
Spatial Transition Learning on Road Networks with
Deep Probabilistic Models

Xiucheng Li†, Gao Cong†, Yun Cheng‡

† Nanyang Technological Univeristy, ‡ ETH Zurich
{xli055@e., gaocong@}ntu.edu.sg, chengyu@ethz.ch

Abstract—In this paper, we study the problem of predicting the
most likely traveling route on the road network between two given
locations by considering the real-time traffic. We present a deep
probabilistic model–DeepST–which unifies three key explanatory
factors, the past traveled route, the impact of destination and
real-time traffic for the route decision. DeepST explains the
generation of next route by conditioning on the representations
of the three explanatory factors. To enable effectively sharing
the statistical strength, we propose to learn representations of
K-destination proxies with an adjoint generative model. To
incorporate the impact of real-time traffic, we introduce a high
dimensional latent variable as its representation whose posterior
distribution can then be inferred from observations. An efficient
inference method is developed within the Variational Auto-
Encoders framework to scale DeepST to large-scale datasets.
We conduct experiments on two real-world large-scale trajectory
datasets to demonstrate the superiority of DeepST over the
existing methods on two tasks: the most likely route prediction
and route recovery from sparse trajectories. In particular, on
one public large-scale trajectory dataset, DeepST surpasses the
best competing method by almost 50% on the most likely route
prediction task and up to 15% on the route recovery task in
terms of accuracy.

I. INTRODUCTION

In this paper, we study the problem, given the origin and

destination, of predicting the most likely traveling route on

a road network as well as outputing a probability value to

indicate the likelihood of a route that being traveled. The

problem finds applications in a variety of downstream tasks,

such as taxi ridesharing schedule, route recovery from sparse

trajectories [1], [2], and popular routes recommendation [3].

As a motivating example, in taxi dispatch system the origin

and destination are usually given before the start of a trip,

and thus predicting the most likely route could help us better

arrange the taxi sharing by picking up the potential passengers

that are waiting on or nearby the most likely traveled route.

Furthermore, if we could score the likelihood of a route being

traveled, we can also recover the underlying route from sparse

trajectories. The route recovery problem [1], [2] arises in

the real-world trajectories due to the low-sampling-rates or

turning off of location-acquisition devices. Figure 1b shows

two possible routes rA, rB from a3 to a4 in an observed

trajectory Ta = [a1, a2, . . . , a5]. If we treat a3, a4 as the origin

and destination respectively, we could score the likelihood of

the two candidate routes to help infer the truly traveled route.

The problem addressed in this paper can be summarized

as modeling the spatial transition patterns of real-world trips

on the road network. Several proposals [4], [5] have revealed

TABLE I
EXAMPLE OF TRIPS ON ROAD NETWORK.

Route Destination Frequency

r3 → r2 → r4 C 400
r3 → r2 → r5 → r10 C 100
r1 → r2 → r5 → r6 A 100
r1 → r2 → r7 → r8 B 100
r1 → r2 → r5 → r6 → r9 B 100

C
A

B

r1

r3

r2
r4 r5

r7
r9

r8

r6
r10

(a)

a1 a2

a3
a4 a5

rA
rB

(b)

Fig. 1. (a) Road network. (b) Example of route recovery from sparse
trajectory, in which the grey bars indicate building blocks and rA, rB
represent two possible routes.

that the transition patterns of vehicles are often highly skewed:

some routes are more likely to be traveled than others. How-

ever, to reliably model such transition patterns, we argue that

three key explanatory factors need to be carefully taken into

consideration. We illustrate these key factors with an example;

assuming we have observed 8 trips described in Table I, over

a road network showed in Figure 1a.

First, the spatial transition patterns demonstrate strong se-

quential property. Consider that we try to predict the next

transition of a vehicle driving on r2. According to the historical

trips, P(r4|r2) = 4/8 is greater than P(r5|r2) = 3/8 and

P(r7|r2) = 1/8. We have a high confidence to predict that

the vehicle will transit to r4. However, if we also know that

the traveled road sequence is r1 → r2, the prediction will

then favor r5 over r4. Second, the trip destination has a global

impact on the transition. Now consider that a vehicle is driving

on r5 and the trip destination is C. Based on the historical

trips it will have a higher probability of transiting to r6 than

transiting to r10 since P(r6|r5) = 2/3 > P(r10|r5) = 1/3. But

if we take into consideration the trip destination, we would

predict the next road to be r10 as P(r10|r5, C) = 1. Third,

the route choices are also influenced by the real-time traffic.

349

2020 IEEE 36th International Conference on Data Engineering (ICDE)

2375-026X/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDE48307.2020.00037

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on April 02,2022 at 03:49:44 UTC from IEEE Xplore. Restrictions apply.

The vehicle drivers tend to choose those less congested routes

rather than the shortest one. Again, assuming that a vehicle

is on r2 and the trip destination is B. The historical trips

show that it has equal probability of transiting to r5 or r7
as P(r5|r2, B) = P(r7|r2, B) = 1/2. However, if the traffic

on r7, r8 is more congested than that on r5, r6, r9, the driver

is more likely to choose r5 instead of r7 even if the route

r7 → r8 is shorter.

It is challenging to unify all these factors into a single

model. To capture the sequential property, the authors [5]

propose to model the spatial transition patterns using the

Hidden Markov Model (HMM) which requires explicit de-

pendency assumptions to make inference tractable [6]. Wu et
al. [7] consider the impact of destination on the route decision

by treating each destination separately, thus failing to share

statistical strength across trips with nearby destinations. In

addition, they assume that accurate ending streets of the trips

are available, and use the corresponding road segments to help

make decision. However, in some applications we may only

have the rough destination coordinates at hand e.g., the driver

may not end a trip on the exact street as the user requested in

the taxi dispatch system. To incorporate the influence of traffic

when learning the transition patterns, [2], [8] assume that

traffic conditions in the same time slot (e.g., 7:00am-8:00am

every weekday) are temporally-invariant, which is not real-

time traffic and may not hold. To our knowledge, no existing

work on spatial transition learning is based on real-time traffic.

In this paper, we approach the spatial transition modeling

problem from the generative perspective. We develop a novel

deep probabilistic model–DeepST (Deep Probabilistic Spa-

tial Transition), which unifies the aforementioned three key

explanatory factors–sequential property, the impact of desti-

nation and real-time traffic into a single model, for learning

the spatial transition patterns on the road network. DeepST
explains the generation of a route by conditioning on the

past traveled road sequence, destination and real-time traffic

representations. The past traveled road sequence is squeezed

by a Recurrent Neural Net (RNN) which does not make the

explicit dependency assumption. To incorporate the impact of

destination, we propose to learn K-destination proxies with an

adjoint generative model instead of treating the destinations

separately. The benefits of introducing the destination proxies

are two-folds: 1) the proposed method will be robust to the

inaccuracy of destinations; 2) it allows effectively sharing the

statistical strength across trips. The destination proxies are

learned jointly with the generation of routes which permits

end-to-end training. To account for the influence of real-time

traffic, we propose to learn the real-time traffic representation

with a latent variable, whose posterior distribution can then

be inferred from the observations. In the end, we develop an

efficient inference method to learn the posterior distributions

of the latent variables of DeepST based on observations;

the inference method is developed within the Variational

Auto-Encoders (VAEs) framework and is fully differentiable,

enabling DeepST to scale to large-scale datasets. In summary,

our contributions are as follows.

