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Abstract
Time series forecasting fundamentally relies on
accurately modeling complex interdependencies
and shared patterns within time series data. Re-
cent advancements, such as Spatio-Temporal
Graph Neural Networks (STGNNs) and Time Se-
ries Foundation Models (TSFMs), have demon-
strated promising results by effectively captur-
ing intricate spatial and temporal dependencies
across diverse real-world datasets. However, these
models typically require large volumes of train-
ing data and often struggle in data-scarce sce-
narios. To address this limitation, we propose
a framework named Few-shot Spatio-Temporal
Large Language Models (FSTLLM), aimed at
enhancing model robustness and predictive per-
formance in few-shot settings. FSTLLM lever-
ages the contextual knowledge embedded in Large
Language Models (LLMs) to provide reasonable
and accurate predictions. In addition, it sup-
ports the seamless integration of existing fore-
casting models to further boost their predicative
capabilities. Experimental results on real-world
datasets demonstrate the adaptability and consis-
tently superior performance of FSTLLM over ma-
jor baseline models by a significant margin. Our
code is available at: https://github.com/
JIANGYUE61610306/FSTLLM.

1. Introduction
Multivariate time series forecasting methodologies are es-
sential for assisting human experts in decision-making, re-
source allocation, and scheduling across various industries.
Accurate forecasting requires precise modeling on two di-
mensions: temporal dependency, which captures the dy-
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namic evolution of data over time, and spatial correlation (or
channel correlation), which describes the interdependencies
between different time series. These correlations typically
emerge from mutual influences between time series, such
as those driven by physical proximity (Li et al., 2017) or
functional similarity (Bai et al., 2020; Wu et al., 2020; Chen
et al., 2024). In practice, spatial correlations in multivariate
series are not explicit, and effectively modeling such latent
correlations is critical for more accurate predictions (Shao
et al., 2022b; Zheng et al., 2020; Han et al., 2021). Tradi-
tional approaches, including statistical models like ARIMA
(Williams & Hoel, 2003) and VAR (Zivot & Wang, 2006),
as well as machine learning methods such as SVR (Drucker
et al., 1996) and Gaussian Processes (Xie et al., 2010), fo-
cus on modeling short-term temporal dynamics. Recent
studies, particularly Transformer-based frameworks (Zhou
et al., 2021; Wu et al., 2021; Zhang & Yan, 2023; Woo et al.,
2022; Cirstea et al., 2022), have significantly enhanced fore-
casting performance by effectively modeling the long-term
temporal dependencies. Besides, emerging approaches for
Time Series Foundation Models (TSFMs), such as GPT4TS
(Zhou et al., 2023) and Time-LLM (Jin et al., 2024), ex-
plore the adaptation of Large Language Models (LLMs)
to time series forecasting through partial fine-tuning strate-
gies. In parallel, Spatio-Temporal Graph Neural Networks
(STGNNs) have been developed for scenarios where each
channel of a multivariate time series is associated with spa-
tial attributes that exhibit mutual influence (Guo et al., 2019;
2022; Shao et al., 2022a; Yu et al., 2017; Song et al., 2020;
Shao et al., 2022b; Shang et al., 2021; Miao et al., 2024b;
Wang et al., 2022). These models are designed to jointly
model spatial and temporal dependencies, enabling a more
holistic modeling for correlated time series data.

Despite these advancements, several limitations persist.
First, these models typically require substantial amounts
of training data to effectively learn complex spatio-temporal
correlations inherent in time series. However, collecting
such large-scale data can be time-consuming and resource-
intensive in practice, potentially requiring months to accu-
mulate sufficient quantities for training. This constraint
poses a challenge in many real-world scenarios, where
timely and sufficient data may not be readily available,
thereby limiting the effectiveness of these data-hungry mod-
els. Second, both STGNNs and TSFMs normalize time
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series data into numerical vectors and update model pa-
rameters without integrating the contextual knowledge of
real-world factors, such as geographical information, urban
contexts, and human behavioral patterns. Solely relying on
numerical inputs limits the models’ ability to capture these
external factors, which are often crucial for improving fore-
casting accuracy across diverse domains. In contrast, LLMs
demonstrate strong capabilities in common sense reason-
ing (Zhao et al., 2023), making them particularly effective
for integrating domain-specific and contextual knowledge
via in-context learning (Min et al., 2022) and fine-tuning.
Furthermore, LLMs exhibit robust performance in few-shot
and zero-shot learning settings (Brown et al., 2020; Kojima
et al., 2022), which are highly advantageous in data-scarce
forecasting scenarios. These two characteristics motivate
the exploration of LLMs for few-shot time series forecast-
ing. While some recent LLM-based time series forecasting
methods (Jin et al., 2024; Zhou et al., 2023; Chang et al.,
2023; Pan et al., 2024) have made initial strides toward this
direction, they reply on fine-tuning LLMs using purely nu-
merical inputs (Zhou et al., 2023; Chang et al., 2023; Liu
et al., 2024a), or concatenate general task-specific instruc-
tions as prompts (Jin et al., 2024). However, these strategies
fall short of fully leveraging the contextual understanding
of real-world factors inherent in different time series data.
Additionally, some studies have reported that replacing the
LLM component from these methods with a sample layer
does not degrade performance (Tan et al., 2024).

To address the limitations of existing approaches in data-
scarce settings, we propose Few-shot Spatio-Temporal
Learning with Large Language Models (FSTLLM), a novel
and flexible framework designed to enhance forecasting per-
formance by integrating diverse STGNN backbones with
the contextual reasoning capabilities of LLMs. FSTLLM
leverages the rich contextual knowledge embedded in LLMs
to improve the modeling of both spatial and temporal de-
pendencies, thus substantially reducing reliance on large
volumes of training data. Specifically, it treats each time
series channel as a node and employs an LLM-Enhanced
Graph Construction Module that generates node-specific
contextual embeddings from textual contents. These embed-
dings are then used to construct an adjacency matrix that
captures semantically meaningful spatial correlations, which
are subsequently used as input to an STGNN backbone for
spatio-temporal modeling. To further refine the predictions
produced by the STGNN, FSTLLM incorporates a Domain
Knowledge Injection Module that fine-tunes the LLM us-
ing carefully designed prompts. These prompts integrate
domain-specific knowledge, node-level spatio-temporal con-
text, and predictive cues derived from the STGNN backbone,
enabling the model to reason over both structured and con-
textual information. Compared to prior LLM-based fore-
casting methods, FSTLLM introduces a more expressive

and context-aware prompt design, allowing the model to
incorporate reasoning about spatial and temporal contexts
and the initial predictions from STGNN backbones for few-
shot settings. Furthermore, FSTLLM offers a flexible and
extensible solution that allows existing state-of-the-art meth-
ods to be seamlessly integrated, resulting in performance
improvements over their original implementations.

Our contributions are summarized as follows:

• LLM Enhanced Graph Construction: We propose a
LLM-Enhanced Graph Construction module that uti-
lizes LLMs to enhance graph construction by embed-
ding contextual information of spatial nodes for time
serie channels.

• Domain Knowledge Injection: We design a Domain
Knowledge Injection module by fine-tuning an LLM
to integrate domain-relevant knowledge with carefully
crafted prompts. This design enables the model to
account for human-like considerations of spatial and
temporal characteristics, thereby delivering effective
performance in forecasting.

• Few-Shot Learning Integration: We demonstrate that
FSTLLM can augment various time series forecasting
models, enhancing their performance in few-shot set-
tings without updating their parameters.

• Comprehensive Evaluation: Experiments validate
that FSTLLM outperforms baseline models on two
real-world datasets under a limited data scenario by a
large margin.

2. Related Work
2.1. Classical Neural Network-based Methods

Neural network-based approaches have been extensively
applied to tackle time series forecasting tasks. Among them,
LSTM (Hochreiter & Schmidhuber, 1997) and GRU (Chung
et al., 2014) are two notable variants of Recurrent Neural
Networks (RNNs) that are commonly used in time series
forecasting (Bai et al., 2020; Shang et al., 2021; Shi et al.,
2015). Recently, Transformer-based models (Zhou et al.,
2021; Cirstea et al., 2022; Wu et al., 2021; Liu et al., 2022;
Zhou et al., 2022; Zhang & Yan, 2023; Miao et al., 2024a;
2025) have shown demonstrated considerable promise in
long-term time series forecasting, largely due to their capa-
bility to model long-range and pairwise temporal dependen-
cies. For instance, Informer (Zhou et al., 2021) introduces a
sparse self-attention mechanism, optimizing computational
efficiency by utilizing Kullback-Leibler divergence for at-
tention sparsity estimation. PatchTST (Nie et al., 2023)
divides input sequences into patches as basic units, which
are processed through a Transformer backbone to enhance
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forecasting accuracy. In parallel, linear models such as
DLinear (Liu et al., 2024c) have shown competitive perfor-
mance by employing a decomposition strategy to separately
model trend and residual components, offering a lightweight
alternative to attention-based architectures. Despite these
advances, both Transformer-based and linear models often
neglect the spatial dependencies inherent in multivariate
time series, leading to limited effectiveness in scenarios
where spatial correlations among channels play a critical
role.

2.2. Spatio-Temporal Graph Neural Networks

Spatio-Temporal Graph Neural Networks (STGNNs) have
become as a fundamental framework for modeling spatio-
temporal correlations in multivariate time series, particularly
when the time series data exhibits explicit spatial structure.
These models typically employ GNNs to capture spatial
correlations via message passing across different time series
channels (nodes), while temporal dependencies are mod-
eled using established sequential models (e.g., RNNs and
Transformers). By jointly learning spatial and temporal
correlations, STGNNs have achieved strong performance
across forecasting benchmarks in spatio-temporal data, such
as in traffic flow and crime prediction. Early STGNN mod-
els such as DCRNN (Li et al., 2017) and T-GCN (Zhao et al.,
2020) combine GRUs for temporal modeling with GNNs
that operate on predefined graphs derived from prior knowl-
edge, such as physical or geographical proximity. However,
the use of static graphs can result in suboptimal performance
when these predefined relationships fail to accurately reflect
the true underlying spatial relationships among nodes. To
address this limitation, recent models, such as AGCRN (Bai
et al., 2020) and MTGNN (Wu et al., 2020), have incorpo-
rated the adaptive graph learning module into the STGNN
framework. These models learn node embeddings, and
dynamiclly compute the inner product of embeddings to
construct adjacency matrices that represents spatial corre-
lations for dependency modeling. Further advancements,
including GTS (Shang et al., 2021) and STEP (Shao et al.,
2022a), incorporate explicit graph learning mechanisms
to capture complex, non-linear spatial dependencies using
dedicated graph construction components. However, the
performance of these models often come with increased
data requirements and computational complexity, making
them less effective in scenarios with limited training data.

