
Deep Representation Learning for Trajectory
Similarity Computation

Xiucheng Li†, Kaiqi Zhao†, Gao Cong†, Christian S. Jensen‡, Wei Wei◦

† Nanyang Technological Univeristy, ‡ Aalborg University, ◦ Huazhong University of Science and Technology
{xli055@e., kzhao002@e., gaocong@}ntu.edu.sg, csj@cs.aau.dk, weiw@hust.edu.cn

Abstract—Trajectory similarity computation is fundamental
functionality with many applications such as animal migration
pattern studies and vehicle trajectory mining to identify popular
routes and similar drivers. While a trajectory is a continu-
ous curve in some spatial domain, e.g., 2D Euclidean space,
trajectories are often represented by point sequences. Existing
approaches that compute similarity based on point matching
suffer from the problem that they treat two different point
sequences differently even when the sequences represent the
same trajectory. This is particularly a problem when the point
sequences are non-uniform, have low sampling rates, and have
noisy points. We propose the first deep learning approach to
learning representations of trajectories that is robust to low
data quality, thus supporting accurate and efficient trajectory
similarity computation and search. Experiments show that our
method is capable of higher accuracy and is at least one order of
magnitude faster than the state-of-the-art methods for k-nearest
trajectory search.

I. INTRODUCTION

With the proliferation of GPS-enabled devices, trajectory

data is being generated at an unprecedented speed. A trajectory

is typically represented as a sequence of discrete locations,

or sample points, which describes the underlying route of a

moving object over time. Quantifying the similarity between

two trajectories is a fundamental research problem and is

a foundation for many trajectory based applications, such

as tracking migration patterns of animals [1], mining hot

routes in cities [2], trajectory clustering [3] and moving group

discovery [4], [5]. The importance of measuring trajectory

similarity has also been recognized by researchers, and a

number of classic methods have been proposed, such as

dynamic time wrapping (DTW) [6], longest common subse-

quence (LCSS) [7], edit distance with real penalty (ERP) [8],

and edit distance on real sequences (EDR) [9].

These existing methods usually try to form a pairwise

matching the sample points of two trajectories and iden-

tify the best alignment using dynamic programming. More

specifically, these pairwise point-matching methods implicitly

partition the space into cells according to a threshold ε and

match two points if they fall into the same cell. Dynamic

programming is then used to find an alignment that minimizes

a matching cost.

The pairwise point-matching methods for computing trajec-

tory similarity often suffer in three scenarios: the first is when

the sampling rates of trajectories are non-uniform. Sampling

rates often vary across devices due to different device settings,

battery constraints, and communication failures. Even for the

same device, the sampling rates may vary. For example, a taxi

driver may alter the default device sampling rate to reduce

the power consumption [10]. This may result in sampling

points alternating between sparse and dense episodes. This

poses challenges to the existing methods—if two trajectories

represent the same underlying route, but are generated at

different sampling rates, it is difficult for these methods to

identify them as similar trajectories. The second scenario

where it is challenging to align the sample points of similar

trajectories is when the sampling rate is low. For example, the

sampling rates for trajectories generated from online “check-

ins” (e.g., Foursquare, Facebook), geo-tagged tweets, geo-

tagged photo albums, and call detail records are low and

inherently non-uniform [11]. Third, the performance of these

methods may be degraded when the sample points are noisy.

Such noise may occur in GPS points when moving in urban

canyons.

Moreover, the existing methods rely on local point matching

and identify an optimal alignment using dynamic program-

ming, which leads to quadratic computational complexity

O(n2), where n is the mean length of the trajectories. We

argue that a good trajectory similarity measure should be both

accurate and scalable to large datasets.

We illustrate the problems caused by non-uniform and

low sampling rates with two examples. First, consider the

two trajectories Ta = [a1, a2, a3] and Tb = [b1, . . . , b6] in

Figure 1a that are sampled from the same underlying route

with different sampling rate. Assuming that the cell threshold

ε is 1, a pairwise point-matching method such as EDR will

match (a1, b1) and (a3, b6) while the remaining points will be

unmatched, which yields a cost (edit distance) of 5. Although

the two trajectories represent the same underlying route,

they differ when compared using the pairwise point-matching

methods. Second, to see the challenge of low sampling rates,

consider the trajectory in Figure 1b consists of sample points

[a1, . . . , a5]. Due to the low sampling rate in the middle part

of the trajectory, the pairwise point-matching methods may

falsely match the two trajectories because four point pairs are

matched.