• For the first time, we develop a novel deep probabilistic

model–DeepST– to learn the spatial transition patterns,

which simultaneously takes into consideration the transi-

tion sequential property, the impact of destinations and

real-time traffic.

• We propose a novel adjoint generative model to learn the

K-destination proxies, which enables effectively sharing

statistical strength across trips and the resulting model is

robust to inaccurate destinations.

• We develop an efficient inference method that scales the

model to large-scale datasets within the VAEs framework.

• We conduct experiments on two real-world datasets to

demonstrate the superiority of DeepST over existing

methods on two tasks: predicting the most likely routes

and route recovery from sparse trajectories.

II. RELATED WORK

We briefly review the related work on spatial transition

modeling on the road network and deep probabilistic models.

A. Spatial transition modeling on road network

The spatial transition modeling on the road network in

the literature arises in the following area: sparse trajectory

similarity computation, route recovery from sparse trajectories,

and future movement prediction.

Sparse trajectory similarity computation. The low-

sampling-rated trajectories bring difficulty for the similarity

computation, as an observed sparse trajectory could have

multiple possible underlying routes. To handle this, Su et
al. [5] proposed to learn the transition patterns among a

fixed set of spatial objects from the historical trajectories by

using the Hidden Markov Models; then sparse trajectories are

calibrated to these spatial objects to compute similarities. Li

et al. [9] addressed this problem with a seq2seq-based model,

where they encoded the most probable route information into

the trajectory representation.

Route recovery from sparse trajectories. Route recovery

attempts to infer the most likely route between two road

segments that are not adjacent on the road network. Zheng et
al. [4] modeled the spatial transition probability between ad-

jacent road segments with one-order Markov model. Banerjee

et al. [1] explored the problem with Gibbs sampling, in which

the spatial transition probabilities were also modeled with the

Markov model albeit high-order ones were employed. Wu et
al. [2] proposed to use the inverse reinforcement learning

to capture the spatial transition patterns. The problem we

consider in this paper actually is more general than route

recovery from sparse observations, in the sense that DeepST
can be applied for route recovery while the vice verse may

not hold, for two reasons: first, the route recovery attempts to

infer the most likely routes for already observed trajectories,

in which the travel time is available to help the inference,

while in our problem setting we do not require the travel

time to be known in advance; second, the route recovery

problem assumes the accurate destination road segments are

350

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on April 02,2022 at 03:49:44 UTC from IEEE Xplore. Restrictions apply.

known, whereas DeepST is applicable even if only the rough

destination coordinates are available.

Future movement prediction. Xue et al. [10] attempted to

predict the destination of a trajectory based on its already

observed partial sub-trajectory. They partitioned the space into

cells and modeled the transition probability between adjacent

cells with the first-order Markov Model. Zhao et al. [11]

revisited the problem with RNN. Li et al. [8] developed a

Bayesian model which is capable of predicting the future

movement of a vehicle on the road network. The spatial

transition was again modeled with the first-order Markov

Model. As the Markov Model requires explicit dependency

assumptions and struggles in accounting for the long range

dependency, Wu et al. [7] explored to model the trajectories

with RNN. They assumed that the exact destination road

segments of trips are known and learned the representations of

them to help route decision. In contrast, we only assume the

rough destination addresses to be available and handle them

with a novel adjoint generative model. Several proposals [12]–

[14] consider the problem of the next location prediction,

without the constraint of road networks, and thus they are

not directly applicable to our scenario.
In addition, the existing methods either ignore the influence

of traffic [1], [4], [5], [7], [10] or simply assume that the

traffic conditions in the same periodic time slot (e.g., 7-8am

weekend) are temporally-invariant [2], [8]. To our knowledge,

no existing work on spatial transition modeling is based on

the real-time traffic.

B. Deep probabilistic models
The probabilistic models have been widely studied in the

machine learning and data mining fields including, text anal-

ysis [15], [16], recommendation [17]–[19], and spatial data

analytics [20]–[23]. As the probabilistic models were typically

trained with sampling-based methods that suffer from slow

convergence, which has limited their usage to relatively small

datasets [24].
The progress of stochastic gradient variational infer-

ence [25], [26] which marries the Bayesian inference with

deep learning, has successfully scaled probabilistic models

to large-scale data sets. Such models are often referred to

as deep probabilistic or generative models, and the key idea

is to fit the posterior distributions with the neural nets by

optimizing the Evidence Lower Bound (ELBO). Ever since,

deep probabilistic models have been developing rapidly and

achieved a wide range of state-of-art results in semi-supervised

learning [27], image generation [28], scene understanding [29],

realistic speech synthesis [30], and large-scale online recom-

mendation [31]. However, they have been little explored in

spatial-temporal data analytics. To our knowledge, [32], [33]

are the only two proposals that attempt to explore the power of

deep generative models for the spatial-temporal data mining

problems. Li et al. [32] develop a deep generative model–

DeepGTT, which aims to predict the travel time distribution

of a given trip whereas DeepST seeks to predict the most

likely route between the given origin and destination, they

TABLE II
NOTATION.

Symbol Definition

T Trajectory
T Trip
r Route
ri The i-th road segment in route r
x Destination coordinate
π Destination allocation indicator

c ∈ R
|c| The real-time traffic representation

C Real-time traffic indicator

both rely on real-time traffic but have complete different

generative processes and purposes. Liu et al. [33] propose

a deep generative model GM-VSAE to detect the anomaly

trajectories in an online manner. In this paper, we step towards

this direction by presenting the first deep probabilistic model

for spatial transition modeling.

III. DEFINITIONS AND PRELIMINARIES

We present the definitions and problem statement in Sec-

tion III-A. The key ideas of Variational Inference (VI) and

Variational Auto-Encoders (VAEs) are briefly reviewed in

Section III-B.

A. Definitions and problem statement

For the convenience of reference, we list the notations used

in the paper in Table II.

Definition 1. Road Network. A road network is represented
as a directed graph G(V,E), in which V , E represent the
vertices (crossroads) and edges (road segments) respectively.

Definition 2. Route. A route r = [ri]
n
i=1 is a sequence of

adjacent road segments, where ri ∈ E represents the i-th road
segment in the route.

Definition 3. GPS Trajectory. A GPS trajectory T is a
sequence of sample points 〈pi, τi〉|T |

i=1 from the underlying route
of a moving object, where pi, τi represent the i-th GPS location
and timestamp, respectively.

Definition 4. Trip. A trip T is a travel along a route r on
the road network starting at time s. We use T.r and T.s,
respectively, to denote the traveled route and starting time of
trip T.

Problem Statement. Given a road network G(V,E) and a

historical trajectory dataset D = {Tm}Mm=1, as well as the

starting time, origin and destination of a trip T, we aim

to predict the most likely traveled route of the trip T as

well as score the likelihood of any route being traveled by

conditioning on the real-time traffic.

In this paper, we assume that the initial road segment T.r1
of the trip T is given; however, for the destination we only

assume a rough coordinate x (denoted by T.x), i.e., a pair of

latitude and longitude, is available.

351

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on April 02,2022 at 03:49:44 UTC from IEEE Xplore. Restrictions apply.