2.3. Large Language Models

Recent advancements (Jin et al., 2024; Zhou et al., 2023;
Chang et al., 2023; Pan et al., 2024; Liu et al., 2024a;b) in
large language models (LLMs) have demonstrated promis-
ing potential in extending their applications to time series
analysis, potentially in few-shot time series forecasting.
GPT4TS (Zhou et al., 2023) adapts GPT2 for time series

tasks with only numerical temporal inputs, showing mod-
erate performance across a range of time series analytical
tasks. LLM4TS (Chang et al., 2023) introduces a two-stage
fine-tuning approach for time series forecasting: the first
stage involves task-specific pre-training to align the LLM
with the structural characteristics of time series data, fol-
lowed by a fine-tuning stage that leverages the model’s fore-
casting capabilities. Time-LLM (Jin et al., 2024) presents
an approach that reprograms numerical sequences of time
series into contextual embedding, and employs the Prompt-
as-Prefix method to generate predictions with LLM back-
bone. AutoTimes (Liu et al., 2024e) repurposes decoder-
only LLMs for autoregressive time series forecasting by
mapping time series inputs into the embedding space of
language tokens. It enables the derivation of variable-length
future predictions without updating the LLM weights. Time-
MoE (Shi et al., 2025) introduces a scalable architecture
based on a sparse mixture-of-experts paradigm, trained on
the expansive datasets. With large-scale parameters, Time-
MoE achieves strong predictive performance but exhibits
diminished effectiveness in few-shot scenarios due to lim-
itations in its expert routing mechanism. News2Forecast
(Wang et al., 2024) enhances the performance by integrat-
ing social event signals through LLM-based agents using
reflection and reasoning. It fine-tunes a pre-trained LLM to
align textual and numerical data, thereby improving fore-
casting accuracy. TimeKD (Liu et al., 2025) combines cal-
ibrated LLMs with privileged knowledge distillation, uti-
lizing a cross-modality teacher trained on both historical
inputs and future ground-truth prompts, and a lightweight
student model that is accessible to only historical inputs.

Despite their promising contributions, these methods dis-
regard the spatial correlations among the channels of time
series, which are critical for accurate multivariate forecast-
ing in real-world spatio-temporal contexts. Besides, the in-
ternal reasoning capabilities of LLMs remain underutilized.
Most existing approaches either fine-tune the LLM back-
bone directly on normalized temporal inputs or augment
these inputs with basic task-specific prompts, thus signif-
icantly restricting both the reasoning capacity and overall
predictive performance of the models.

3. Method
FSTLLM is an LLM-enhanced framework designed for
few-shot time series forecasting. It advances forecasting
performance across both spatial and temporal dimensions
by leveraging the rich real-world knowledge encoded in
LLMs. FSTLLM consists of three key components: LLM-
Enhanced Graph Construction module, STGNN backbone
module, and Domain Knowledge Injection module. The
overall framework of FSTLLM is illustrated in Figure 1.

First, LLM-Enhanced Graph Construction module leverages
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Figure 1. The overall architecture of the proposed FSTLLM framework. The LLM Enhanced Graph Construction Block is on the left, the
STGNN module is in the middle, and the Domain Knowledge Injection module is on the right.

the contextual information encoded by LLMs, such as entity
descriptions and user reviews, to construct an adjacency
matrix A representing the spatial correlations. By incorpo-
rating semantically rich knowledge inferred by the LLM,
the resulting adjacency matrix captures meaningful relation-
ships between nodes that go beyond purely data-driven prox-
imity. This context-aware graph construction is particularly
advantageous in data-scarce scenarios, where conventional
STGNNs may produce unstable or unreliable node embed-
dings due to insufficient training signals. Next, the generated
adjacency matrix is fed into a STGNN model, which per-
forms joint spatio-temporal modeling and outputs numerical
prediction tokens. While this module is compatible with a
range of existing STGNN architectures, its predictive accu-
racy may remain less effective with limited data availability
in few-shot settings. To enhance the performance, relying
on the reasoning capabilities of LLMs, Domain Knowledge
Injection module is proposed to fine-tune an LLM to us-
ing a carefully curated, supervised dataset composed of
prompts enriched with domain-specific knowledge to cali-
brate the numerical tokens predicted from STGNN. Unlike
prior methods such as Time-LLM, which adopt generic
task descriptions as prompts, our approach integrates node-
specific descriptions, temporal pattern insights, and domain
expertise into the prompt design, leading to more human-
like contextual reasoning for LLMs. By seamlessly inte-
grating these three modules, FSTLLM achieves robust and
accurate few-shot time series forecasting, while advancing
the capacity for spatio-temporal reasoning with real-world
contextual awareness.

3.1. LLM Enhanced Graph Construction Module

In this study, we collect and extract a set of textual doc-
uments containing real-world contextual information rele-

vant to each time series node. Effectively leveraging node-
specific content is critical for capturing the intricate spatio-
temporal dependencies required for accurate forecasting. To
this end, we employ a pre-trained LLM to encode node-
specific contextual documents and generate semantically
rich embeddings tailored to each node.

For example, in the case of a parking lot occupancy predic-
tion task, node-specific documents include features such as
parking rates, location details, maximum capacity, and user
reviews. These textual inputs are processed using a LLaMA-
2-7B model (Touvron et al., 2023), and the final-layer hid-
den state representations from the model are extracted as the
node-specific initial embeddings, denoted as HD ∈ RN×D

where N represents the total number of nodes in the graph
(e.g., the number of parking lots), and D corresponds to the
LLM dimension. To transform these representations into
a form suitable for subsequent graph-based processing, we
apply a Feed Forward Network (FFN1) to project HD into
a lower dimension of d. The resulting matrix, denoted by
E ∈ RN×d, contains refined node embeddings, where each
row i-th row Ei ∈ Rd corresponds to the embedding of the
i-th node. The embeddings E serve as inputs to the graph
attention layer, which is formally defined as:

Ēi = ⊕ (repeat(Ei, N),E) ∈ RN×2d (1)

Yi = FFN2(Ēi) ∈ RN×2 (2)

Y = stack([Y1,Y2, . . . ,YN ]) ∈ RN2×2 (3)

The operation repeat() duplicates the embedding Ei across
N rows, which is then concatenated with all node em-
beddings in E using the ⊕ operator, yielding a matrix
Ēi ∈ RN×2d. Each row of Ēi represents a pairwise combi-
nation between node i and a candidate node. This matrix
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serves as input to the Feed Forward Network (FFN2), which
produces Yi ∈ RN×2. Each row of Yi denotes the pair-
wise relationship indicating the strength and the non-existent
correlation between the node pair respectively.

By stacking the outputs Yi for all nodes, we construct a
matrix Y ∈ RN2×2, where each row encodes the pair-
wise spatial correlation between nodes. To normalize these
scores and regulate the sparsity of the resulting attention
distribution, we apply the α-Entmax function (Peters et al.,
2019; Jiang et al., 2024), which generalizes softmax and
enables sparse probability assignments. Subsequently, we
use a another feed-forward layer FFN3 ∈ R2×1 to produce
the final adjacency matrix A ∈ RN×N for spatio-temporal
modeling. The process is formally defined as:

A = FFN3(α-Entmax(Y)) (4)

3.2. STGNN Module

We integrate the obtained adjacency matrix A into a
STGNN backbone to derive numerical prediction tokens,
which are subsequently used in the prompt to fine-tune the
LLM. The framework is flexible and supports the integra-
tion of any standard STGNN framework. In this work, we
incorporate graph diffusion convolution into the classical
GRU architecture described in GTS (Shang et al., 2021).
Specifically, the standard matrix multiplication in the GRU
is strategically replaced with a graph diffusion convolution
operation, as defined below:

Rt = σ(Wr ⋆A ⊕(Xt,Ht−1) + br)

Zt = σ(Wz ⋆A ⊕(Xt,Ht−1) + bz)

H̃t = tanh(Wh⋆A ⊕ (Xt,Rt ⊙Ht−1) + bh))

Ht = Zt ⊙Ht−1 + (1− Zt)⊙ H̃t

(5)

where Xt and Ht represent the input and hidden state at
time step t, respectively. Rt and Zt denote the reset gate and
update gate at time step t. The sigmoid activation function
is denoted by σ. Wr, Wz , and Wh are set of learnable
model parameters used in the graph diffusion convolution
operation. The graph convolution operation in Equation 5 is
defined as follows:

W ⋆A X =

S−1∑
s=0

Ws(D+ I)−1AsX (6)

where W = {Ws}Ss=1 represents the set of learnable pa-
rameters, D ∈ RN×N is the degree matrix, and S denotes
the number of steps in the graph diffusion process. X rep-
resents the input to the graph diffusion convolution. The
prediction X̂t at time step t is obtained through a linear

transformation parameterized by the weight matrix Wx as
shown in Equation 7.

X̂t = HtWx (7)

All learnable parameters are updated based on the prediction
loss computed over the training datasets. For this purpose,
we employ the Mean Absolute Error (MAE) as the loss:

L(X, X̂;Θ) =
1

NT

t0+T∑
t=t0

∥∥∥Xt − X̂t

∥∥∥ (8)

We aggregate all prediction results of X̂ across all horizons
and nodes from the training/testing dataset, represented as
C ∈ RM×N×T . The tensor is then reshaped into numerical
prediction tokens as C ∈ RN×M×T , where M denotes the
number of training/testing samples, N represents the num-
ber of nodes, and T corresponds to the prediction horizons.
These numerical tokens are subsequently utilized in the Do-
main Knowledge Injection module to fine-tune the LLM,
enriching their predictive capabilities.