The essential problem underlying the two examples is how

to infer the true route from the observed trajectory points in the

presence of non-uniform sampling rates, low sampling rates,

and noise. As shown in Figure 1b, it is hard to tell which

route, e.g., RA, RB is represented by the set of sample points

[a1, . . . , a5]. Recent studies [10], [12] reveal that the transiting

617

2018 IEEE 34th International Conference on Data Engineering

2375-026X/18/$31.00 ©2018 IEEE
DOI 10.1109/ICDE.2018.00062

Fig. 1: Examples of the challenge in quantifying trajectory

similarity.

patterns between certain locations are often highly skewed,

i.e., some routes are more likely to be traveled than others,

and these transition patterns, which are accumulated in the

spatiotemporal databases [10], [12], [13], hold the potential to

help quantify trajectory similarity. To harness such transition

patterns, Su et al. [13] proposed an Anchor Points based

Method (APM). APM first learns the transfer relationships

among a fixed set of spatial objects (such as Points of

Interest), called anchor points, from dense (i.e., with high

sampling rate) historical trajectories by using Hidden Markov

Models (HMM). Then sparse trajectories are calibrated to

the anchor points, such that the existing pairwise point-

matching methods, e.g., DTW, EDR, LCSS, can be employed

to compute similarities of trajectories more accurately. APM
requires the availability of a large amount of POIs and suffers

from the limitations inherent in HMM like requiring explicit

dependency assumptions to make inferences tractable [14].

Moreover, even after being trained on a historical dataset,

APM still cannot reduce the O(n2) time complexity of the

pairwise point-matching methods.

In this paper, we propose a novel approach, called t2vec
(trajectory to vector), to inferring and representing the un-

derlying route information of a trajectory based on deep

representation learning. The learned representation is designed

to be robust to non-uniform and low sampling rates, and

noisy sample points for trajectory similarity computation. This

is achieved by taking advantage of the archived historical

trajectory data and a new deep learning framework. With the

learned representation, it only takes a linear time O(n + |v|)
(|v| is the length of vector v) to compute the similarity

between two trajectories, while all the existing approaches

take O(n2) time. To the best of our knowledge, this is the

first deep learning based solution for computing the similarity

of trajectories.

To learn trajectory representations, it is natural to consider

the use of Recurrent Neural Networks (RNNs), which are

able to embed a sequence into a vector. However, simply

applying RNNs to embed trajectories is impractical. First,

the representation obtained using RNNs is unable to reveal

the most likely true route of a trajectory when uncertainty

arises due to low sampling rates or noise. Second, the existing

loss functions used to train RNNs fail to consider spatial

proximity, which is inherent in spatial data. Thus, they can-

not guide the model to learn consistent representations for

trajectories generated by the same route. To overcome the

first challenge, we propose a sequence-to-sequence (seq2seq)

based model to maximize the probability of recovering the

true route of trajectory. To contend with the second challenge,

we design a spatial proximity aware loss function and a

cell pretraining algorithm that encourage the model to learn

consistent representations for trajectories generated from the

same route. We also propose an approximate loss function

using Noise Contrastive Estimation [15] to boost the training

speed. Overall, the paper makes the following contributions:

• We propose a seq2seq-based model to learn trajectory

representations, for the fundamental research problem of

trajectory similarity computation. The trajectory similar-

ity based on the learned representations is robust to non-

uniform, low sampling rates and noisy sample points.

Our solution computes the similarity of two trajectories

in linear time.

• For the purpose of learning consistent representations, we

develop a new spatial proximity aware loss function and

a cell representation learning approach that incorporate

the spatial proximity into the deep learning model. To

further speed up training, we propose an approximate loss

function based on Noise Contrastive Estimation.