B. Preliminaries of VI and VAEs

The probabilistic methods or Bayesian generative methods

provide us a principled way to explain the generation of ob-

served data. They permit us to incorporate our prior knowledge

regarding data into the model design. Specifically, they offer

us two ways to achieve this 1) introducing appropriate latent

variables z to serve as explanatory factors; 2) describing the

generation of observed data by specifying proper generative

process based on our domain knowledge. Generally, the prob-

abilistic methods can be formulated as follows: we first draw

a latent variable z from a prior distribution p(z), and then

relate z to observation x through a conditional distribution

p(x|z); lastly, we intend to infer the posterior distribution

p(z|x), which will be used in the prediction stage.

One of main challenges in adopting probabilistic methods

lies on the posterior distribution p(z|x) inference. Using the

Bayes rule, we have

p(z|x) = p(z)p(x|z)
p(x)

,

and the difficulty here is the computation of marginal distri-

bution p(x) =
∫
p(z,x)dz is intractable in high dimensional

space. The traditional inference method Markov Chain Monte

Carlo (MCMC) is usually only applicable to small datasets and

simple models [34]. An alternative method, Variational Infer-

ence (VI), turns the posterior inference into an optimization

problem. In comparison to MCMC, VI is much more efficient

by taking advantage of numerical optimization algorithms.

In VI, we posit a family of densities Q and then search the

optimal posterior approximation q∗(z) ∈ Q that is closest to

p(z|x) measured by KL divergence, i.e.,

q∗(z) = argminq∈Q KL(q(z)||p(z|x)).
Extending the KL divergence term we get

KL(q(z)||p(z|x))= Eq(z) [log q(z)]−Eq(z) [log p(z|x)]
= Eq(z) [log q(z)]−Eq(z) [log p(z,x)]

+ log p(x),

from which we can conclude

Eq(z) [log p(z,x)]− Eq(z) [log q(z)] (1)

is a lower bound of the log-likelihood log p(x) since KL diver-

gence is nonnegative. This lower bound is commonly known

as Evidence Lower Bound (ELBO) in the VI literature, max-

imizing ELBO is equivalent to minimizing KL(q(z)||p(z|x))
or maximizing the log-likelihood log p(x).

In the past decades, the most widely adopted VI is mean-

field VI due to its simplicity. Mean-field VI assumes that the

approximated posterior distribution q(z) admits a factorized

form as q(z) =
∏|z|

j=1 q(zj), i.e., all zj are mutually indepen-

dent and each zj is governed by its own factor distribution

q(zj), whose parameters are referred to as variational parame-

ters. Mean-field VI requires us to specify the parametric form

for each factor distribution q(zj), and derive their parameter

iterative equations by hand. The drawback is that it constrains

c

r1:i

xri+1

Fig. 2. The graphical model of the generative process in which c ∈ R
|c| is

latent variable and represents the real-time traffic, x is the trip destination.

us to build models within only a small fraction of probability

distributions; otherwise, no parameter iterative equation exists.

This implies the resulting models may lack the flexibility

to explain the observed data. Moreover, the optimization of

mean-field VI often relies on the Coordinate Ascent algorithm

which also struggles when the datasets are very large [35].

To address the drawbacks of mean-field VI, Variational

Auto-Encoders (VAEs) [25], [26] combine the automatic-

differentiation [36], the core ingredient of deep learning, with

variational inference, which yields a flexible yet efficient

inference framework for probabilistic generative methods.

VAEs [25] replace q(z) with q(z|x) and rewrite ELBO as

ELBO = Eq(z|x) [log p(x|z)]−KL(q(z|x)|| log p(z)), (2)

and parameterize q(z|x) and p(x|z) with neural networks,

which are referred to as inference network and generative

network respectively. More specifically, VAEs assume q(z|x)
and p(x|z) follow two parametric distributions, and fit the

parameters of the two distributions with two neural networks.

The inference network takes a datapoint x as input and pro-

duces a corresponding latent variable z; while the generative

network takes z as input and tries to decode x. The ELBO

serves as a loss function for both inference network and

generative network, which is estimated with the Monte Carlo

method by drawing L samples, z(l), from q(z|x)

ELBO ≈ 1

L

L∑
l=1

log p(x|z(l))−KL(q(z|x)|| log p(z)), (3)

where the KL term has analytic solution for the Gaussian

prior and posterior. The parameters of the two networks are

optimized by stochastic gradient descent algorithms which

scale to large-scale datasets easily.

IV. THE PROPOSED METHOD – DEEPST
We first present the general idea of our proposed method

and the generative process in Section IV-A. We then detail the

representation learning of past traveled route and destination

in Section IV-B and Section IV-C, respectively. The developed

inference method is presented in Section IV-D, and the predic-

tion is discussed in Section IV-E. We present the complexity

analysis of DeepST in Section IV-F

A. The generative process

The high level idea of our proposed method DeepST is

that we interpret the generation of a route by conditioning on

352

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on April 02,2022 at 03:49:44 UTC from IEEE Xplore. Restrictions apply.

the past traveled road segment sequence, the representations of

destination and real-time traffic. In such a manner, DeepST
simultaneously takes into consideration the aforementioned

three key explanatory factors–the sequential property of transi-

tion, the global impact of destination and real-time traffic. The

intuition is that once the generative model is trained on the

observed trajectories, its parameters will be tuned to capture

the spatial transition patterns hidden in the dataset, and thus

could make prediction based on the learned patterns in the

future. The graphical model is shown in Figure 2 and the

generative process of one route is described as follows.

• Draw c ∼ Normal(μ, diag(σ2)).
• For i+ 1-th road segment, i ≥ 1

– Draw ri+1 ∼ P(ri+1|r1:i,x, c).
– Draw ending indicator s ∼ Bernoulli(fs(ri+1,x)).
– If s = 0 then continue else end the generation.

We first draw a latent variable c ∈ R
|c| which represents the

real-time traffic from an isotropic Gaussian prior distribution.

Then the i+1-th road segment is drawn from P(ri+1|r1:i,x, c).
Finally, we use a Bernoulli distribution whose parameter is the

output of function fs taking ri+1,x as input, to decide whether

to terminate the generation, and we use the Euclidean distance

between the projection point of x on ri+1 and x to determine

the termination of the generation, i.e.,

fs(ri+1,x) =
1

1 + ‖p(x, ri+1)− x‖2 ,

where p(x, ri+1) denotes the projection point of x on ri+1,

the Bernoulli distribution is chosen since s is a binary vari-

able [37]. In this paper, we propose to model P(ri+1|r1:i,x, c)
as a Categorical distribution (the categories are all road

segments adjacent to ri) whose parameter is the output of

a function f taking the past traveled route sequence r1:i,
destination x and real-time traffic c as input; f could be

any differentiable function. In this paper, we use the additive

function due to its simplicity,

P(ri+1|r1:i,x, c) = softmax
(
α�fr (r1:i) + β�fx(x) + γ�c

)
in which fr (r1:i) ∈ R

nr , fx(x) ∈ R
nx are representations

of past traveled route r1:i and destination x, respectively;

α ∈ R
nr×N (ri), β ∈ R

nx×N (ri), γ ∈ R
|c|×N (ri) are pro-

jection matrices that map the corresponding representations

into the road segment space, and N (ri) is the number of

adjacent road segments of ri, e.g., N (r2) = 3 in Figure 1a.

The projection matrices are shared across all road segments,

and since different ri may have different number of adjacent

road segments, we substitute N (ri) with max∀r∈E N (r), i.e.,
the maximum number of neighboring road segments on the

road network. Note that since the model is data-driven, its

parameters will be tuned to push the probability mass of

P(ri+1|r1:i,x, c) only towards the road segments that are truly

adjacent to ri.