3.3. Domain Knowledge Injection Module

The Domain Knowledge Injection module is designed to
enhance the model’s ability to perform human-like reason-
ing over spatial and temporal contexts, thereby enabling
superior few-shot forecasting performance. This is achieved
by fine-tuning a LLM using carefully crafted prompts that
integrate domain-specific knowledge along with the numer-
ical prediction tokens C. Specifically, we employ the su-
pervised fine-tuning (SFT) on the LLaMA-2-7B (Touvron
et al., 2023) model using QLoRA (Xu et al., 2024) to reduce
the computational cost. Each prompt in the training dataset
consists of six input components, as illustrated in Figure 1,
with an detailed example provided in the Appendix A. The
prompt is defined as follows:

• Task Instruction: Detailed instructions describing
the specific forecasting task, including the domain of
the time series, time-frequency, historical steps, and
forecasting steps.

• Node Description: Node-specific descriptions are con-
structed by feeding the j-th node’s documents and user
reviews into the LLMs, which summarize the relevant
details for the j-th node.

• Node Pattern: The j-th node’s raw and limited train-
ing data is fed into the LLMs, which summarize pat-
terns such as daily and weekly trends, peak and off-
peak periods, and corresponding values.

• Historical Input: Xi
j ∈ RT represents the input time

series for the j-th node used by the STGNN backbone.
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Table 1. Performance comparison on Nottingham dataset.
15 mins 30 mins 45 mins 60 mins

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
ARIMA 12.98 41.73 8.69% 21.16 63.63 14.98% 24.71 77.56 18.91% 28.49 82.47 23.60%

VAR 11.65 41.44 8.30% 27.70 67.06 16.88% 30.06 77.17 31.52% 32.19 91.85 49.00%
DCRNN 7.93 44.64 5.65% 13.21 61.94 9.76% 18.37 76.80 13.53% 24.10 89.67 20.68%

GraphWaveNet 8.03 43.23 6.94% 13.07 61.60 10.30% 18.02 76.18 14.57% 23.05 88.71 19.89%
STSGCN 10.45 51.94 8.25% 15.28 67.03 12.65% 19.78 78.21 18.37% 24.12 87.59 23.78%
GMAN 42.09 102.41 29.01% 43.87 106.62 30.86% 45.53 110.03 33.11% 47.13 113.23 35.74%

GTS 7.89 42.79 5.54% 12.72 60.75 9.50% 17.80 75.08 13.51% 23.06 87.31 20.40%
PatchTST 12.54 48.42 12.93% 18.78 66.65 19.08% 25.03 81.57 24.06% 31.25 94.62 29.69%

iTransformer 7.91 44.03 6.83% 13.12 63.43 10.33% 19.10 77.79 14.77% 26.09 91.80 22.66%
DLinear 7.98 46.28 6.80% 14.60 62.08 12.58% 21.10 77.02 16.97% 28.17 89.96 23.61%
GPT4TS 8.02 44.09 7.06% 13.16 62.51 10.79% 18.61 77.23 15.78% 24.24 90.00 21.55%

TimeLLM 10.55 47.49 8.45% 15.83 64.77 12.09% 22.06 79.48 16.99% 28.57 92.91 25.57%
FSTLLM 7.83 47.93 6.59% 11.53 60.11 9.47% 15.31 71.59 12.31% 19.09 80.90 17.76%

75 mins 90 mins 105 mins 120 mins
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

ARIMA 33.95 91.98 30.67% 42.19 100.91 37.42% 51.34 123.13 53.74% 58.51 133.27 77.07%
VAR 37.72 91.36 39.51% 43.48 133.10 79.16% 48.73 143.58 64.04% 54.70 164.36 71.75%

DCRNN 30.02 101.37 26.64% 36.01 112.06 34.30% 41.99 122.06 41.96% 47.88 131.27 50.62%
GraphWaveNet 28.52 100.33 24.16% 34.12 110.26 33.22% 39.59 120.34 37.51% 45.16 128.57 47.50%

STSGCN 28.49 95.53 30.55% 32.69 102.47 37.57% 36.42 108.72 44.28% 39.87 114.03 52.04%
GMAN 48.65 116.01 38.06% 50.13 118.41 40.64% 51.79 121.29 43.55% 53.54 124.20 46.00%

GTS 28.44 98.38 25.78% 33.87 108.43 33.17% 39.26 117.75 40.52% 44.45 126.22 49.03%
PatchTST 37.43 106.52 36.69% 43.54 117.45 44.59% 49.52 127.56 53.46% 55.37 136.90 63.83%

iTransformer 31.39 102.89 28.82% 37.43 113.68 36.24% 43.32 123.99 43.25% 49.28 132.99 53.94%
DLinear 34.87 101.61 31.10% 42.09 112.45 37.87% 49.20 122.25 44.07% 56.17 131.31 52.37%
GPT4TS 30.20 101.68 29.05% 36.21 112.42 36.88% 42.20 122.36 42.54% 48.11 131.58 52.24%

TimeLLM 34.50 104.53 30.78% 40.18 115.20 38.08% 46.47 125.55 46.66% 53.58 136.11 58.96%
FSTLLM 23.18 89.67 21.80% 26.65 95.82 26.51% 30.43 102.88 32.38% 33.89 109.54 39.09%

• Numerical Prediction Token: The numerical predic-
tion Ci

j ∈ RT represents the possible future time series
values predicted by the STGNN backbone. Specifi-
cally, the prediction token Ci

j represents the computed
prediction token for the j-th node from the i-th train-
ing/testing sample, where T denotes the prediction
horizon.

• Future Token: Xi+T
j ∈ RT serves as the ground truth

token corresponding to the future time steps for the
j-th node during fine-tuning. At the evaluation stage,
the future token is omitted.

During inference, the fine-tuned FSTLLM outputs context-
aware predictions by integrating real-world contextual in-
formation, node-specific analyses (detailed in Appendix
D), historical input time series, and numerical predictions
derived from the STGNN backbone. FSTLLM jointly con-
siders domain knowledge, temporal dynamics, and spatial
correlations for accurate few-shot time series forecasting.

4. Experiments
In this section, we evaluate the effectiveness of the proposed
FSTLLM method using two real-world datasets. We be-
gin with a detailed description of the experimental setup,

followed by a comprehensive comparison of FSTLLM’s
performance against baseline methods to highlight its com-
petitive advantages. To further substantiate the efficacy of
FSTLLM, we conduct targeted experiments focusing on
its core components, demonstrating their pivotal role in
enhancing time series forecasting accuracy. Additionally,
we perform experiments to demonstrate that our FSTLLM
method can be adapted to other baseline methods to enhance
their forecasting performance.

4.1. Experimental Setup

Datasets. We conduct experiments on two real-world time
series datasets, with their detailed statistics provided in the
Table 2. The Nottingham dataset contains parking lot avail-
ability data from 19 car parks in Nottingham, recorded at
15-minute intervals. We crawled this dataset from the offi-
cial TramLink Nottingham website 1. The ECL dataset is a
subset of the Electricity dataset (Li et al., 2019), compris-
ing hourly electricity consumption (measured in kilowatt-
hours) from 19 clients. Both datasets are partitioned into
training, validation, and testing sets with a split ratio of
70%/10%/20%. To create a few-shot experimental setup,
the most recent week of data within the training set is set

1https://www.thetram.net/park-and-ride
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Table 2. Statistics of our datasets
Datasets Time Frequency Time range Total Time Points

Nottingham 15 mins 26 Oct 2016 - 16 Feb 2017 10828
ECL 1 hour 1 Jul 2016 - 2 Jul 2019 26304

aside.

Baselines. We have selected 12 time-series forecasting
methods as comparison, including ARIMA (Williams &
Hoel, 2003), VAR (Zivot & Wang, 2006), GTS (Shang et al.,
2021), GraphWaveNet (Wu et al., 2019), STSGCN (Song
et al., 2020), GMAN (Zheng et al., 2020), DCRNN (Li et al.,
2017), DLinear (Liu et al., 2024c), PatchTST (Nie et al.,
2023), GPT4TS (Zhou et al., 2023), iTransformer (Liu et al.,
2024d), and TimeLLM (Jin et al., 2024). We also report
other classical baselines such as AGCRN (Bai et al., 2020)
and MTGNN (Wu et al., 2020) that fail to converge due to a
lack of training data in the Appendix I.
Metrics. To evaluate the performance of different models,
we adopt three widely-used metrics for multivariate time
series forecasting, including Mean Absolute Error (MAE),
Root Mean Squared Error (RMSE), and Mean Absolute
Percentage Error (MAPE). A lower score indicates a better
performance.

4.2. Performance of FSTLLM

Table 1 presents the forecasting performance across multiple
horizons on the Nottingham dataset. The best result for each
evaluation is highlighted in bold. The results demonstrate
that the proposed FSTLLM model consistently outperforms
other baseline methods across most scenarios. Specifically,
FSTLLM achieves the best performance on 22 out of 24
evaluations, significantly surpassing state-of-the-art models
such as GTS and VAR. Furthermore, FSTLLM exhibits con-
sistently lower error rates and greater robustness across both
short and long forecasting horizons, achieving a MAPE re-
duction of approximately 30% compared to other baselines.
By efficiently modeling the spatio-temporal inherent in mul-
tivariate time series, FSTLLM surpasses both traditional and
deep learning-based baselines, solidifying its position as a
robust solution for few-shot time-series forecasting tasks.

Table 3 presents the forecasting performance across multi-
ple horizons on the ECL dataset. The results demonstrate
that the proposed FSTLLM model consistently outperforms
other baseline methods across the majority of time hori-
zons. Specifically, FSTLLM achieves the best performance
in 25 out of 36 evaluations and the best two performances
in 32 out of 36 evaluations, highlighting its robustness and
superior accuracy compared to other state-of-the-art meth-
ods. Notably, FSTLLM exhibits significant improvements
in MAPE, achieving a relative error reduction of over 50%
compared to baseline methods such as GPT4TS and iTrans-

former. While attention-based models like iTransformer
demonstrate moderate performance at extended time hori-
zons due to their ability to capture distant temporal depen-
dencies, they fall short of FSTLLM on short and mid-range
horizons, primarily due to their reliance on large datasets
and vulnerability to data sparsity. These results underscore
the effectiveness of FSTLLM in accurately capturing both
spatial and temporal correlations inherent in the data while
maintaining robustness across various forecasting windows.

Appendix F presents the detailed comparison of average
MAE, RMSE, and MAPE across all forecasting horizons
on both datasets, further validating the superiority of the
proposed FSTLLM model over existing baseline methods.
The results reveal that FSTLLM achieves the lowest average
errors across all three metrics, significantly outperforming
all baselines. Overall, FSTLLM’s superior performance
positions it as a highly reliable solution for real-world time-
series forecasting tasks, particularly in data-constrained en-
vironments.