• We conduct extensive experiments on two real-world

trajectory datasets that offer evidence that the proposed

method is capable of outperforming the existing trajectory

similarity measure techniques in terms of both accuracy

and efficiency.

The rest of the paper is organized as follows. In Section II,

we discuss the related work. The problem definition and

preliminaries are given in Section III. Section IV presents the

details of our method. The experimental results are presented

in Section V. Finally, we summarize the paper and discuss

future research directions in Section VI.

II. RELATED WORK

We briefly review the related work on trajectory similarity

computation and deep representation learning.

A. Trajectory similarity computation

Computing the similarity between two trajectories is fun-

damental functionality in many spatiotemporal data analysis

tasks. Not surprisingly, the problem of accurately and effi-

ciently measuring the similarity of trajectories has been studied

extensively [6]–[9]. DTW [6] was a first attempt at tackling

the local time shift issue for computing trajectory similarity.

ERP [8], EDR [9], DISSIM [16], and the model-driven

approach MA [17] were developed to further improve the

ability of capturing the spatial semantics in trajectories. Wang

et al. [18] studied the effectiveness of these similarity methods

according to their robustness to noise, varying sampling rates,

and shifting. All of these methods focus on identifying the

optimal alignment based on sample point matching, and thus

they are inherently sensitive to variation in the sampling rates.

To solve this issue, APM [13] and EDwP [11] are proposed.

618

As discussed in the introduction, APM solves this issue by

learning transition patterns of anchor points from historical

trajectories. To compute the similarity of two trajectories,

EDwP computes the cheapest set of replacement and insertion

operations using linear interpolation to make them identical.

Our solution is very different from APM and EDwP in that

we aim to learn a vector that represents a trajectory and

to then compute similarity using the new representation. In

experiments, we compare with EDwP and not APM for two

reasons: i) The implementation of APM partly requires an

abundance of POIs which are not available in our datasets; ii)

the more recent EDwP has been reported to perform better

in similarity analysis of trajectories with non-uniform and low

sampling rates. Our work is also related to the inference of

hidden routes from partial observations. Zheng et al. [10] first

studied the problem, and Banerjee et al. [12] further explored

it using Bayesian posterior inference to estimate the top-k
most likely routes. Our work differs from these two in that

our ultimate goal is to learn representations of the trajectories

rather than solely inferring the most possible routes.

Moreover, all the aforementioned existing measures for

trajectory similarity are based on the dynamic programming

technique to identify the optimal alignment which leads to

O(n2) computation complexity. Given the complexity, it will

be computationally expensive if we want to apply these

similarity measures to cluster a large trajectory database. In

contrast, our method has a linear time complexity O(n+ |v|)
to measure the similarity of two trajectories, which is able to

support analysis on big trajectory data, such as clustering tra-

jectories. We can also offer near-instantaneous response times

that support interactive use, while the competition cannot.

B. Representation learning

Learning representations for specific tasks has been a

longstanding open problem in machine learning. Recently,

inspired by the success of word2vec [19], the idea of learning

general representation has been extended to paragraphs [20],

networks [21], [22], etc. To capture the sequential order infor-

mation emerging in the sequence processing tasks, Recurrent

Neural Networks (RNNs) based encoder-decoder models have

been developed, such as sequence to sequence learning [23]–

[25], and skip-thought vectors [26]. Our model is based on

the general sequence encoder-decoder framework. However,

these existing sequence encoder-decoder models were initially

proposed for natural language processing to deal with discrete

tokens (i.e., words, punctuations). Our scenarios is different in

that the tokens inherently share the spatial proximity relation.

Our model therefore differs from the above sequence encoder-

decoders in two ways: i) we design a spatial proximity aware

loss function and a cell representation pretraining approach to

incorporate the spatial proximity into the deep representation

model, and ii) we also propose an approximate loss function

based on Noise Contrastive Estimation to accelerate the train-

ing.

III. DEFINITIONS AND PRELIMINARIES

In this section, we present definitions and preliminaries

essential to understand the problem addressed and the se-

quence encoder-decoder model used in our solution. For ease

of reference, frequently used notation is given in Table I.

TABLE I: Frequently used notation.