B. The representation of past traveled route

Most of existing studies [1], [5], [8], [10] model the

transition relationship with Markov Model which requires

to make explicit dependency assumption to make inference

tractable [6]. In contrast, the Recurrent Neural Nets are capable

of modeling the long range dependency by embedding a

sequence of tokens into a vector. As presented in Section I, the

transition patterns of vehicle on road network may demonstrate

strong sequential property, it is desirable to capture such long

range dependency when modeling the spatial transition, and

thus we adopt the RNNs to squeeze the past traveled route

into its representation. Specifically, we update the i-th hidden

state as follows

hi =

{
0 i = 1
GRU(hi−1, ri−1) i ≥ 2

where h1 is initialized as a zero vector and GRU(·, ·) repre-

sents the Gated Recurrent Unit updating function [38]. Even-

tually, we choose i-th hidden state hi as the representation of

past traveled route, i.e., we let fr (r1:i−1) = hi.

C. The representation of destination

The trip destinations have a global impact on the spatial

transition, and thus it is critically important to properly learn

the destination representations fx(x) ∈ R
nx to help the route

decision. Previous study [7] assumed that the destination road

segments of the trips are available, and learned the represen-

tations for these road segments to guide the route decision.

However, the exact destination road segment of a trip may not

be available at the start of a trip. Furthermore, the method [7]

learns representation of each road segment separately cannot

effectively share the statistical strength across trips with the

spatially close destinations. As an example, assuming we

model the transition probabilities for the trips shown in Table I;

if we treat the destinations separately as does the work [7],

we will have

P(r10|r5, C) = 1/3,P(r6|r5, A) = 1/3,P(r6|r5, B) = 1/3;

however the spatial proximity between A and B is small, and

if we use one representation AB for all trips driving towards

them, we will have

P(r10|r5, C) = 1/3,P(r6|r5, AB) = 2/3,

i.e., the transition patterns can be shared to mutually reinforce

the transition probability between r5 and r6 across trips.

Intuitively, the trips whose destinations are spatially close

should share similar destination representations. More impor-

tantly, the learned destination representations are also sup-

posed to be able to effectively guide the spatial transition of

their corresponding trips. Separating the destination represen-

tations learning and spatial transition learning into two stages

prevents end-to-end training, which may lead to a suboptimal

solution. Instead, it is desirable to jointly learn the destination

representations and model the spatial transition such that the

statistical strength could be effectively shared across trips.

To summarize, when learning the destination representations

353

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on April 02,2022 at 03:49:44 UTC from IEEE Xplore. Restrictions apply.

ri+1

r1:i

c

W M S

x

π η

Fig. 3. The graphical model of the complete generative process in which
c ∈ R

|c|, π ∈ R
K are latent variables, M ∈ R

2×K , S ∈ R
2×K
+ , W ∈

R
nx×K are parameters to be learned, and η ∈ R

K is hyperparameter; π can
be interpreted as the destination allocation indicator, the nonzero dimension
of π indicates the proxy which the trip is allocated.

we should consider two points: 1) if the spatial proximity

between the destinations of two trips is small, the learned

destination representations should be similar; 2) the learned

representations could effectively guide the spatial transition of

their corresponding trips.

Towards this end, we propose to learn representations for

the K-destination proxies that are shared by all trips, instead

of learning each trip a separate destination representation.

Specifically, we simultaneously learn representations of K-

spatial locations, referring to as K-destination proxies, and

adaptively allocate the trips into one of these destination prox-

ies; the destination proxy representation will be used to guide

the spatial transition of trips that are allocated to this proxy.

We achieve this by developing an adjoint generative model

which explains the generation of the destination coordinates

with another latent variable π. The adjoint generative process

is as follows.

• Draw π ∼ Categorical(η).
• Draw x ∼ Normal(Mπ, diag(Sπ)).

where η ∈ R
K is a hyperparameter, π ∈ N

K is a one-hot

vector indicating which proxy the trip is allocated. Then we

use π and M,S to generate the destination coordinate x,

where M ∈ R
2×K is the mean value matrix and S ∈ R

2×K
+ is

the variance matrix of the K-destination proxies; the operation

Mπ (resp. Sπ) selects one column of M (resp. S) which

corresponds to the mean (resp. variance) of the allocated proxy.

We interpret the observation x via conditioning on Mπ and

Sπ with a Gaussian distribution which could tolerate the

small deviation of x from the proxy mean value Mπ, i.e.,
adding some small noise to x does not change its proxy.

Hence the resulting method will be robust to the inaccuracy

of observations.

In such a fashion, we actually allocate each trip destination

x to a proxy and the trips that are allocated to the same proxy

will share the same proxy representation, so as to effectively

share the statistical strength across these trips. As our eventual

purpose is to obtain the proxy destination representation,

we introduce an embedding matrix W ∈ R
nx×K and let

fx(x) = Wπ. We can see that the introduction of the latent

variable π enables achieving the aforementioned two points

simultaneously. On the one hand, Mπ and Sπ are supposed

to be capable of explaining the observations x, so as to satisfy

the spatial constraint. On the other hand, Wπ should be able

to yield a useful destination representation that can effectively

guide the spatial transition of the trips, since this representation

is learned by maximizing the probability of observed routes

in P(ri+1|r1:i,Wπ, c). Consequently, the complete graphical

model becomes the one shown in Figure 3. We can consider

π as the destination allocation indicator, and the nonzero

dimension of π indicates the proxy to which the trip is

allocated.

D. Inference with VAEs

The ultimate generative process described in Figure 3 im-

plies the following log-likelihood function for one trip,

L(Θ) = log
∑
π

∫
c

P(c|μ,σ2)P(π|η)

×
n−1∏
i=1

P (ri+1|r1:i,Wπ, c) dc+ log
∑
π

P(π|η)P(x|π,M, S)

(4)

where Θ is the collection of all parameters involved. The first

term describes the log-likelihood of route generation, while

the second term represents the log-likelihood of destination

generation. We are required to infer the posterior distributions

P (c|r,x), P (π|r,x), and fit the parameters Θ by maximizing

the log-likelihood given the observations. The exact computa-

tion of the log-likelihood function is intractable as it requires

us to integrate (sum) out two latent variables c, π in the high-

dimensional space. The sampling-based methods [39] suffer

from the slow convergence and are also not suitable in our

scenario.

To circumvent this, we develop an approximate inference

method within the Variational Auto-Encoders (VAEs) frame-

work [25], [26]. The general idea behind VAEs is to fit the

intractable posterior distributions with appropriate inference

neural nets; since the exact computation of log-likelihood is

difficult, VAEs resort to maximize the evidence lower bound

(ELBO) of the log-likelihood and propagate the gradients

backwards to optimize the inference neural nets. To this

end, we first derive the ELBO of L(Θ) using the Jensen’s

Inequality [25] as follows,

L(Θ) ≥ Eq(c,π|r,x)

[
log

P(c)P(π)
∏n−1

i=1 P (ri+1|r1:i,Wπ, c)

q(c,π|r,x)

]

+Eq(π|r,x)

[
log

P(π)P(x|π,M, S)

q(π|r,x)
]

(5)

in which q(c,π|r,x) and q(π|r,x) are the approximated

posterior distributions to be optimized. q(c,π|r,x) represents

the joint posterior distribution of c,π given the route r and

destination x. Since π denotes the proxy that x is allocated

to, and this allocation is invariant to the traveled route r, we

factorize the joint distribution as

q(c,π|r,x) = q(c|r)q(π|x)

354

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on April 02,2022 at 03:49:44 UTC from IEEE Xplore. Restrictions apply.