Reasoning. FSTLLM exhibits superior reasoning abil-
ity by integrating real-world constraints and contextual in-
formation into its predictions. Unlike black-box models,
which often provide numerical outputs without explana-
tion, FSTLLM generates predictions that are both inter-
pretable and grounded in domain knowledge. As shown
in Appendix B, when forecasting parking lot availability,
FSTLLM adjusts its prediction tokens to align with real-
world constraints. Specifically, in a weekday scenario where
parking demand decreases after a peak period (10 AM to
3 PM), FSTLLM adjusts predictions to reflect an expected
rise in availability while adhering to the lot’s capacity limit
at the maximum capacity of 512 spaces. This adjustment
reflects the model’s capacity to incorporate real-world limits
into its reasoning, ensuring predictions remain realistic and
actionable for users.

By incorporating these human-like considerations and
domain-specific knowledge, FSTLLM not only improves
the accuracy of predictions but also enhances their utility
to users. Users gain insights into the reasoning behind the
predictions, allowing them to trust and act upon the results
more confidently. This capability positions FSTLLM as a
critical advancement over traditional deep learning methods,
which lack this interpretability and reasoning depth.
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Table 3. Performance comparison on ECL dataset.
1 hour 2 hours 3 hours 4 hours

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
ARIMA 2042 3774 17.64% 2959 5407 19.98% 4114 7044 32.78% 4104 6907 33.50%

VAR 1787 3682 15.40% 2512 5206 19.71% 2800 5271 26.26% 3568 8206 30.21%
DCRNN 2155 4694 19.05% 2448 4839 23.34% 2772 5110 27.92% 2947 5223 31.61%

GraphWaveNet 1497 3560 11.78% 2274 4659 17.91% 2573 5120 22.22% 2890 5575 26.81%
STSGCN 3124 6719 22.15% 3092 6385 20.65% 3148 6328 21.07% 3007 6013 21.44%
GMAN 6181 10187 59.69% 6249 10332 60.52% 6313 10460 61.26% 6364 10576 61.80%

GTS 3517 6554 26.00% 3676 6716 26.43% 3827 6913 26.91% 3915 6969 27.59%
PatchTST 4789 8206 58.92% 5526 9370 72.17% 5955 10127 79.00% 6204 10761 85.70%

iTransformer 1764 2947 21.76% 2289 4043 28.49% 2874 5073 36.86% 3399 5840 44.53%
DLinear 2701 4409 28.87% 3769 6023 38.86% 4029 6533 44.50% 4854 7790 54.45%
GPT4TS 1672 3527 15.41% 2384 4759 24.34% 3009 5626 33.03% 3621 6598 42.88%

TimeLLM 4950 7640 61.74% 5319 8308 69.56% 5689 8722 75.36% 5906 9072 79.59%
FSTLLM 1663 3503 13.43% 2264 4607 16.37% 2439 4938 16.65% 2520 5098 17.10%

5 hours 6 hours 7 hours 8 hours
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

ARIMA 4014 5912 31.62% 4122 6858 40.10% 4669 7054 43.48% 5102 7773 48.64%
VAR 3664 8582 35.44% 4066 9677 40.96% 4264 9812 47.27% 5291 11933 63.51%

DCRNN 3079 5298 33.82% 3178 5369 35.24% 3251 5446 36.14% 3301 5537 36.61%
GraphWaveNet 3153 5815 31.11% 3274 5844 35.06% 3364 5868 36.88% 3340 5806 37.99%

STSGCN 3059 6462 22.04% 3061 6235 23.00% 3331 7086 28.40% 3041 6402 27.76%
GMAN 6412 10665 62.39% 6438 10721 62.53% 6444 10753 62.39% 6438 10761 62.25%

GTS 3936 6938 27.70% 3895 6838 27.50% 3798 6694 27.22% 3677 6561 26.75%
PatchTST 6564 11094 89.05% 6283 10977 87.91% 5970 10491 81.81% 5617 9721 74.23%

iTransformer 3656 6333 49.80% 3867 6536 53.33% 3687 6308 50.24% 3631 6246 48.18%
DLinear 5978 9081 62.23% 5242 8196 61.10% 5259 8138 61.33% 4989 7739 57.50%
GPT4TS 4133 7277 53.54% 4420 7514 60.10% 4445 7437 60.31% 4187 7099 55.27%

TimeLLM 6112 9308 82.43% 6121 9358 83.02% 6118 9393 83.32% 6071 9439 81.93%
FSTLLM 2584 5201 17.56% 2648 5279 18.17% 2688 5333 18.33% 2760 5412 18.81%

9 hours 10 hours 11 hours 12 hours
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

ARIMA 4730 7792 46.96% 5322 8499 51.73% 5130 8304 47.66% 5352 8455 48.49%
VAR 5500 12319 67.96% 5287 12864 65.76% 5424 13536 64.49% 6397 15368 58.73%

DCRNN 3293 5618 36.24% 3175 5544 34.27% 2996 5410 31.12% 2796 5314 27.59%
GraphWaveNet 3267 5816 36.24% 3090 5663 33.90% 2895 5448 30.51% 2652 5260 26.75%

STSGCN 2966 5639 24.05% 3136 7345 29.23% 3099 7346 28.58% 3205 7784 30.55%
GMAN 6421 10742 61.58% 6381 10681 60.66% 6327 10607 59.67% 6260 10499 58.79%

GTS 3567 6484 26.07% 3485 6476 25.28% 3425 6528 24.53% 3361 6606 23.80%
PatchTST 5046 8623 63.58% 4283 7351 51.63% 3501 5953 40.11% 2757 4537 28.15%

iTransformer 3130 5362 37.98% 2890 4750 34.24% 2988 4360 29.50% 1979 3562 19.79%
DLinear 7298 11398 62.10% 3947 6335 43.09% 4830 7488 40.11% 2803 4770 28.93%
GPT4TS 3692 6365 44.80% 3107 5802 34.54% 2461 4578 25.08% 1839 3597 17.00%

TimeLLM 5917 9060 78.78% 5751 8727 73.46% 5397 8204 67.24% 4976 7613 60.40%
FSTLLM 2822 5519 19.44% 2860 5460 19.80% 2894 5533 20.04% 2901 5478 20.37%

4.3. Ablation Study

To further validate the contributions of the structured organi-
zation in FSTLLM, we conduct an ablation study by sequen-
tially removing different modules of the framework. For
this purpose, we define the following variants of FSTLLM:

(1) FSTLLM-NoInjection: This variant removes the Do-
main Knowledge Injection module entirely.

(1) FSTLLM-NoLLM: This variant replaces the LLM-
Enhanced Graph Construction module with a commonly
used cosine similarity-based graph learning operation, and
removes the Domain Knowledge Injection module.

The performance of these variants is evaluated on the Not-
tingham dataset, and the results are summarized in Table 4.
As shown, the removal of each component results in a no-
ticeable decline in performance across all metrics. Among
the variants, FSTLLM-NoInjection exhibits the most signifi-
cant performance degradation, underscoring the importance
of the Domain Knowledge Injection module. This result
highlights the effectiveness of integrating real-world knowl-
edge and human-like considerations into the forecasting
framework, particularly in scenarios with limited training
data.
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Table 4. Ablation Study of FSTLLM on Nottingham dataset.
MAE MAPE RMSE

FSTLLM-NoInjection 25.1 23.9% 94.5
FSTLLM-NoLLM 27.1 25.1% 98.0

FSTLLM 21.0 20.7% 82.3

4.4. Few-Shot Learning Integration Study

In this section, we demonstrate that FSTLLM can augment
existing state-of-the-art forecasting models, enhancing their
performance in few-shot experimental setups without ne-
cessitating extensive modifications to their architectures
and tremendous hyperparameter tuning. To evaluate this,
we replace the numerical prediction tokens generated by
the STGNN backbone with those produced by alternative
transformer-based methods and assess the resulting perfor-
mance improvements on the Nottingham dataset. To assess
the plug-and-play potential of our LLM-enhanced frame-
work, we substitute the numerical prediction tokens gen-
erated by the STGNN backbone with those from various
transformer-based forecasting models. Specifically, we re-
move both the LLM-enhanced graph construction module
and the STGNN backbone, and replace them with external
transformer-based methods without modifying or retraining
those models. This allows us to evaluate the generality of
our integration strategy.

The results, summarized in Table 5, highlight significant per-
formance gains for both GPT4TS and iTransformer models
when integrated into the FSTLLM framework. Notably, the
improvements are consistent across various metrics, under-
scoring the framework’s ability to seamlessly adapt to differ-
ent baseline models. These findings suggest that FSTLLM
not only preserves its robust reasoning and forecasting per-
formance but also amplifies the strengths of diverse fore-
casting architectures, making it a versatile and impactful
enhancement for existing methods.

5. Conclusion
In this work, we presented FSTLLM, a novel framework
that leverages LLMs to enhance few-shot time series fore-
casting by integrating domain knowledge and real-world
constraints. The framework’s LLM-Enhanced Graph Con-
struction and Domain Knowledge Injection modules enable
interpretable, accurate predictions by capturing contextual
information and fine-tuning with numerical prediction to-
kens. Experimental results and ablation studies demon-
strate FSTLLM’s effectiveness in improving performance
across various metrics, even with limited training data. Ad-
ditionally, its adaptability to state-of-the-art models, such as
GPT4TS and iTransformer, highlights its versatility without
requiring significant architectural modifications. FSTLLM
bridges the gap between deep learning-based forecasting

Table 5. Few-Shot Learning Integration Performance on Notting-
ham dataset.

MAE MAPE RMSE
GPT4TS 27.6 27.0% 92.7

GPT4TS-FSTLLM 21.8 21.8% 84.3
iTransformer 28.4 26.8% 96.7

iTransformer-FSTLLM 22.3 21.7% 86.4

and human-like reasoning, offering a robust and adaptable
solution for real-world applications.
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Chung, J., Gülçehre, Ç., Cho, K., and Bengio, Y. Empirical
evaluation of gated recurrent neural networks on sequence
modeling. CoRR, abs/1412.3555, 2014.

Cirstea, R., Kieu, T., Guo, C., Yang, B., and Pan, S. J.
Enhancenet: Plugin neural networks for enhancing corre-
lated time series forecasting. In International Conference
on Data Engineering (ICDE), 2021.