Symbol Definition
T (or Ta) Trajectory
R Underlying route
x A sequence of tokens
xt Token at position t
x1:t A sequence of tokens from position 1 to t
|T | (or |x|) Length of T (or x)
v Embedded vector
ht Hidden state (vector)
V Vocabulary
r1 (r2) Dropping rate (distorting rate)

A. Definitions

We next define the notions of underlying route and trajec-
tory.

Definition 1. (UNDERLYING ROUTE) An underlying route
of a moving object is a continuous spatial curve (e.g., in the
longitude-latitude domain), indicating the exact path taken by
the object.

The underlying route is only a theoretical concept as lo-

cation acquisition techniques do not record moving locations

continuously.

Definition 2. (TRAJECTORY) A trajectory T is a sequence of
sample points from the underlying route of a moving object.

In practice, an underlying route can be represented by enor-

mous trajectories, depending on the specifics of the moving

objects and the sampling strategies used. Each generated tra-

jectory can be considered as a representative of an underlying

route. In the rest of this paper, a trajectory is also referred to

as trip, depending on the context.

Problem statement. Given a collection of historical trajec-

tories, we aim to learn a representation v ∈ R
n (n is the

dimension of a Euclidean space) for each trajectory T such

that the representation can reflect the underlying route of the

trajectory for computing trajectory similarity. The similarity of

two trajectories based on the learned representations must be

robust to non-uniform, low sampling rates and noisy sample

points.

Our proposed method for solving the problem is based on

deep representation learning techniques. Specifically, we adapt

the sequence encoder-decoder framework for the first time to

compute trajectory similarity (the motivation for adapting that

particular framework is explained in Section IV-A).

B. Preliminaries of sequence encoder-decoders

We briefly present the sequence encoder-decoder frame-

work. Consider two sequences x = 〈xt〉|x|t=1 and y = 〈yt〉|y|t=1

619

where each xt and yt denotes token (e.g., a word or punc-

tuation mark in a natural language sentence) and |x| and

|y| represent lengths. We next illustrate how to build the

conditional probability P(y|x) in the framework.

The sequence encoder-decoder model has two main

components—an encoder and a decoder, as depicted in Fig-

ure 2. The encoder is used to encode sequence x into a fixed-

dimensional vector v that preserves the sequential information

in x, and then the decoder decodes out sequence y conditioned

on the encoded representation v. Since Recurrent Neural

Networks (RNNs) [27], [28] accept input in the form of real-

valued vectors, a token embedding layer is added to embed

the discrete token in a vector. The token embedding layer is

form of a feed forward neural network [29].

Fig. 2: Sequence encoder-decoder model. The model reads

the sequence x and outputs the sequence y, where EOS is

a special token indicating the end of a sequence and v is the

representation of x. The hidden state ht captures the sequential

information in [x, y1, y2, . . . , yt−1].

To see how the model builds the probability P(y|x), we first

rewrite it by the chain rule, i.e.,

P(y1, . . . , y|y||x1, . . . , x|x|) = P(y1|x)
|y|∏
t=2

P(yt|y1:t−1, x),

where y1:t−1 represents y1, y2, . . . , yt−1. The encoder reads

and encodes sequence x into the fixed-dimensional vector v.

Since v encodes the sequential information in x, we have

P(yt|y1:t−1, x) = P(yt|y1:t−1, v)

The decoder builds the probability P(yt|y1:t−1, v) at every

position t by squashing v and y1:t−1 into the hidden state

ht, which is simply a forward computation. More specifically,

ht is computed from the output of the previous position ht−1

and token yt−1, as follows:

ht =

{
f(v,EOS) t = 1

f(ht−1, yt−1) t ≥ 2,
(1)

where f(·, ·) indicates the RNNs forward computation and

EOS is the special token that signals the end of a sequence,

which is necessary in order to support variable-length se-

quences [24].

Note that we recursively compute ht = f(ht−1, yt−1): ht−1

encodes the information of v along with y1, y2, . . . , yt−2, and

yt−1 is further encoded into ht along with y1, y2, . . . , yt−2.

Finally, P(yt|y1:t−1, v) can be modeled as follows.