C

W

M S

x

c r

xπ

Encoder NN1

Encoder NN2

Generative NN1

Generative NN2

Inference Generation

q(c|C)

q(π|x)

Fig. 4. The inference framework.

and for the same reason, q(π|x) = q(π|r,x). But our scenario

slightly differs from the typical VAEs here: because the data

to be generated is observable in the typical usage of VAEs

when performing inference; however, in our case we seek to

predict the most likely route r which is not available at the

time of prediction.

To sidestep this, we note that q(c|r) actually manages to

infer the posterior distribution of traffic condition c from the

transition patterns of r. Intuitively, the real-time traffic at the

start of trip T can also be measured by the average speed of

(sub-)trajectories in the time window [T.s −Δ,T.s), Δ is a

specified parameter e.g., 20 minutes. We denote these (sub-

)trajectories as C (or T.C), and propose to extract the real-

time traffic representation c from C. To this end, we partition

the space into cells and calculate the average vehicle speed

in a cell by using the real-time trajectories. However, the raw

cell representation is sensitive to the spatial distribution of

vehicles, i.e., if there is no sensing vehicle passing the cell at

the moment, the cell value will become zero; furthermore, the

raw cell representation cannot reveal the similarity between

two analogous traffic conditions, even if only one cell value

changes, the representation will be considered to be different

from the original one. Therefore, similar to [32], we use a

Convolutional Neural Net (CNN) to extract the high level

features from the raw cell representation. More formally, we

have

f = CNN(C)

q (c|C) = Normal
(
μ (f) , diag

(
σ2 (f)

)) (6)

where μ (f) , σ2 (f) are parameterized by two MLPs (Multiple

Layer Perceptrons) with shared hidden layer.

Eventually, our inference framework is shown in Figure 4.
The Encoder NN1 is the stack of CNN+MLPs, which ap-
proximates the posterior distribution q(c|C); Encoder NN2
approximates q(π|x) and is also parameterized by a MLP.
The two encoders are referred to as inference nets, and the
parameters set involved are denoted as Φ. For a given trip
T, we feed T.C and T.x into the inference nets to draw the
instances of random variable c,π; then the sampled instances
are fed into the two generative processes represented by
Generative NN1 and Generative NN2 in Figure 4, to compute
the subsequent loss. To be specific, with the generated L
samples {π(l), c(l)}Ll=1 we can estimate the ELBO using the

Algorithm 1: Learning Algorithm

Input: Training dataset: (rm, Cm,xm)Mm=1

Output: Parameter sets: Θ and Φ
1 while training is true do
2 B ← A random minibatch of data;

3 for b = 1, . . . , |B| do
4 c(b) ∼ q(c(b)|C(b));
5 π(b) ∼ q(π(b)|x(b));

6 ELBO← Calculating the ELBO using Equation 7;

7 for θ ∈ Θ ∪ Φ do
8 gθ ← ∇θELBO;

9 θ ← θ + Γ(gθ);

10 return Θ and Φ;

Monte Carlo method as

ELBO ≈ 1

L

L∑
l=1

n−1∑
i=1

log P
(
ri+1|r1:i,Wπ(l), c(l)

)

+
1

L

L∑
l=1

n−1∑
i=1

log P(x|π(l),M, S)

−KL(q(c|C)||P(c))− 2KL(q(π|x)||P(π))

(7)

where KL(·||·) denotes the KL-divergence. Equation 7 in-

volves evaluation of log-probability of two distributions,

P (ri+1|r1:i,x, c) and P(x|π,M, S), note that we ignore the

superscript (l) for clarity. The first distribution characterizes

the probability of next possible road ri+1 with a softmax
distribution, and the log-probability can be calculated as

follows,

logP (ri+1|r1:i,x, c) = log
exp(α�

j hi + β�
j Wπ + γ�

j c)∑
j′ exp(α

�
j′hi + β�

j′Wπ + γ�
j′c)

where αj is the j-th column of α. The second distribution

is the Normal distribution with mean Mπ and variance Sπ,

whose log-probability calculation is straightforward. When

the approximated posterior q(c|C) and prior p(c) are both

Gaussian distributions, the KL-divergence KL(q(c|C)||p(c))
has closed form solution,

KL(q(c|C)||p(c)) = 1

2

|c|∑
i=1

(1− μ2
i − σ2

i + log σ2
i).

To enable the gradients flowing back into the inference

nets, we need to reparameterize the random variables when

sampling. For the Gaussian random variable c, we can repa-

rameterize it as

c ∼ Normal
(
c|μ, σ2

)⇔ c = μ+ σε, ε ∼ Normal(0, 1).

As π is a discrete random variable which does not admit the

above reparameterization trick [25], [26], we instead resort to

the Gumbel-Softmax relaxation [40], [41].

The learning algorithm is presented in Algorithm 1. We

highlight that it is unnecessary to compute C for each trip

355

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on April 02,2022 at 03:49:44 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: Prediction Algorithm

Input: (Θ,Φ,T.r1,T.C,T.x)
Output: Generated route: T.r

1 r1 ← T.r1, C ← T.C, x← T.x;

2 Draw c ∼ q(c|C);
3 Draw π ∼ q(π|x);
4 for i ≥ 1 do
5 Draw ri+1 ∼ P(ri+1|r1:i,Wπ, c);
6 Draw ending indicator s ∼ Bernoulli(fs(ri+1,x));
7 if s = 0 then
8 continue;

9 else
10 break;

11 return r;

in Line 4 of Algorithm 1, as we can discretize the temporal

dimension into slots and let the trips whose start times fall into

the same slot share one C. Since we take a mini-batch of data

to compute the ELBO in Line 6 of Algorithm 1, the number

of random variables L can be set to 1 in Equation 7 and we

are still able to get low-variance gradient estimators in Line 8

of Algorithm 1. We update the parameters of the model with

gradient descent in Line 9 of Algorithm 1. We also would like

to point out that there might be multiple routes between a pair

of origin and destination in the training dataset. In such a case

the model will learn to assign these routes different likelihood

scores since all of them are used in the training stage, and in

the prediction stage only the one with the highest likelihood

score will be returned.

E. Route prediction and likelihood score

Route prediction. In route prediction, given the trained net-

work parameter sets Θ, Φ, the initial road T.r1, the set (sub-

)trajectories T.C for referring real-time traffic, and destination

T.x of a trip T, we run the complete generative process

depicted in Figure 3 to generate the most probable route for the

trip T. The prediction algorithm is presented in Algorithm 2.

Unlike the training stage, the prediction algorithm samples

latent variables c, π from the learned posterior distributions

(Line 1 − 2); we then use the sampled c, π as well as the

learned parameter W to generate the next road link ri+1 (Line

4), which is defined as

P(ri+1|r1:i,Wπ, c) = softmax
(
α�hi + β�Wπ + γ�c

)
.

Route likelihood score. Scoring the likelihood of a given route

r is similar to the route prediction except that the route is fixed.

Once we draw c and π from the posterior distribution, the like-

lihood of r can be calculated as
∏|r|−1

i=1 P(ri+1|r1:i,Wπ, c).