Cirstea, R., Guo, C., Yang, B., Kieu, T., Dong, X., and
Pan, S. Triformer: Triangular, variable-specific attentions
for long sequence multivariate time series forecasting.
In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), 2022.

Drucker, H., Burges, C. J. C., Kaufman, L., Smola, A. J.,
and Vapnik, V. Support vector regression machines.
In Advances in Neural Information Processing Systems
(NeurIPS), 1996.

Guo, S., Lin, Y., Feng, N., Song, C., and Wan, H. Attention
based spatial-temporal graph convolutional networks for
traffic flow forecasting. In The Conference on Artificial
Intelligence (AAAI), 2019.

Guo, S., Lin, Y., Wan, H., Li, X., and Cong, G. Learning dy-
namics and heterogeneity of spatial-temporal graph data
for traffic forecasting. IEEE Transactions on Knowledge
and Data Engineering (TKDE), 2022.

Han, L., Du, B., Sun, L., Fu, Y., Lv, Y., and Xiong, H.
Dynamic and multi-faceted spatio-temporal deep learning
for traffic speed forecasting. In Zhu, F., Ooi, B. C., and
Miao, C. (eds.), Conference on Knowledge Discovery and
Data Mining (KDD), pp. 547–555. ACM, 2021.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural Comput., 9(8):1735–1780, 1997. ISSN 0899-
7667.

Jiang, Y., Li, X., Chen, Y., Liu, S., Kong, W., Lentzakis,
A. F., and Cong, G. SAGDFN: A scalable adaptive graph
diffusion forecasting network for multivariate time se-
ries forecasting. In International Conference on Data
Engineering (ICDE), pp. 1255–1268. IEEE, 2024. doi:
10.1109/ICDE60146.2024.00101.

Jin, M., Wang, S., Ma, L., Chu, Z., Zhang, J. Y., Shi, X.,
Chen, P., Liang, Y., Li, Y., Pan, S., and Wen, Q. Time-llm:
Time series forecasting by reprogramming large language
models. In International Conference on Learning Repre-
sentations (ICLR), 2024.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwa-
sawa, Y. Large language models are zero-shot reasoners.
In Advances in Neural Information Processing Systems
(NeurIPS), 2022.

Li, S., Jin, X., Xuan, Y., Zhou, X., Chen, W., Wang, Y., and
Yan, X. Enhancing the locality and breaking the mem-
ory bottleneck of transformer on time series forecasting.
In Advances in Neural Information Processing Systems
(NeurIPS), pp. 5244–5254, 2019.

Li, Y., Yu, R., Shahabi, C., and Liu, Y. Graph convolutional
recurrent neural network: Data-driven traffic forecasting.
CoRR, abs/1707.01926, 2017.

Liu, C., Xu, Q., Miao, H., Yang, S., Zhang, L., Long, C., Li,
Z., and Zhao, R. Timecma: Towards llm-empowered time
series forecasting via cross-modality alignment. arXiv
preprint arXiv:2406.01638, 2024a.

Liu, C., Miao, H., Xu, Q., Zhou, S., Long, C., Zhao, Y., Li,
Z., and Zhao, R. Efficient multivariate time series fore-
casting via calibrated language models with privileged
knowledge distillation. In ICDE, 2025.

Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., and Neubig,
G. Pre-train, prompt, and predict: A systematic survey
of prompting methods in natural language processing.
ACM Comput. Surv., 55(9):195:1–195:35, 2023. doi:
10.1145/3560815.

Liu, P., Guo, H., Dai, T., Li, N., Bao, J., Ren, X., Jiang,
Y., and Xia, S.-T. Calf: Aligning llms for time series
forecasting via cross-modal fine-tuning. arXiv preprint
arXiv:2403.07300, 2024b.

Liu, S., Yu, H., Liao, C., Li, J., Lin, W., Liu, A. X., and Dust-
dar, S. Pyraformer: Low-complexity pyramidal attention
for long-range time series modeling and forecasting. In
International Conference on Learning Representations
(ICLR), 2022.

Liu, Y., Hu, T., Zhang, H., Wu, H., Wang, S., Ma, L.,
and Long, M. itransformer: Inverted transformers are
effective for time series forecasting. In International
Conference on Learning Representations (ICLR), 2024c.

Liu, Y., Hu, T., Zhang, H., Wu, H., Wang, S., Ma, L.,
and Long, M. itransformer: Inverted transformers are
effective for time series forecasting. In International
Conference on Learning Representations (ICLR), 2024d.

Liu, Y., Qin, G., Huang, X., Wang, J., and Long, M. Au-
totimes: Autoregressive time series forecasters via large
language models. In Advances in Neural Information
Processing Systems (NeurIPS), 2024e.

10



FSTLLM: Spatio-Temporal LLM for Few Shot Time Series Forecasting

Martins, A. and Astudillo, R. From softmax to sparsemax: A
sparse model of attention and multi-label classification. In
International conference on machine learning, pp. 1614–
1623. PMLR, 2016.

Miao, H., Liu, Z., Zhao, Y., Guo, C., Yang, B., Zheng,
K., and Jensen, C. S. Less is more: Efficient time se-
ries dataset condensation via two-fold modal matching.
PVLDB, 18(2):226–238, 2024a.

Miao, H., Wang, S., Zhang, M., Guo, D., Sun, F., and Yang,
F. Deep multi-view channel-wise spatio-temporal net-
work for traffic flow prediction. CoRR, abs/2404.15034,
2024b. doi: 10.48550/ARXIV.2404.15034.

Miao, H., Xu, R., Zhao, Y., Wang, S., Wang, J., Yu, P. S.,
and Jensen, C. S. A parameter-efficient federated frame-
work for streaming time series anomaly detection via
lightweight adaptation. TMC, 2025.

Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M.,
Hajishirzi, H., and Zettlemoyer, L. Rethinking the role of
demonstrations: What makes in-context learning work?
In Empirical Methods in Natural Language Processing
(EMNLP), pp. 11048–11064, 2022. doi: 10.18653/V1/
2022.EMNLP-MAIN.759.

Nie, Y., Nguyen, N. H., Sinthong, P., and Kalagnanam, J. A
time series is worth 64 words: Long-term forecasting with
transformers. In International Conference on Learning
Representations (ICLR), 2023.

Pan, Z., Jiang, Y., Garg, S., Schneider, A., Nevmyvaka,
Y., and Song, D. S2IP-LLM: semantic space informed
prompt learning with LLM for time series forecasting. In
International Conference on Machine Learning (ICML),
2024.

Peters, B., Niculae, V., and Martins, A. F. T. Sparse
sequence-to-sequence models. CoRR, abs/1905.05702,
2019.

Shang, C., Chen, J., and Bi, J. Discrete graph structure
learning for forecasting multiple time series. In Interna-
tional Conference on Learning Representations (ICLR),
2021.

Shao, Z., Zhang, Z., Wang, F., and Xu, Y. Pre-training
enhanced spatial-temporal graph neural network for mul-
tivariate time series forecasting. In Proceedings of the
Conference on Knowledge Discovery and Data Mining
(KDD), pp. 1567–1577, 2022a.

Shao, Z., Zhang, Z., Wei, W., Wang, F., Xu, Y., Cao, X.,
and Jensen, C. S. Decoupled dynamic spatial-temporal
graph neural network for traffic forecasting. Proc. VLDB
Endow., 15(11):2733–2746, 2022b.

Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-k., and
Woo, W.-c. Convolutional lstm network: A machine learn-
ing approach for precipitation nowcasting. In Advances
in neural information processing systems (NeurIPS), pp.
802–810, 2015.

Shi, X., Wang, S., Nie, Y., Li, D., Ye, Z., Wen, Q., and
Jin, M. Time-moe: Billion-scale time series founda-
tion models with mixture of experts. In International
Conference on Learning Representation (ICLR). Open-
Review.net, 2025.

Song, C., Lin, Y., Guo, S., and Wan, H. Spatial-temporal
synchronous graph convolutional networks: A new frame-
work for spatial-temporal network data forecasting. In
The Conference on Artificial Intelligence (AAAI), pp. 914–
921, 2020.

Tan, M., Merrill, M. A., Gupta, V., Althoff, T., and
Hartvigsen, T. Are language models actually useful for
time series forecasting? CoRR, abs/2406.16964, 2024.
doi: 10.48550/ARXIV.2406.16964.

Tezekbayev, M., Nikoulina, V., Gallé, M., and Assylbekov,
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A. Supervised Fine-tuning Prompt of FSTLLM.
In this section, we present a detailed prompt example used in supervised fine-tuning FSTLLM on Nottingham dataset as in
Figure 2.

<s>[INST] Role: You are an AI agent responsible for predicting the availability of parking lots. Objective: Your task is to forecast the number of available parking lots for the next 2 

hours. To do this, you will analyze data from the past 2 hours of parking records, along with simulation-based predictions for the next 2 hours and other additional information that 

could affect the parking lots availability prediction values. Input Data: (1) Car park description: St Marks Place NCP Car Park - Affordable and Accessible Parking in Newark. The St 

Marks Place NCP Car Park, located on Lombard Street (NG24 1XT) in Newark and Sherwood, offers a spacious and affordable multi-story parking facility with 512 spaces, making 

it a convenient choice for visitors to the area. With a height restriction of 1.98 meters and dedicated disabled parking spaces, this car park caters to a variety of vehicles and 

accessibility needs. Open 24/7, St Marks Place provides flexible and budget-friendly pricing, with rates starting from £1.95 for 1 hour, £3.90 for 2 hours, and just £6.95 for a full 24-

hour stay. Early bird discounts are available for those arriving before 9:00 am, making it an economical option for all-day parking. Payment options include ticketed parking, card 

payments, phone payments, and the NCP App (Location ID 32089), ensuring a convenient experience for all users. While the car park has earned a Parking Safety Award for its 

commitment to providing a secure environment, some users have noted that it can be tight to navigate, even for smaller cars, due to the high concrete sides. Despite this, St Marks 

Place NCP Car Park remains a practical and accessible choice for those looking for convenient parking in the Newark area. (2) Prediction horizon: you are given 2 hours historical 

input from 2017-01-24 14:31:14 to 2017-01-24 16:16:14 on Tuesday, and you are supposed to predict future parking lots from 2017-01-24 16:31:14 to 2017-01-24 18:16:14. (3) The 

Natural patterns of parking availability (e.g., peak and off-peak periods throughout the day) are as follow: Based on the given parking lot records and a detailed observation of the 

available parking spaces over the week, here is a more specific breakdown of when peaks (maximum availability) and dips (minimum availability) occur: On Weekdays (Monday to 

Friday): Peak availability: From 8 PM to 6 AM (reaching the maximum capacity of 512 spaces). This reflects the time when parking demand is lowest, typically during the late-night 

and early morning hours. Minimum availability: Generally occurs between 10 AM to 3 PM, with availability dropping to as low as 223–374 spaces. This indicates that these hours are 

the busiest, likely due to work or daily activities. On Weekends (Saturday and Sunday): Peak availability: Similar to weekdays, from 8 PM to 6 AM (maintaining the full capacity of 

512 spaces), indicating lower demand during these hours. Minimum availability: Occurs between 11 AM to 4 PM, with availability dropping to as low as 248–374 spaces, showing 

moderate to high parking usage during midday hours. In summary, the parking lot consistently reaches full capacity during the late evening and early morning hours, with the highest 

usage occurring during the day, especially from mid-morning to mid-afternoon across both weekdays and weekends.. (4) Historical Records: Parking data for the past 2 hours [326. 