P(yt = u|y1:t−1, v) = P(yt = u|ht) =
exp(W�

u ht)∑
v∈V exp(W�

v ht)

Here, W� is the projection matrix that projects ht from the

hidden state space into the vocabulary space, W�
u denotes its

u-th row, and V is the vocabulary.

IV. PROPOSED METHOD

We first present the underlying motivation for the proposed

method and the challenges to be addressed when developing

it. Then we describe how to handle non-uniform and low

sampling rates, as well as noisy sample points in our model.

In Section IV-C, we discuss the details of the proposed spatial

proximity aware loss function and cell representation learning

approach in order to encourage the sequence encoder-decoder

to learn consistent representations for trajectories. We discuss

the time complexity of using our model to compute trajectory

similarity in Section IV-D.

A. Motivations and challenges

Recent work [10], [12] reveals that the transition patterns

between road network locations are often highly skewed.

This implies that some routes have higher probability of

being traveled than others. Rich movement patterns have been

archived in spatiotemporal databases (we have 20 different

data sources at Daisy1 and different data sources have different

sampling rates), which then afford us the opportunity to learn

representations for trajectories that overcome the shortcomings

of the point-matching methods.

Recall that we intend to learn a representation v ∈ R
n for a

trajectory T that is robust to non-uniform, low sampling rates

and noisy sample points when using it to compute trajectory

similarity. To learn a representation for sequential data, it is

very natural to consider RNNs [27], [28] since these have

been shown successful at handling sequences in natural lan-

guage processing, including generating sequences [30], neural

machine translation [24], [25] and paraphrases detection [26].

However, by simply applying RNNs we will not be able to

accomplish our goal, which is due to two difficulties: First,

the trajectory representation obtained using RNNs is unable

to represent the most likely underlying route that generates

the trajectory when uncertainty arises due to low sampling

rates and noise. Second the loss functions employed in natural

language processing do not consider the spatial proximity

information inherent in the spatial data, so simply adapting

existing loss functions to our scenario will fail to guide RNNs

to learn consistent representations for trajectories that share

the same underlying route.

To tackle the first difficulty, the desired model must be able

to maximize the conditional probability P(R|T), i.e., finding

the most likely underlying route R for the given trajectory

T . However, the underlying route R is often not available in

1http://www.daisy.aau.dk/

620

practice. To circumvent this, we exploit two observations: i)

both a non-uniform, relatively low sampling rate trajectory,

denoted by Ta, and a relatively high sampling rate trajectory,

denoted by Tb, are paraphrases of their underlying route,

and ii) a relatively high sampling rate trajectory Tb is closer

to their true underlying route R than is Ta, and it has

lower uncertainty. These observations cause us to replace

the objective of maximizing P(R|Ta) into the objective of

maximizing P(Tb|Ta) and to build the model using a sequence

encoder-decoder framework. The encoder embeds Ta into

its representation v, and the decoder will try to recover its

counterpart Tb with relatively high sampling rate conditioned

on v by optimizing its parameters. When the model is trained

using the real-world trajectories, the transition patterns hidden

in historical data will be learned by the model. To overcome

the second difficulty, we propose a new spatial proximity

aware loss function and cell (token) representation pre-training

method to incorporate spatial proximity into the model. To

accelerate the training, we develop an approximate spatial

proximity aware loss function based on Noise Contrastive

Estimation [15].

B. Handling varying sampling rates and noise

Based on the above analysis, given a collection of sampling

rate trajectories {T (i)
b }Ni=1 (where N is the cardinality of the

collection), we create a collection of pairs (Ta, Tb), where Tb is

an original trajectory and Ta is obtained by randomly dropping

sample points from Tb with dropping rate r1. By doing so,

each down-sampled Ta is also non-uniformly sampled and

thus represents a real-life trajectory with non-uniform and low

sampling rate. The start and end points of Tb are preserved

in Ta to avoid changing the underlying route of the down-

sampled trajectory. To illustrate, consider generating the sub-

trajectories for Tb in Figure 1b, we randomly drop points in

b2:5, i.e., all generated sub-trajectories will start with b1 and

end with b6. After the generating procedure, we maximize

the joint probability of all (Ta, Tb) pairs with the sequence

encoder-decoder model:

maximize

N∏
i=1

P(T
(i)
b |T (i)

a) (2)