F. The complexity analysis

As our model is trained with SGD method, the convergence

time is linearly to the number of trajectories in the training

dataset. Given a trained model, the complexity of the route

(a) Chengdu (b) Harbin

Fig. 5. The spatial distribution of the GPS points: (a) Chengdu with size
10× 10 (km); (b) Harbin with size 28× 30 (km).

TABLE III
DATASET STATISTICS.

City Chengdu Harbin

Measures min max mean min max mean

Distance (km) 1.0 40 4.9 1.1 60 11.4
#road segments 5 85 14 5 102 24

prediction and route likelihood score both are O(|r|). We

empirically study the scalability of DeepST in Section V-D.

V. EXPERIMENTS

We evaluate the effectiveness of DeepST on two real-

world large-scale taxi trajectory datasets, against the state-of-

art baseline methods in this section.

A. Experimental setup

Dataset description. We use two real-world large-scale tra-

jectory datasets in our experiments.

• The first dataset is a publicly available dataset released

by DiDi Company1. It was collected by 33,000 taxi

cabs in a provincial capital city, Chengdu, in China. The

sampling rate is around 3 seconds. We include its first 15

days’ data, over 3 million trajectories, in our experiments.

• The second dataset contains over 2.9 million trajectories,

which were collected by 13,000 taxi during one month in

another provincial capital city, Harbin, in China. The sam-

pling time interval is around 30 seconds per GPS point,

and the accuracy of existing map-matching algorithm can

be 99% at this sampling-rate [42].

Figure 5 shows the spatial distributions of the GPS points of

the two datasets. The road network data is collected from the

OpenStreetMap [43], and the Chengdu and Harbin datasets

cover 3,185 and 12,497 road segments respectively. Figure 6

plots the distributions of travel distance and the number of

road segments covered by the trips. Table III reports the basic

statistics of the trips. The mean travel distance and number

of road segments are 4.8 (km) and 14 respectively for the

Chengdu dataset, and 11.4 (km) and 24 respectively for the

Harbin dataset.

1https://outreach.didichuxing.com/research/opendata/en

356

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on April 02,2022 at 03:49:44 UTC from IEEE Xplore. Restrictions apply.

0 20 40 60
0

2

4

6

8

·10−2

0 20 40 60 80 100
0

2

4

·10−2

0 10 20 30 40

0.1

0.2

0 20 40 60
0

2

4

6

8

·10−2

(a) (b)

(c) (d)

Fig. 6. The distributions of travel distance (km) and number of road segments:
(a)-(b) for Chengdu; (c)-(d) for Harbin.

For the Chengdu dataset, we use its first 8 days’ trajectories

as training dataset, and the next 2 days’ trajectories as vali-

dation, and the remaining ones are used for testing. For the

Harbin dataset, we use the first 18 days’ trajectories as training

dataset, and the next 3 days’ trajectories as validation, and the

remaining ones are used for testing. As a result, the dataset size

of training, validation, and testing is 1.6 (resp. 1.7), 0.4 (resp.

0.3), and 1.0 (resp. 0.9) million for Chengdu (resp. Harbin)

dataset respectively.

Baseline Methods. DeepST is evaluated against baseline

methods on two tasks: i) the most likely route prediction,

and ii) route recovery from sparse trajectories. For the task of

the most likely route prediction, we compare DeepST with

DeepST-C, RNN, MMI (the first-order Markov Model), WSP
(Weighted Shortest Path), and the state-of-art route decision

model CSSRNN [7]. For the task of route recovery from

sparse trajectories, DeepST is compared with STRS [2],

which has been shown to be superior to other route recovery

methods including HRIS [4], InferTra [1] and MPR [3].

• DeepST-C is a simplified version of DeepST without

considering the impact of real-time traffic.

• RNN is the vanilla RNN that only takes the initial road

segment as input. It is a further simplified DeepST by

ignoring the impact of both the destination and real-time

traffic.

• CSSRNN [7] is the state-of-art route decision model. It

assumes the last road segments of the trips are known

in advance and learns their representations to help model

the spatial transition.

• MMI models the spatial transition by calculating the

first-order conditional probability between adjacent road

segments from the historical trips.

• WSP always returns the shortest path from the origin

road segment to the destination road segment on the

weighted road network. The edge weight equals to the

mean travel time of corresponding road segment, and the

mean travel time is estimated using the entire historical

dataset.

• STRS [2] is the state-of-art route recovery method com-

prising of a travel time inference module and a spatial

transition inference module. We substitute its spatial

transition inference module with DeepST to demonstrate

how DeepST can be used to enhance its performance.

Platform and Parameter Setting. The platform runs Ubuntu

16.04 OS, and the modelis implemented with PyTorch 1.0,

and trained with one Tesla P100 GPU around 6 hours (resp.

10 hours) for the Chengdu (resp. Harbin) dataset. For the

Harbin dataset, the number of destination proxies K is 1000;

we partition the space into a 138 × 148 matrix with cell

size 200m×200m. For the Chengdu dataset, K is set to

500; the space is partitioned into a 87 × 98 matrix with

cell size 100m×100m. The CNN in Equation 6 comprises

of three connected convolution blocks followed by an average

pooling layer; each convolution block consists of three layers:

Conv2d → BatchNorm2d → LeakyReLU. The dimension

of real-time traffic representation |c| and the hidden size of all

MLPs used are 256, nr, nx are set as 128. We choose a three-

layer stacking GRU with hidden size 256 for all RNNs used

in the experiments. The time window size Δ = 30 (minutes),

and the temporal dimension is discretized into 20 (minutes)

size slots, two trips share the same C if their start times fall

into the same slot. The batch size |B| is 128. The model is

trained with Adam [44] for 15 epochs, and early stopping is

used on the validation dataset.

B. The most likely route prediction

We evaluate different methods on the most likely traveled

route prediction task in terms of two measurements: recall@n
and accuracy. 1) Denoting the ground truth route as r, we

first generate the most likely route r̂ using different methods.

Since the generated route r̂ can be arbitrarily long, to give a

fair comparison, we truncate r̂ by only preserving the first |r|
road segments, denoting as r̂t, and recall@n is defined as the

ratio of the length of correctly predicted road segments over

the length of ground truth r, i.e.,

recall@n =
|r ∩ r̂t|
|r| ; (8)

2) accuracy [2] is defined as the ratio of the length of correctly

predicted road segments over the maximum value of the length

of ground truth r and the length of predicted route r̂, i.e.,

accuracy =
|r ∩ r̂|

max(|r|, |r̂|) . (9)

357

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on April 02,2022 at 03:49:44 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
OVERALL PERFORMANCE.

City Chengdu Harbin

Method DeepST DeepST-C CSSRNN RNN MMI WSP DeepST DeepST-C CSSRNN RNN MMI WSP

recall@n 0.637 0.626 0.577 0.409 0.318 0.431 0.397 0.385 0.336 0.261 0.202 0.267
accuracy 0.612 0.601 0.556 0.389 0.281 0.431 0.374 0.366 0.313 0.172 0.154 0.267

(a) Chengdu

(b) Harbin

Fig. 7. The route prediction accuracy of different methods versus travel distance.

