.9 76.2 78.3

baseline across all datasets. This underscores that each com-
ponent independently facilitates better performance than
the baseline. Compared with CA, CACM exhibits greater
improvements on the RESISC45 and Flowers102 datasets,
while achieving slightly lower results on the DTD dataset.
A possible reason is that CLIP performs inferior extracting
image features in DTD, leading to a substantial amount of
mutual confusion among image features which is hard to
address with prompt tuning. Moreover, the combination
of both methods consistently yields the highest accuracy,
highlighting their complementary effects in improving the
accuracy of pseudolabels.

Ablation of Independent Adapters. In CAP, we deploy in-
dependent adapters on the visual branch to separately learn
from DPL and DUL, thus avoiding the accumulation of er-
rors introduced by incorrect pseudolabels. To explore the
effect of independent adapters, we report the test accuracy
under UL setting across three dataset with and without in-
dependent adapters in Table 3. It can be observed that both
model gives better results than CPL, and shared adapters
gives generally comparable results to independent adapters.
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Figure 6. Ablation of different values of k under SSL setting. We
report the test accuracies on RESISC45 and DTD.
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Figure 7. Ablation of different values of τ under UL setting. We
report the test accuracies on RESISC45 and DTD.

Ablation of Hyperparameters. In CAP, two hyperparam-
eters are directly related to the generation of pseudolabels.
Specifically, k determines the number of pseudolabels gener-
ated for each class in the initialization stage, while τ serves
as the confidence threshold for dynamically assigning pseu-
dolabels during training. We conduct ablation studies on
different values of k and τ using the RESISC45 and DTD
datasets, and present the results in Figure 6 and Figure 7, re-
spectively. The performance remains relatively stable across
a wide range of values for both k and τ , indicating that CAP
is generally robust to moderate fluctuations in these settings.

4.4. Analysis

Does Concept Alignment Effectively Reduce Concept
Mismatch? The core of concept alignment lies in accu-
rately detecting and correcting concept-mismatched classes,
thereby improving the accuracy of pseudolabels. To vali-
date this, we examined the accuracy of the pseudolabels cor-
rected by our approach and compared it to the top-k strategy
employed by UPL (Huang et al., 2022) and GRIP (Menghini
et al., 2023)3. The left sub-figure of Figure 8 visualizes the
accuracy of generated pseudolabels for concept-mismatched
classes in the Flowers102 dataset. As observed, the concept
alignment approach results in consistently higher accura-
cies compared to the top-k strategy, with a significant boost
over 60% seen in four classes. This indicates that our pro-
posed concept alignment mechanism effectively mitigates
the concept mismatch issue. To further examine the impact
of concept alignment, we evaluate the test accuracy after
fine-tuning on downstream datasets under the UL setting.
As shown in the right figure of Figure 8, concept alignment

3We also present the mismatch detection results, please refer to
Figure 16 for detailed information.
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Figure 8. Evaluation of concept alignment. left: The accuracy of
pseudolabels generated for concept-mismatched classes in Flow-
ers102. right: The test accuracy after fine-tuning under UL setting.
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Figure 9. Evaluation of confusion-aware calibrated margin on RE-
SISC45. left: Local ECE of concept-confused groups. right: Test
accuracy of concept-confused groups after fine-tuning.

produces superior results compared to the top-k method,
notably within the classes “globe flower”, “love in the mist”,
and “great masterwort”. This confirms the effectiveness of
concept alignment in improving pseudolabel quality and
further enhancing overall performance.

Does Confusion-Aware Calibrated Margin Effectively
Reduce Concept Confusion? We first evaluate its impact
on local Expected Calibration Error (ECE) for different
concept-confused groups in RESISC45. As illustrated in
the left sub-figure of Figure 9, it is evident that directly
fine-tuning the model using cross-entropy loss leads to a
substantial increase in local ECE for most concept-confused
groups. This indicates that naive fine-tuning approach re-
sults in poorer calibration and reduces reliability of the
pseudolabels. In contrast, our proposed confusion-aware
calibrated margin addresses this issue by explicitly promot-
ing more distinguishable logits among concept-confused
classes. By promoting greater separation among logits of
similar classes, this mechanism helps the model avoid over-
confident yet incorrect predictions. This results in notably
lower local ECE values, reflecting improved calibration
within the concept-confused groups, thus enhancing the
accuracy and balance of pseudolabels. Furthermore, the
right sub-figure of Figure 9 compares the downstream per-
formance of different methods. Our approach consistently
outperforms both zero-shot CLIP and fine-tuning without
the calibrated margin across all concept-confused groups.
This not only highlights the effectiveness of our method in
improving calibration but also demonstrates its ability to
enhance the model’s discriminative ability.
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Figure 10. Evaluation of margin scale m. We report test accuracy
of RESISC45 and DTD under UL setting.
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Figure 11. Performance on DTD and RESISC45 under SSL and
UL settings with different proportion of unlabeled data.