339. 344. 348. 359. 369. 370. 382.]. (5) Simulation predictions: Forecasts for parking availability for the next 2 hours based on simulation models [389.95435 407.14072 426.157 

443.97525 464.05444 484.45245 507.5884 524.72656]. Consider all provided information (historical records, simulation predictions, and additional factors) to predict parking lot 

availability for the next 2 hours with accuracy. Please analyze the data and provide only your final numerical predictions. DO NOT include any additional content in your answer. 

Strictly enclose your answer inside square brackets [] and provide exactly 8 numerical values. [/INST] [399. 425. 425. 451. 475. 499. 504. 512.].</s>

FSTLLM Fine-tuning Prompt

Task Instruction Node PatternNode Description Historical Input Prediction Token Future Token

Figure 2. A sample of detailed FSTLLM supervised fine-tuning prompt.

B. Evaluation Prompt of FSTLLM.
In this section, we present a detailed evaluation prompt example used by FSTLLM to provide predictions on Nottingham
dataset as in Figure 3.

C. Full Prompt of FSTLLM on ECL dataset.
In this section, we present the full prompt example used by FSTLLM on ECL dataset as in Figure 4.

D. Node Description and Node Pattern.
In this work, we utilized ChatGPT-4o to assist in node description and node pattern generation. Specifically, we follow
below template to generate node description and node pattern using ChatGPT-4o.

For Node Description Prompt:

“You are given a feature description from [carpark description link] and user reviews from [Google review link]. Please
synthesize an inductive description of the carpark using content from both sources.”

For Node Pattern Analysis Prompt:

“I will provide one week of parking lot records for a carpark in England, recorded every 15 minutes starting from 12:01 PM
on 2016-10-26. Please describe the temporal usage patterns of the carpark, including variations throughout the day and
across weekdays versus weekends. Indicate observed peak and low-demand periods, along with any consistent behavioral
trends in parking availability. The records are: [extracted training data].”
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<s>[INST] Role: You are an AI agent responsible for predicting the availability of parking lots. Objective: Your task is to forecast the number of available parking lots for the next 2 

hours. To do this, you will analyze data from the past 2 hours of parking records, along with simulation-based predictions for the next 2 hours and other additional information that 

could affect the parking lots availability prediction values. Input Data: (1) Car park description: St Marks Place NCP Car Park - Affordable and Accessible Parking in Newark. The St 

Marks Place NCP Car Park, located on Lombard Street (NG24 1XT) in Newark and Sherwood, offers a spacious and affordable multi-story parking facility with 512 spaces, making 

it a convenient choice for visitors to the area. With a height restriction of 1.98 meters and dedicated disabled parking spaces, this car park caters to a variety of vehicles and 

accessibility needs. Open 24/7, St Marks Place provides flexible and budget-friendly pricing, with rates starting from £1.95 for 1 hour, £3.90 for 2 hours, and just £6.95 for a full 24-

hour stay. Early bird discounts are available for those arriving before 9:00 am, making it an economical option for all-day parking. Payment options include ticketed parking, card 

payments, phone payments, and the NCP App (Location ID 32089), ensuring a convenient experience for all users. While the car park has earned a Parking Safety Award for its 

commitment to providing a secure environment, some users have noted that it can be tight to navigate, even for smaller cars, due to the high concrete sides. Despite this, St Marks 

Place NCP Car Park remains a practical and accessible choice for those looking for convenient parking in the Newark area. (2) Prediction horizon: you are given 2 hours historical 

input from 2017-01-24 14:31:14 to 2017-01-24 16:16:14 on Tuesday, and you are supposed to predict future parking lots from 2017-01-24 16:31:14 to 2017-01-24 18:16:14. (3) The 

Natural patterns of parking availability (e.g., peak and off-peak periods throughout the day) are as follow: Based on the given parking lot records and a detailed observation of the 

available parking spaces over the week, here is a more specific breakdown of when peaks (maximum availability) and dips (minimum availability) occur: On Weekdays (Monday to 

Friday): Peak availability: From 8 PM to 6 AM (reaching the maximum capacity of 512 spaces). This reflects the time when parking demand is lowest, typically during the late-night 

and early morning hours. Minimum availability: Generally occurs between 10 AM to 3 PM, with availability dropping to as low as 223–374 spaces. This indicates that these hours are 

the busiest, likely due to work or daily activities. On Weekends (Saturday and Sunday): Peak availability: Similar to weekdays, from 8 PM to 6 AM (maintaining the full capacity of 

512 spaces), indicating lower demand during these hours. Minimum availability: Occurs between 11 AM to 4 PM, with availability dropping to as low as 248–374 spaces, showing 

moderate to high parking usage during midday hours. In summary, the parking lot consistently reaches full capacity during the late evening and early morning hours, with the highest 

usage occurring during the day, especially from mid-morning to mid-afternoon across both weekdays and weekends.. (4) Historical Records: Parking data for the past 2 hours [326. 

339. 344. 348. 359. 369. 370. 382.]. (5) Simulation predictions: Forecasts for parking availability for the next 2 hours based on simulation models [389.95435 407.14072 426.157 

443.97525 464.05444 484.45245 507.5884 524.72656]. Consider all provided information (historical records, simulation predictions, and additional factors) to predict parking lot 

availability for the next 2 hours with accuracy. Please analyze the data and provide only your final numerical predictions. DO NOT include any additional content in your answer. 

Strictly enclose your answer inside square brackets [] and provide exactly 8 numerical values. [/INST] [398. 408. 433. 451. 466. 494. 512. 512.].</s>\n</ref> To generate the

predictions for the parking lot availability over the next two hours, I relied on a combination of the following factors: 1. Historical Records: The provided data showed an increasing

trend over the past two hours, with values starting at 326 and ending at 382, indicating a gradual rise in the number of available parking spaces. 2. Simulation Predictions: The

simulation-based predictions showed a continuous increase in availability, projecting values that ranged from 389 to 524. These values suggest an upward trend over the next two

hours. 3. Peak and Off-Peak Patterns: The prediction horizon (from 16:31 to 18:16) falls just after the busiest period (10 AM to 3 PM) on a weekday, meaning parking availability is

likely to rise as the day progresses. Based on the natural patterns, parking availability tends to increase after 3 PM and reaches its peak by 8 PM. 4. Capacity Constraints: The parking

lot has a maximum capacity of 512 spaces, which acts as an upper bound for the prediction. This suggests that values nearing or above 512 should be adjusted to reflect the full

occupancy of the car park. Based on these considerations, the predicted values were adjusted to align with the observed patterns and capacity limit, resulting in a final prediction of:

[398, 408, 433, 451, 466, 494, 512, 512]. This reflects the expected gradual increase in availability, with the final values capped at the lot’s maximum capacity.

FSTLLM Evaluation Example

Task Instruction Node PatternNode Description Historical Input Prediction Token FSTLLM Answer

Figure 3. A sample of detailed FSTLLM evaluation prompt.

E. Implementation Details.
FSTLLM is fine-tuned on the training examples for 2 epochs on a Linux workstation with an Intel(R) Core(TM) i7-13700K
CPU @ 5.40GHz and a NVIDIA A6000 GPU. We used 4-bit quantization (Liu et al., 2023) to obtain a more compact model
representation, and low rank adaptation (LoRA) (Xu et al., 2024) to reduce the number of trainable parameters and decrease
the GPU memory requirements. We set LoRA attention dimension to be 64 and an initial learning rate to be 2e-4 with Adam
optimizer. We set α to be 2.0 in the α-Entmax function and the depth of the graph diffusion convolution S is set to 3. The
hidden size of GRUs is set to 64. For all the baselines, we use their original implementations with minimum modifications
required to run on our datasets. We set the sequence length and prediction horizon to 12 for the ECL dataset, as it exhibits
notable daily and weekly patterns similar to traffic datasets such as METR-LA and PEMS-BAY, where a sequence length
of 12 is commonly used. For the Nottingham dataset, since the average commuting time is less than 90 minutes2, we set
the sequence length and prediction horizon to 8 (equivalent to 120 minutes) to support parking lot predictions for users
departing on their commutes.

Due to hardware limitations—using only a single GPU for inference—we could not employ data parallel methods to expedite
inference, which are commonly used in other baseline methods such as (Jin et al., 2024; Zhou et al., 2023). Consequently,
we extracted 19 users from the original 320 users in the electricity dataset to demonstrate the performance of FSTLLM and
the baseline methods. However, we emphasize that FSTLLM is fully trainable on the entire electricity dataset with 320
nodes. The graph size of 320 nodes is manageable by the STGNN backbone (Shang et al., 2021; Shao et al., 2022a), and
the Domain Knowledge Injection module fine-tunes LLaMA-2-7B in a node by node manner. Thus, the node count does
not impact the computational cost during fine-tuning. We plan to evaluate FSTLLM and the baseline methods on the full
electricity dataset in future work when we have access to multiple GPUs.