Overall Performance. Table IV shows the overall perfor-

mance of different methods on the two datasets. RNN out-

performs MMI, as it can capture the long-range dependency

in the spatial transition patterns. Both RNN and MMI are

worse than WSP in terms of recall@n and accuracy; because

without considering the destinations, the former two methods

will always make identical predictions for all trips that start

from the same initial road segment. CSSRNN performs much

better than RNN, MMI and WSP as it explicitly incorporates

the influence of destinations by learning their distributed

representations. This indicates that the destinations play a

very important role in the route decision. DeepST surpasses

CSSRNN by 10.4% (resp. 18.2%) in terms of recall@n and

by 10.1% (resp. 19.5%) in terms of accuracy on the Chengdu

(resp. Harbin) dataset, as it simultaneously models the spatial

transition sequential property, the impact of destinations and

real-time traffic in a principled way. All methods show better

performance on the Chengdu dataset than on the Harbin

dataset. This could be because the mean length of trips in

the Harbin dataset is much longer and the road network

topological structure of Harbin is more complex as shown in

Figure 5, and thus the task on the Harbin dataset is more

challenging.

Effectivenss of K-destination proxies. As shown in Table IV

even without considering the real-time traffic, DeepST-C is

able to surpass CSSRNN, which learns destination represen-

tations separately, by a fair margin. This verifies our conjecture

that learning representations for the destinations separately

cannot effectively share the statistical strength across trips

and also demonstrates the effectiveness of our proposed K-

destination proxies.

Impact of travel distance. We further study the impact

of travel distance on the performance of different methods.

To this end, we partition the trips in the test dataset by

their length (km) into 8 buckets, [1, 3),[3, 5) [5, 10), [10, 15),
[15, 20), [20, 25), [25, 30), [30,−) and calculate accuracy

of different methods on the buckets. Figure 7 shows the

accuracy of different methods over the travel distance. For

the short trips (<3km), both DeepST and CSSRNN show

much better performance than the other three methods. As

the travel distance grows, not surprisingly, the performance

of all methods drops. This is because as the travel distance

increases, the number of possible routes between the origin

and destination grows exponentially, and the task of predicting

the most likely route from them becomes more difficult.

Nevertheless, DeepST is able to surpass the baseline methods

on all buckets. As the travel distance grows up to 10km,

the performance gap between DeepST and baseline methods

becomes more evident; in particular, DeepST surpasses the

best baseline method by almost 50% in terms of accuracy on

358

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on April 02,2022 at 03:49:44 UTC from IEEE Xplore. Restrictions apply.

TABLE V
ROUTE RECOVERY ACCURACY VERSUS SAMPLING RATE.

City Chengdu Harbin

Rate (mins) 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

STRS 0.98 0.96 0.93 0.90 0.86 0.82 0.79 0.73 0.69 0.98 0.95 0.93 0.89 0.85 0.82 0.76 0.70 0.65
STRS+ 0.99 0.98 0.97 0.95 0.93 0.91 0.88 0.83 0.81 0.98 0.96 0.95 0.92 0.89 0.86 0.82 0.77 0.75

δ (%) 1.02 2.08 4.30 5.56 8.14 11.0 11.4 13.7 15.9 0.00 1.05 2.15 3.37 4.71 4.88 7.89 10.0 15.4

Fig. 8. Training time versus training data size on Harbin dataset.

TABLE VI
THE SENSITIVITY TO K ON HARBIN DATASET.

K 500 1000 1500 2000 2500 3000

recall@n 0.362 0.397 0.398 0.386 0.383 0.375
accuracy 0.339 0.374 0.373 0.368 0.362 0.353

the Chengdu dataset.

C. Evaluation on route recovery

DeepST is able to score the spatial transition likelihood

of any given route, and thus can be used to boost existing

route recovery algorithm. As mentioned in Section I, the

route recovery algorithm attempts to infer the most likely

route between two GPS points in a sparse trajectory. We use

the state-of-art sparse route recovery algorithm STRS [2] to

illustrate how DeepST can be used to enhance the existing

route recovery algorithms. As the travel time t during the

two points is often available, the problem is expressed as

argmax
r

P(r|t) [2]. Using the Bayes rule we have,

argmax
r

P(t|r)P(r), r ∈ {candiate routes}.

The first term P(t|r) measures the likelihood of a route r
with an observed travel time t, namely, the temporal inference

module; the second term P(r) scores the spatial transition

likelihood of a route r, namely, the spatial inference module.

We substitute the spatial inference module P(r) of STRS with

DeepST and the new model is referred to as STRS+. We

compare the route recovery accuracy of STRS and STRS+

to see whether DeepST is able to enhance STRS.

To this end, we randomly select 10k trajectories from the

test dataset and map these trajectories into the road network

as the ground truth with the existing map-matching algo-

rithm [42]. Then we downsample the trajectories with different

sampling rates and infer the underlying route with STRS
and STRS+. Table V presents the route recovery accuracy

(as defined in Equation 9) of STRS and STRS+ over the

sampling rate. The accuracy increase of STRS+ over STRS
is denoted by δ. The superiority of STRS+ becomes obvious

as sampling-rate increases and the trajectory becomes more

sparse. Note that the need for route recovery is more critical

when the trajectory is sparse. As the δ row shows, as the

sampling rate grows up to 9 minutes STRS+ outperforms

STRS by 15% in terms of accuracy.

D. Scalability

Figure 8 shows the scalability of DeepST on Harbin

dataset. It can be seen easily that the training time grows

linearly against the training dataset size (the same observation

has been made on Chengdu dataset).

E. Parameter sensitivity study

In this paper we propose to learn K-destination proxies

to effectively share statistical strength across trips, rather

than treating each destination separately. As reported in Sec-

tion V-B, the K-destination proxies have an important impact

on the performance. Hence, we further analyze the impact of

K on the performance in this experiment.

Table Table VI reports the recall@n and accuracy on the

Harbin dataset as we vary k. The performance is significantly

improved when K increases from 500 to 1000. This is because

a small K could not provide sufficient number of proxies

to guide the spatial transition of vehicles. Both recall@n
and accuracy drop when increasing K to 2000 and beyond.

This is because with a large K, no sufficient number of trips

is allocated to a proxy, and thus different proxies cannot

effectively share the desired statistical strength.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel solution to the problem of

predicting the most likely traveling route on the road network

between two given locations. For the first time, we unify

three key explanatory factors–past traveled route, destination

and real-time traffic–for the spatial transition modeling with

a deep probabilistic model–DeepST. DeepST achieves this

by explaining the generation of next route conditioned on the

representations of the three explanatory factors in a principled

way. The past traveled route is compressed with a RNN,

and thus could account for the long range dependency. To

enable effectively sharing statistical strength across trips, we

propose an adjoint generative process to learn representations

of K-destination proxies rather than learning the destina-

tion representations separately. The introduction of the latent

359

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on April 02,2022 at 03:49:44 UTC from IEEE Xplore. Restrictions apply.

variable c allows us to incorporate the impact of real-time

traffic by inferring its posterior distribution. Lastly, an efficient

inference algorithm is developed within the VAEs framework

to scale DeepST to large-scale datasets. The experiments are

conducted on two real-world large-scale trajectory datasets to

demonstrate the superiority of DeepST over the competitors

on two tasks: the most likely route prediction and route

recovery from sparse trajectories. Remarkably, on the Chengdu

trajectory dataset, DeepST surpasses the best competing

method by almost 50% on the most likely route prediction

task and up to 15% on the route recovery task in terms of

accuracy.