Analysis of Margin Scale. In the confusion-aware cali-
brated margin, we use a predefined margin scale m in com-
puting the margin matrix, as shown in Eq. 6. Figure 10
presents the test accuracy under the UL setting for various
values of m on RESISC45 and DTD. Generally, the results
show that the test accuracy remains relatively stable across
different margin scales, suggesting that the proposed method
is robust to variations in margin scale. Closer examination
reveals a trend with drops at both ends. When m is too
small, the margin introduced to concept-confused groups
becomes insufficient, making it difficult for the model to
effectively resolve confusions between them. This results in
a limited improvement in the distinguishability of the model
between concepts-confused classes. Conversely, setting m
too large introduces excessively strong separation between
class logits, which can lead to unstable training dynamics,
harming the improvement of performance. Therefore, se-
lecting a moderate value such as m = 12 offers a good
trade-off between enhancing inter-class distinguishability
and maintaining stable optimization dynamics.

Impact of Data Scale. To investigate whether our approach
can efficiently leverage limited data, we evaluate our meth-
ods with different proportion of available unlabeled data.
Figure 11 illustrates the impact of the scale of unlabeled
data on the model performance under SSL and UL settings
on DTD and RESISC45. The curves display a characteristic
pattern of initial rapid growth followed by a gradual plateau,
with around 0.6 and 0.4 on DTD and RESISC45, respec-
tively. This indicates that while increasing the amount of
unlabeled data leads to clear performance gains initially, the
marginal benefit diminishes as the scale grows beyond a
certain point. This pattern suggests that the model’s perfor-

Table 4. Results of test accuracy (%) using ViT-L/14 as the visual
backbone. The highest accuracies are bold.

Methods SSL UL TRZSL

D
T

D

Zero-shot CLIP 52.45 51.61
GRIP 60.91 54.40 64.92
CPL 69.82 57.20 71.97
CAP (Ours) 70.26 65.85 73.61

R
E

SI
SC

45 Zero-shot CLIP 62.67 62.13
GRIP 81.53 76.86 86.88
CPL 87.75 80.88 89.73
CAP (Ours) 88.09 84.46 90.21

Fl
ow

er
s1

02 Zero-shot CLIP 73.98 73.05
GRIP 94.21 82.33 96.18
CPL 96.80 83.94 97.34
CAP (Ours) 98.09 84.19 95.40

mance experiences a rapid improvement as more unlabeled
data becomes available, but eventually reaches a point where
further increases in unlabeled data provide diminishing re-
turns. The observed plateaus in performance indicate that
the proposed method is highly efficient in utilizing unla-
beled data, achieving substantial gains with relatively small
amounts of unlabeled samples.

Different Image Encoders. To evaluate the generalizability
of our method on different visual backbones, we conduct
additional experiments on DTD, RESISC45 and Flowers102
utilizing a larger image encoder ViT-14/L as the visual back-
bone. As shown in Table 4, our method consistently out-
performs other approaches across all three datasets. The
performance demonstrates the robustness and adaptability
of our method when integrated with different visual back-
bones, and that our method can effectively leverage the
representational capacity of different vision models.

5. Conclusion
In this paper, we delved into the issue of imbalance in pseu-
dolabels generated by VLMs, identifying two core under-
lying causes: concept mismatch and concept confusion.
Building on the analysis, we proposed a novel framework
incorporating concept alignment and confusion-aware cal-
ibrated margin to address two challenges. Our approach
is capable of focusing on the underperforming classes and
promoting balanced predictions across categories, thus im-
proving the accuracy and balance of pseudolabels, leading
to optimized performance. Extensive experiments on six
benchmark datasets with three learning paradigms show
that the proposed method effectively mitigates the issues of
concept mismatch and concept confusion, resulting in more
balanced and reliable pseudolabels, achieving a relative im-
provement of 6.29% over the SoTA method.
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Appendix for
“Handling Imbalanced Pseudolabels for VLMs with

Concept Alignment and Confusion-Aware Calibrated Margin”

A. Examples of Mismatch and Confusion
In this section, we provide realistic examples of concept mismatch and concept confusion. We show the t-SNE plots of image
features extracted by CLIP from certain classes in RESISC45 dataset with their corresponding true labels and predicted
labels generated by zero-shot CLIP.