14



FSTLLM: Spatio-Temporal LLM for Few Shot Time Series Forecasting

<s>[INST] <s>[INST] Role: You are an AI agent responsible for predicting the user electricity consumption. Objective: Your task is to forecast the next 12 hour electricity 

consumption based on client past 12 hours historical records. To do this, you will analyse data from the past 12 hours records, along with simulation-based predictions for the next 12 

hours and other additional information that could affect the electricity prediction values. Input Data: (1) Client description: The eletricity in the ECL dataset represents the hourly 

electricity consumption (Kwh) of 19 clients. This contains the electricity consumption of clients in certain region of 2 years. There are 20 clients recording every 1 hour intervals of 

electricity consumption. Each client has his own usage pattern and habbit, therefore, their behavior are different and should be consider seperately. You are now given the data from 

client no. 2, and you will be focusing on predicting future values for client no. 2.. (2) Prediction horizon: you are given 12 hour historical input from 2019-02-15 11:00:00 to 2019-02-

15 22:00:00 on Friday, and you are supposed to predict future electricity consumption from 2019-02-15 23:00:00 to 2019-02-16 10:00:00. (3) The Natural patterns of electricity 

consumption of this client (e.g., peak and off-peak periods throughout the day) are as follow: This client electricity consumption over the week displays a clear pattern with higher 

usage during daytime hours and lower consumption at night, suggesting peak activity aligned with business hours. The highest consumption occurs on Thursday at 2 PM, reaching 

99,167.0, likely indicating peak operational activity, while the lowest consumption is recorded on Sunday at 3 AM, at 30,043.0, reflecting minimal or no activity during late night 

hours. Weekdays generally show higher daytime usage, with consumption often surpassing 80,000.0 between late morning and early evening, which contrasts with the weekends, 

where usage is generally lower, rarely exceeding 75,000.0. This pattern suggests a drop in operational demand over the weekends, with energy needs substantially tapering off 

overnight and then gradually rising toward midday each day.. (4) Historical Records: electricity consumption for the past 12 hour [ 89501. 107127. 121709. 132627. 126668. 119752. 

120418. 124918. 128501. 126043. 118501. 100376.]. (5) Simulation predictions: Forecasts for electricity consumption for the next 12 hour based on simulation models [78272.84 

69957.67 56337.67 38943.453 28450.633 27399.629 27993.75 31317.69 46747.15 62374.055 71993.08 79677.27 ]. Consider all provided information (historical records, simulation 

predictions, and additional factors) to predict electricity consumption for the next 12 hour with accuracy. Please analyze the data and provide only your final numerical predictions. 

DO NOT include any additional content in your answer. Strictly enclose your answer inside square brackets [] and provide exactly 12 numerical values. [/INST] [91541. 88668. 

79793. 59167. 54418. 54710. 53251. 51585. 61918. 69502. 72543 85376. ].

FSTLLM Fine-tuning Prompt_ECL

<s>[INST] <s>[INST] Role: You are an AI agent responsible for predicting the user electricity consumption. Objective: Your task is to forecast the next 12 hour electricity 

consumption based on client past 12 hours historical records. To do this, you will analyse data from the past 12 hours records, along with simulation-based predictions for the next 12 

hours and other additional information that could affect the electricity prediction values. Input Data: (1) Client description: The eletricity in the ECL dataset represents the hourly 

electricity consumption (Kwh) of 19 clients. This contains the electricity consumption of clients in certain region of 2 years. There are 20 clients recording every 1 hour intervals of 

electricity consumption. Each client has his own usage pattern and habbit, therefore, their behavior are different and should be consider seperately. You are now given the data from 

client no. 2, and you will be focusing on predicting future values for client no. 2.. (2) Prediction horizon: you are given 12 hour historical input from 2019-02-15 11:00:00 to 2019-02-

15 22:00:00 on Friday, and you are supposed to predict future electricity consumption from 2019-02-15 23:00:00 to 2019-02-16 10:00:00. (3) The Natural patterns of electricity 

consumption of this client (e.g., peak and off-peak periods throughout the day) are as follow: This client electricity consumption over the week displays a clear pattern with higher 

usage during daytime hours and lower consumption at night, suggesting peak activity aligned with business hours. The highest consumption occurs on Thursday at 2 PM, reaching 

99,167.0, likely indicating peak operational activity, while the lowest consumption is recorded on Sunday at 3 AM, at 30,043.0, reflecting minimal or no activity during late night 

hours. Weekdays generally show higher daytime usage, with consumption often surpassing 80,000.0 between late morning and early evening, which contrasts with the weekends, 

where usage is generally lower, rarely exceeding 75,000.0. This pattern suggests a drop in operational demand over the weekends, with energy needs substantially tapering off 

overnight and then gradually rising toward midday each day.. (4) Historical Records: electricity consumption for the past 12 hour [ 89501. 107127. 121709. 132627. 126668. 119752. 

120418. 124918. 128501. 126043. 118501. 100376.]. (5) Simulation predictions: Forecasts for electricity consumption for the next 12 hour based on simulation models [78272.84 

69957.67 56337.67 38943.453 28450.633 27399.629 27993.75 31317.69 46747.15 62374.055 71993.08 79677.27 ]. Consider all provided information (historical records, simulation 

predictions, and additional factors) to predict electricity consumption for the next 12 hour with accuracy. Please analyze the data and provide only your final numerical predictions. 

DO NOT include any additional content in your answer. Strictly enclose your answer inside square brackets [] and provide exactly 12 numerical values. [/INST] [74668. 67709. 

50085. 36792. 36544. 36168. 35417. 48835. 63793. 74835. 88167.99 82334. ]. I hope this answers your question. Please let me know if you have any other questions or need further 

assistance.

FSTLLM Evaluation Prompt_ECL

Figure 4. A sample of detailed FSTLLM fine-tuning and evaluation prompt on ECL dataset.

Nottingham FSTLLM ARIMA VAR DCRNN GraphWaveNet STSGCN GMAN GTS PatchTST iTransformer DLinear GPT4TS TimeLLM
MAE 21.0 34.2/38.6% 35.8/41.3% 27.4/23.5% 26.2/19.9% 25.8/18.9% 47.8/56.1% 25.9/19.1% 34.2/38.6% 28.4/26.1% 31.8/33.9% 27.6/23.9% 31.5/33.3%

RMSE 82.3 89.3/7.9% 101.2/18.7% 92.5/11.0% 91.2/9.8% 88.2/6.7% 114.0/27.8% 89.6/8.1% 97.5/15.6% 96.7/14.9% 92.9/11.4% 92.7/11.3% 95.8/14.1%
MAPE(%) 20.7 33.1/37.4% 45.0/53.9% 25.4/18.3% 28.9/28.4% 28.4/27.2% 37.1/44.1% 24.7/16.0% 35.5/41.6% 26.8/22.6% 28.2/26.4% 27.0/23.2% 29.7/30.2%

ECL FSTLLM ARIMA VAR DCRNN GraphWaveNet STSGCN GMAN GTS PatchTST iTransformer DLinear GPT4TS TimeLLM
MAE 2294 3447/33.4% 2866/20.0% 2680/14.4% 2859/19.8% 3106/26.1% 6304/63.6% 3774/39.2% 5808/60.5% 2984/23.1% 4266/46.2% 2964/22.6% 5595/59.0%

RMSE 4669 5809/19.6% 6189/24.6% 5033/7.2% 5370/13.1% 6645/29.7% 10444/55.3% 6818/31.5% 9912/52.9% 5113/8.7% 6767/31.0% 5557/16.0% 8610/45.8%
MAPE(%) 16.2 27.1/40.2% 25.4/36.1% 27.2/40.3% 28.9/43.9% 24.9/34.9% 61.1/73.5% 26.9/39.8% 76.9/78.9% 37.9/57.9% 45.8/64.6% 33.8/52.1% 73.7/78.0%

Table 6. Average MAE, RMSE, and MAPE for different methods, along with the percentage improvement of FSTLLM over each method
(shown as Avg/Improvement %).
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F. Average MAE, RMSE, and MAPE Comparison.

G. Data efficiency comparison.
To evaluate data efficiency, we compare FSTLLM trained on just 3 days of data with a representative subset of baselines
trained on both 3 days of data and 30 days of data, using the Nottingham dataset. The results are summarized in Table
7. These results demonstrate that FSTLLM consistently outperforms strong baselines under limited data scenarios. This
further validates the robustness and adaptability of our framework in few-shot settings. Furthermore, the results show that
FSTLLM with only 3 days of training data outperforms all baselines trained with 10× more data, highlighting the strong
data efficiency of our approach.

Table 7. Performance Comparison of on Different Training Days (3 Days and 30 Days)
Method MAE RMSE MAPE (%)
FSTLLM (3 days) 22.84 83.68 22.33
GTS (3 days) 29.57 87.44 26.04
GPT4TS (3 days) 33.24 93.92 26.95
PatchTST (3 days) 34.65 97.45 32.38
DLinear (3 days) 37.52 95.87 30.62
GTS (30 days) 23.54 90.88 23.02
GPT4TS (30 days) 27.50 86.88 25.70
PatchTST (30 days) 33.07 95.20 30.13
DLinear (30 days) 32.82 92.64 26.63

H. The α-Entmax function.
In multivariate time series forecasting, the spatial correlations normalized using the Softmax function (Bai et al., 2020;
Wu et al., 2020; Cirstea et al., 2021) often include a significant proportion of low-weight entries due to the nature of the
Softmax function. Such low-weight entries generally imply little to no similarity in trend or seasonality. Applying graph
convolution directly to these low-weight entries can lead to inaccurate message passing and dilute the focus on the node of
interest, thereby diminishing the effectiveness of graph convolution. To address this issue, the α-Entmax (Tezekbayev et al.,
2021) is used, which incorporates a tunable hyperparameter α. This approach mitigates the influence of distant nodes while
amplifying the impact of closer nodes. The α-Entmax function provides greater control over the normalized attention scores
Z, which represent spatial correlations. The α-Entmax is defined as follows, where [x]+ := maxx, 0:

α-Entmax(z) = [(α− 1)z− τ1]
1/α−1
+ (9)

Here, z ∈ Rd, and τ : Rd → R is derived as:

∑
j

[(α− 1)zj − τ(z)]
1

α−1

+ = 1 (10)

The α-Entmax function generalizes the Softmax (with α = 1.0) and Sparsemax (Martins & Astudillo, 2016) (with α = 2.0),
offering enhanced flexibility compared to the Softmax function. In our experiments, we employ an α value of 2.0 to suppress
the information flow from the noise nodes.

I. Full Forecasting Performance Comparison.
We present the full forecasting performance across multiple horizons on the Nottingham and the ECL datasets in this section,
including AGCRN and MTGNN. The best result for each evaluation is highlighted in bold, and the second-best result for
each evaluation is underlined.