We consider the following future directions. As the past

traveled route r1:i is generated by the model itself on the

prediction stage, which may deviate from the ground truth

and lead to accumulated errors, we plan to address it by

exploring the techniques such as structure prediction. We

also would like to explore the usage of DeepST in popular

route discovery [3], anomaly trips detection [33], trajectory

representation learning [9], [45], etc.

ACKNOWLEDGEMENTS

This research was conducted in collaboration with Sin-

gapore Telecommunications Limited and supported by the

Singapore Government through the Industry Alignment Fund

- Industry Collaboration Projects Grant. The authors would

like to thank the anonymous reviewers who give thoughtful

comments and helpful suggestions.

REFERENCES

[1] P. Banerjee, S. Ranu, and S. Raghavan, “Inferring uncertain trajectories
from partial observations,” in ICDM, 2014.

[2] H. Wu, J. Mao, W. Sun, B. Zheng, H. Zhang, Z. Chen, and W. Wang,
“Probabilistic robust route recovery with spatio-temporal dynamics,” in
SIGKDD, 2016.

[3] Z. Chen, H. T. Shen, and X. Zhou, “Discovering popular routes from
trajectories,” in ICDE, 2011.

[4] K. Zheng, Y. Zheng, X. Xie, and X. Zhou, “Reducing uncertainty of
low-sampling-rate trajectories,” in ICDE, 2012.

[5] H. Su, K. Zheng, H. Wang, J. Huang, and X. Zhou, “Calibrating
trajectory data for similarity-based analysis,” in SIGMOD, 2013.

[6] A. Graves, S. Fernández, F. J. Gomez, and J. Schmidhuber, “Connec-
tionist temporal classification: labelling unsegmented sequence data with
recurrent neural networks,” in ICML, 2006.

[7] H. Wu, Z. Chen, W. Sun, B. Zheng, and W. Wang, “Modeling trajectories
with recurrent neural networks,” in IJCAI, 2017.

[8] M. Li, A. Ahmed, and A. J. Smola, “Inferring movement trajectories
from GPS snippets,” in WSDM, 2015.

[9] X. Li, K. Zhao, G. Cong, C. S. Jensen, and W. Wei, “Deep representation
learning for trajectory similarity computation,” in ICDE, 2018.

[10] A. Y. Xue, R. Zhang, Y. Zheng, X. Xie, J. Huang, and Z. Xu, “Destina-
tion prediction by sub-trajectory synthesis and privacy protection against
such prediction,” in ICDE, 2013.

[11] J. Zhao, J. Xu, R. Zhou, P. Zhao, C. Liu, and F. Zhu, “On prediction of
user destination by sub-trajectory understanding: A deep learning based
approach,” in CIKM, 2018.

[12] Q. Liu, S. Wu, L. Wang, and T. Tan, “Predicting the next location: A
recurrent model with spatial and temporal contexts,” in AAAI, 2016.

[13] J. Feng, Y. Li, C. Zhang, F. Sun, F. Meng, A. Guo, and D. Jin, “Deep-
move: Predicting human mobility with attentional recurrent networks,”
in WWW, 2018.

[14] Y. Chen, C. Long, G. Cong, and C. Li, “Context-aware deep model for
joint mobility and time prediction,” in WSDM, 2020.

[15] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
JMLR, 2003.

[16] D. M. Blei and J. D. Lafferty, “Correlated topic models,” in NIPS, 2005.
[17] P. K. Gopalan, L. Charlin, and D. Blei, “Content-based recommendations

with poisson factorization,” in NIPS, 2014.
[18] P. Gopalan, J. M. Hofman, and D. M. Blei, “Scalable recommendation

with poisson factorization,” CORR, 2013.
[19] Q. Yuan, G. Cong, and C. Lin, “COM: a generative model for group

recommendation,” in KDD, 2014.
[20] L. Hong, A. Ahmed, S. Gurumurthy, A. J. Smola, and K. Tsioutsioulik-

lis, “Discovering geographical topics in the twitter stream,” in WWW,
2012.

[21] Q. Yuan, G. Cong, Z. Ma, A. Sun, and N. Magnenat-Thalmann, “Who,
where, when and what: discover spatio-temporal topics for twitter users,”
in KDD, 2013.

[22] Y. Cheng, X. Li, Z. Li, S. Jiang, Y. Li, J. Jia, and X. Jiang, “Aircloud:
a cloud-based air-quality monitoring system for everyone,” in SenSys
2014, 2014.

[23] Y. Cheng, X. Li, Z. Li, S. Jiang, and X. Jiang, “Fine-grained air quality
monitoring based on gaussian process regression,” in ICONIP, 2014.

[24] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley, “Stochastic
variational inference,” JMLR, 2013.

[25] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” ICLR,
2013.

[26] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropa-
gation and approximate inference in deep generative models,” in ICML,
2014.

[27] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling, “Semi-
supervised learning with deep generative models,” in NIPS, 2014.

[28] K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, and D. Wierstra,
“DRAW: A recurrent neural network for image generation,” in ICML,
2015.

[29] S. M. A. Eslami, N. Heess, T. Weber, Y. Tassa, D. Szepesvari,
K. Kavukcuoglu, and G. E. Hinton, “Attend, infer, repeat: Fast scene
understanding with generative models,” in NIPS, 2016.

[30] A. van den Oord, Y. Li, I. Babuschkin, K. Simonyan, and O. Vinyals,
“Parallel wavenet: Fast high-fidelity speech synthesis,” in ICML, 2018.

[31] D. Liang, R. G. Krishnan, M. D. Hoffman, and T. Jebara, “Variational
autoencoders for collaborative filtering,” in WWW, 2018.

[32] X. Li, G. Cong, A. Sun, and Y. Cheng, “Learning travel time distribu-
tions with deep generative model,” in WWW, 2019.

[33] Y. Liu, K. Zhao, G. Cong, and Z. Bao, “Online anomalous trajectory
detection with deep generative sequence modeling,” in ICDE, 2020.

[34] A. Kucukelbir, D. Tran, R. Ranganath, A. Gelman, and D. M. Blei,
“Automatic differentiation variational inference,” JMLR, 2017.

[35] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference:
A review for statisticians,” CoRR, 2016.

[36] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind,
“Automatic differentiation in machine learning: a survey,” JMLR, 2017.

[37] A. B. Dieng, C. Wang, J. Gao, and J. W. Paisley, “Topicrnn: A recurrent
neural network with long-range semantic dependency,” in ICLR, 2017.

[38] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” CoRR, 2014.

[39] C. Andrieu, N. De Freitas, A. Doucet, and M. I. Jordan, “An introduction
to mcmc for machine learning,” Machine learning, 2003.

[40] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” CoRR, 2016.

[41] C. J. Maddison, A. Mnih, and Y. W. Teh, “The concrete distribution: A
continuous relaxation of discrete random variables,” CoRR, 2016.

[42] P. Newson and J. Krumm, “Hidden markov map matching through noise
and sparseness,” in SIGSPATIAL, 2009.

[43] [Online]. Available: https://www.openstreetmap.org
[44] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

CoRR, 2014.
[45] D. Yao, G. Cong, C. Zhang, and J. Bi, “Computing trajectory similarity

in linear time: A generic seed-guided neural metric learning approach,”
in ICDE, 2019.

360

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on April 02,2022 at 03:49:44 UTC from IEEE Xplore. Restrictions apply.