Figure 12 shows examples of concept mismatch. It indicates that although the image features of these classes are relatively
distinguishable, the samples represented as pink are completely misclassified. This illustrates that the text features of certain
classes fail to capture the corresponding visual concepts, leading to significant semantic misalignment.

Figure 13 shows examples of concept confusion. The interwoven distribution of image features between these classes
suggests a high degree of similarity. In the zero-shot prediction, most of samples are predicted to be a certain class, leaving
relatively scarce samples predicted as the other. This indicates the text feature of the minority class fails to capture the most
distinguishable visual concepts to align with corresponding image features, resulting an imbalanced prediction.

True Distribution Predicted Distribution True Distribution Predicted Distribution

Figure 12. Two examples of concept mismatch in RESICS45. Pink represents the classes exisiting concept mismatch.

True Distribution Predicted Distribution True Distribution Predicted Distribution

Figure 13. Two examples of concept confusion in RESICS45. Yellow represents the minority class.

B. Details of Concept Alignment
In this section, we introduce more details of Alg. 1, and present examples of the prompt we use and the enhanced descriptions
generated from LLMs.

B.1. Details of Removing Samples

In Alg. 1, we remove the image features from the cluster corresponding to the class with best cross-modal alignment.
However, the quantity of samples in this cluster might be too large, potentially containing samples for other classes. Thus,

12
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we only remove top-s samples predicted to be the best-matched class sorted by confidence, where s is the average size of
image features per class

s =
|I|
|T |

.

In each iteration, after we obtain i∗, we obtain the image features predicted to be class i∗ as

Ii∗ = {vk | vk ∈ I, ŷk = i∗},

where ŷk represents the predicted label of the sample corresponding to vk. Then, we obtain the intersection of Ii∗ and Ii∗ ,
sort it by confidence score, and finally, select the top-s samples as the samples to remove:

Ij∗ ← sort(Ii∗ ∩ Ij∗)[: s].

B.2. Details of Text Augmentation

For text augmentation, we use the prompt template “Please describe the most distinguishing visual features of [CLS], in
one sentence.”. We present the enhanced descriptions of concept-mismatched classes detected in RESISC45 below as an
example.

Q: “Please describe the most distinguishing visual features of a satellite photo of chaparral, in one
sentence.”

A: “A satellite photo of chaparral features a dense, patchy, and irregular mosaic of shrubland vegetation,
with a dominant brown or beige tone, and a speckled or mottled texture created by the mixture of shrubs,
bare soil, and rocky outcrops.”

Q: “Please describe the most distinguishing visual features of a satellite photo of terrace, in one
sentence.”

A: “A satellite photo of terrace is distinguished by a series of flat or gently sloping, rectangular or
stepped areas, usually with distinct boundaries and varying tones or textures that distinguish the
terraced fields.”

B.3. Details of Identifying the Optimal Description

Given remaining image features Ifinal and the corresponding text features of n candidate descriptions of class c denoted as
Tc, we first execute K-Means clustering to Ifinal forming centroids Cfinal by

Cfinal = {cj}|Tc|
j=1 = KMeans(Ifinal, |Tc|).

We then compute the similarity matrix and probability matrix of Tc and Cfinal and identify the pair with highest confidence
score similar to Alg. 1, as

ST C
ij = sim(wi, cj), ∀wi ∈ Tc, cj ∈ Cfinal

PT C
i,: = softmax(ST C

i,: ),

(i∗, j∗) = argmax
i,j

PT C
ij .

Finally, we select the description corresponding to wi∗ as the optimal enhanced description for class c.