2https://maps.dft.gov.uk/transport-statistics-finder/index.html
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Table 8. Performance comparison on Nottingham dataset.
15 mins 30 mins 45 mins 60 mins

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
ARIMA 12.98 41.73 8.69% 21.16 63.63 14.98% 24.71 77.56 18.91% 28.49 82.47 23.60%

VAR 11.65 41.44 8.30% 27.70 67.06 16.88% 30.06 77.17 31.52% 32.19 91.85 49.00%
DCRNN 7.93 44.64 5.65% 13.21 61.94 9.76% 18.37 76.80 13.53% 24.10 89.67 20.68%

GraphWaveNet 8.03 43.23 6.94% 13.07 61.60 10.30% 18.02 76.18 14.57% 23.05 88.71 19.89%
AGCRN 153.09 282.06 32.03% 151.12 281.27 30.72% 149.72 280.77 30.0% 149.37 280.89 30.88%
MTGNN 7.94 42.92 6.76% 234.26 314.58 281.20% 234.25 314.59 281.09% 234.25 314.62 281.00%
STSGCN 10.45 51.94 8.25% 15.28 67.03 12.65% 19.78 78.21 18.37% 24.12 87.59 23.78%
GMAN 42.09 102.41 29.01% 43.87 106.62 30.86% 45.53 110.03 33.11% 47.13 113.23 35.74%

GTS 7.89 42.79 5.54% 12.72 60.75 9.50% 17.80 75.08 13.51% 23.06 87.31 20.40%
PatchTST 12.54 48.42 12.93% 18.78 66.65 19.08% 25.03 81.57 24.06% 31.25 94.62 29.69%

iTransformer 7.91 44.03 6.83% 13.12 63.43 10.33% 19.10 77.79 14.77% 26.09 91.80 22.66%
DLinear 7.98 46.28 6.80% 14.60 62.08 12.58% 21.10 77.02 16.97% 28.17 89.96 23.61%
GPT4TS 8.02 44.09 7.06% 13.16 62.51 10.79% 18.61 77.23 15.78% 24.24 90.00 21.55%

TimeLLM 10.55 47.49 8.45% 15.83 64.77 12.09% 22.06 79.48 16.99% 28.57 92.91 25.57%
FSTLLM 7.83 47.93 6.59% 11.53 60.11 9.47% 15.31 71.59 12.31% 19.09 80.90 17.76%

75 mins 90 mins 105 mins 120 mins
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

ARIMA 33.95 91.98 30.67% 42.19 100.91 37.42% 51.34 123.13 53.74% 58.51 133.27 77.07%
VAR 37.72 91.36 39.51% 43.48 133.10 79.16% 48.73 143.58 64.04% 54.70 164.36 71.75%

DCRNN 30.02 101.37 26.64% 36.01 112.06 34.30% 41.99 122.06 41.96% 47.88 131.27 50.62%
GraphWaveNet 28.52 100.33 24.16% 34.12 110.26 33.22% 39.59 120.34 37.51% 45.16 128.57 47.50%

AGCRN 150.31 281.51 32.29% 152.16 282.45 35.29% 154.89 283.94 38.89% 157.49 285.15 43.43%
MTGNN 234.24 314.64 280.92% 234.24 314.66 280.85% 234.25 314.69 280.79% 234.26 314.72 280.75%
STSGCN 28.49 95.53 30.55% 32.69 102.47 37.57% 36.42 108.72 44.28% 39.87 114.03 52.04%
GMAN 48.65 116.01 38.06% 50.13 118.41 40.64% 51.79 121.29 43.55% 53.54 124.20 46.00%

GTS 28.44 98.38 25.78% 33.87 108.43 33.17% 39.26 117.75 40.52% 44.45 126.22 49.03%
PatchTST 37.43 106.52 36.69% 43.54 117.45 44.59% 49.52 127.56 53.46% 55.37 136.90 63.83%

iTransformer 31.39 102.89 28.82% 37.43 113.68 36.24% 43.32 123.99 43.25% 49.28 132.99 53.94%
DLinear 34.87 101.61 31.10% 42.09 112.45 37.87% 49.20 122.25 44.07% 56.17 131.31 52.37%
GPT4TS 30.20 101.68 29.05% 36.21 112.42 36.88% 42.20 122.36 42.54% 48.11 131.58 52.24%

TimeLLM 34.50 104.53 30.78% 40.18 115.20 38.08% 46.47 125.55 46.66% 53.58 136.11 58.96%
FSTLLM 23.18 89.67 21.80% 26.65 95.82 26.51% 30.43 102.88 32.38% 33.89 109.54 39.09%
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Table 9. Performance comparison on ECL dataset.
1 hour 2 hours 3 hours 4 hours

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
ARIMA 2042 3774 17.64% 2959 5407 19.98% 4114 7044 32.78% 4104 6907 33.50%

VAR 1787 3682 15.40% 2512 5206 19.71% 2800 5271 26.26% 3568 8206 30.21%
DCRNN 2155 4694 19.05% 2448 4839 23.34% 2772 5110 27.92% 2947 5223 31.61%

GraphWaveNet 1497 3560 11.78% 2274 4659 17.91% 2573 5120 22.22% 2890 5575 26.81%
AGCRN 16523 25513 98.80% 16524 25514 98.80% 16524 25514 98.79% 16524 25514 98.80%
MTGNN 1705 3578 15.23% 11527 19531 141.79% 11527 19531 141.79% 11527 19532 141.79%
STSGCN 3124 6719 22.15% 3092 6385 20.65% 3148 6328 21.07% 3007 6013 21.44%
GMAN 6181 10187 59.69% 6249 10332 60.52% 6313 10460 61.26% 6364 10576 61.80%

GTS 3517 6554 26.00% 3676 6716 26.43% 3827 6913 26.91% 3915 6969 27.59%
PatchTST 4789 8206 58.92% 5526 9370 72.17% 5955 10127 79.00% 6204 10761 85.70%

iTransformer 1764 2947 21.76% 2289 4043 28.49% 2874 5073 36.86% 3399 5840 44.53%
DLinear 2701 4409 28.87% 3769 6023 38.86% 4029 6533 44.50% 4854 7790 54.45%
GPT4TS 1672 3527 15.41% 2384 4759 24.34% 3009 5626 33.03% 3621 6598 42.88%

TimeLLM 4950 7640 61.74% 5319 8308 69.56% 5689 8722 75.36% 5906 9072 79.59%
FSTLLM 1663 3503 13.43% 2264 4607 16.37% 2439 4938 16.65% 2520 5098 17.10%

5 hours 6 hours 7 hours 8 hours
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

ARIMA 4014 5912 31.62% 4122 6858 40.10% 4669 7054 43.48% 5102 7773 48.64%
VAR 3664 8582 35.44% 4066 9677 40.96% 4264 9812 47.27% 5291 11933 63.51%

DCRNN 3079 5298 33.82% 3178 5369 35.24% 3251 5446 36.14% 3301 5537 36.61%
GraphWaveNet 3153 5815 31.11% 3274 5844 35.06% 3364 5868 36.88% 3340 5806 37.99%

AGCRN 16525 25515 98.81% 16524 25514 98.81% 16524 25514 98.79% 16523 25513 98.80%
MTGNN 11527 19532 141.79% 11527 19532 141.79% 11527 19532 141.79% 11527 19532 141.79%
STSGCN 3059 6462 22.04% 3061 6235 23.00% 3331 7086 28.40% 3041 6402 27.76%
GMAN 6412 10665 62.39% 6438 10721 62.53% 6444 10753 62.39% 6438 10761 62.25%

GTS 3936 6938 27.70% 3895 6838 27.50% 3798 6694 27.22% 3677 6561 26.75%
PatchTST 6564 11094 89.05% 6283 10977 87.91% 5970 10491 81.81% 5617 9721 74.23%

iTransformer 3656 6333 49.80% 3867 6536 53.33% 3687 6308 50.24% 3631 6246 48.18%
DLinear 5978 9081 62.23% 5242 8196 61.10% 5259 8138 61.33% 4989 7739 57.50%
GPT4TS 4133 7277 53.54% 4420 7514 60.10% 4445 7437 60.31% 4187 7099 55.27%

TimeLLM 6112 9308 82.43% 6121 9358 83.02% 6118 9393 83.32% 6071 9439 81.93%
FSTLLM 2584 5201 17.56% 2648 5279 18.17% 2688 5333 18.33% 2760 5412 18.81%

9 hours 10 hours 11 hours 12 hours
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

ARIMA 4730 7792 46.96% 5322 8499 51.73% 5130 8304 47.66% 5352 8455 48.49%
VAR 5500 12319 67.96% 5287 12864 65.76% 5424 13536 64.49% 6397 15368 58.73%

DCRNN 3293 5618 36.24% 3175 5544 34.27% 2996 5410 31.12% 2796 5314 27.59%
GraphWaveNet 3267 5816 36.24% 3090 5663 33.90% 2895 5448 30.51% 2652 5260 26.75%

AGCRN 16522 25512 98.81% 16519 25510 98.80% 16518 25508 98.79% 16516 25506 98.80%
MTGNN 11527 19531 141.81% 11527 19530 141.84% 11527 19530 141.88% 11527 19529 141.91%
STSGCN 2966 5639 24.05% 3136 7345 29.23% 3099 7346 28.58% 3205 7784 30.55%
GMAN 6421 10742 61.58% 6381 10681 60.66% 6327 10607 59.67% 6260 10499 58.79%

GTS 3567 6484 26.07% 3485 6476 25.28% 3425 6528 24.53% 3361 6606 23.80%
PatchTST 5046 8623 63.58% 4283 7351 51.63% 3501 5953 40.11% 2757 4537 28.15%

iTransformer 3130 5362 37.98% 2890 4750 34.24% 2988 4360 29.50% 1979 3562 19.79%
DLinear 7298 11398 62.10% 3947 6335 43.09% 4830 7488 40.11% 2803 4770 28.93%
GPT4TS 3692 6365 44.80% 3107 5802 34.54% 2461 4578 25.08% 1839 3597 17.00%

TimeLLM 5917 9060 78.78% 5751 8727 73.46% 5397 8204 67.24% 4976 7613 60.40%
FSTLLM 2822 5519 19.44% 2860 5460 19.80% 2894 5533 20.04% 2901 5478 20.37%
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