B.4. Details of the usage of DPL

We add unlabeled data with high confidence into DPL to enhance the abundance of DPL during training. Specifically,
we increase the size of DPL by |DUL|

t every 5 epochs. Denote e as epochs to complete in one training, we compute t as
t = e

5 . Once every 5 epochs, for each class label c, we obtain the unlabeled samples with predicted label c with top- |DUL|
t×C

confidence, and add them into DPL as pseudolabeled samples.
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Table 5. Detailed settings for experiments.
Flowers102 RESISC45 DTD CUB EuroSAT FGVCAircraft

Statistic data

Class number 102 45 47 200 10 100
Training set size 2040 6300 3760 5594 27000 6667
Testing set size 6149 25200 1880 5794 5000 3333

Training Setting

Prompt Layers L 8
Prompt per Layer 2
Image Augmentation random resized crop
Confidence Threshold τ 0.85 0.5
k in top-k strategy 6 16
Network ViT-B / 32
Batch size 32
Epoch 50 where the first epoch is set for warmup
Optimizer SGD
Momentum 0.9
Learning rate (LR) 0.01
Weight decay 0.1
LR scheduler CosineAnnealingLR

C. Experimental Details
C.1. Training Settings

We present the detailed training setting in Table 5.

C.2. Comparison Methods

We briefly introduce the baselines in this section.

Few-pseudolabels (FPL) (Menghini et al., 2023): FPL is the same as UPL (Huang et al., 2022), which generates offline
pseudolabels by selecting the top-k confident samples per class in zero-shot predictions of CLIP.

Grow and Refine Iteratively Pseudolabels (GRIP) (Menghini et al., 2023): GRIP is built upon FPL, taking a iterative
training strategy. For each Iteration, GRIP select top-k confident samples per class in predictions by CLIP with soft prompts
trained in last iteration. All soft prompts are re-initialized then, and GRIP start a new training iteration. Notably, the value of
k progressively increases after each iteration, and all unlabeled data will be included in the last iteration.

Candidate Pseudolabel Learning (CPL) (Zhang et al., 2024b): CPL takes a similar iterative strategy of GRIP, with a
different strategy to select pseudolabels each iteration. CPL draw inspiration from the concept of the multiple annotations in
crowdsourcing, constructing a set of potential true labels for model learning. CPL utilize inter-instance and intra-instance
label selection to assign a set of candidate pseudolabels to a sample, and employ loss fuction designed for partial-label
learning to update the soft prompts.

D. More Experimental Results
D.1. Effect of our method CAP

To illustrate the overview of the effect of our method CAP, we present the results after fine-tuning with and without CAP in
Figure 14.

D.2. Training Time

We present the time consumed training on EuroSAT with CAP (out method), CPL and GRIP in Figure 15. Our method takes
significantly less time to complete fine-tuning, since the other two methods take an iterative strategy which executes the
training process several times while our method only trains to converge once.
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Figure 14. Test accuracy after fine-tuning with CAP and without CAP on RESISC45 under UL setting. Note that we still reserve the
fine-tuning framework of CAP in the control group. It is clear that CAP forms a significantly more balanced prediction.

CAP(Ours) CPL GRIP
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Training Time on  EuroSAT

Figure 15. Time consumed training on EuroSAT with CAP, CPL and GRIP.

D.3. Number of Mismatch Classes Detected

We present the number of concept-mismatched classes detected in Figure 16. Our approach achieves a significant performance
improvement for previously underperforming classes while maintaining the exceptionally high accuracy of well-performing
classes, demonstrating remarkable balance in model predictions.

EuroSAT
(10 classes)
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(45 classes)

DTD
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Figure 16. Visualization of the number of classes detected with concept mismatch over six datasets.

D.4. More Evaluation of Confusion-Aware Calibrated Margin

The purpose of confusion-aware calibrated margin is to encourge CLIP to generate more distinguishable logits, thus gradually
improve the balanced degree of CLIP’s prediction among classes. In Figure 17, we illustrate the class-wise test accuracy
on RESISC45 after fine-tuning under UL setting, highlighting the impact of incorporating the confusion-aware calibrated
margin. From the left part of Figure 17, we observe that incorporating the confusion-aware calibrated margin significantly
improves the accuracy of the lowest-performing classes. This indicates that the margin effectively mitigates the imbalance
in predictions and reduces concept confusion among similar classes. On the right side of Figure 17, we see that the accuracy
remains stable for well-predicted classes when applying confusion-aware calibrated margin. These results highlight the
effectiveness of confusion-aware calibrated margin by addressing low-performing classes while maintaining high accuracy
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for others.
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Figure 17. Class-wise test accuracy on RESISC45 under UL setting as an evaluation of confusion-aware calibrated margin. We disable
concept alignment here. left: Visualization of lowest-10 class-wise accuracies. right: Visualization of highest-10 class-wise accuracies.
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