In the sequence encoder-decoder model, the inputs should

be sequences of discrete tokens. Therefore, we need to find

a way to map the continuous coordinates (i.e., longitude,

latitude) into discrete tokens (analogous to words in natural

language). We adopt a simple strategy that is used commonly

in spatial data analytics, i.e., we partition the space into cells

of equal size [31] and treat each cell as a token. All sample

points falling into the same cell are then mapped to the same

token.

The above helps mainly to overcome the problems of non-

uniform and low sampling rates. However, the realistic trajec-

tories also may have noisy sample points. For example, when

a GPS receiver is in an urban canyon and satellite visibility

is poor, inaccurate locations may result. To eliminate the

influence of noisy sample points, we only keep the cells which

are hit by more than δ sample points. These cells are referred

to as hot cells and form the final vocabulary V (in the rest of

paper, we will interchangeably use token and cell to refer to

an element V). Sample points are represented by their nearest

hot cell. To make the learned representations more robust to

the noisy data, we further distort each downsampled Ta based

on a distorting rate r2 to create the distorted variants, i.e., we

randomly sample a fraction of the points (size indicated by r2)

that are then distorted. Point (px, py) is distorted by adding a

Gaussian noise with a radius 30 (meters) as follows,

px = px + 30 · dx, dx ∼ Gaussian(0, 1)

py = py + 30 · dy, dy ∼ Gaussian(0, 1)
(3)

We can optimize the same objective as shown in Equation 2

where Ta is both downsampled and distorted.

C. Learning consistent representations

The original sequence encoder-decoder does not model the

spatial correlation between cells, which is important in order

to learn consistent representations for trajectories drawn from

the same route. To address this, we propose a novel spatial

proximity aware loss function (in Section IV-C1) and a new

cell representation pretraining approach that takes into account

spatial proximity (in Section IV-C2) To further improve the

training, an approximate loss function based on Noise Con-

trastive Estimation [15] is also proposed (in Section IV-C1).

1) Spatial proximity aware loss function: To train a se-

quence encoder-decoder, we need a loss function to character-

ize the optimization objective. This is important, as differences

in the loss function would encourage the model to learn

different representations [32]. When the sequence encoder-

decoder is employed in natural language processing, e.g.,

in neural machine translation [23], [24], [33], Negative Log

Likelihood (NLL) loss is chosen to minimize the negative log

likelihood function for tokens in the target sentence as follows,

L1 = − log
∏
t

P(yt|y1:t−1, x) (4)

However, simply adopting this loss function is problematic

for the spatiotemporal data. Recall that our original purpose

is to maximize P(R|Ta). Due to the unavailability of the

underlying route R, we use the original trajectory Tb to

represent R and instead maximize P(Tb|Ta). In practice, even

original trajectories may not cover their underlying route R
well. For example, Figure 3 has two trajectories Tb and Tb′

generated from the same route R (after transforming the

coordinates to cells, their corresponding sequences are y and

y′, respectively). The sample points of the two trajectories

interleave the cells in our space partitioning. Let Ta and Ta′

denote the sub-trajectories of Tb and Tb′ , respectively. Ideally,

the representations learned for Ta and Ta′ should be similar, as

they are both generated from route R. The NLL loss function

in Equation 4 differentiates Tb and T ′
b as two identical target

trajectories, so that it cannot discover the similarity between

Ta and T ′
a.

621

Fig. 3: Tb and Tb′ are two trajectories generated from an

underlying route R. After transforming the coordinates to

cells, their corresponding sequences are y, y′ respectively. The

sample points in the two trajectories interleave on the route.

The reason is that the loss function in Equation 4 penalizes

the output cells with equal weight. Intuitively, the output cells

that are closer to the target should be more acceptable than

those that are far way. For example, if the decoded target cell

is y3 (in Figure 3), the loss function penalizes the outputs y′3
and y1 equally. This is not a good penalty strategy. Since y′3
is spatially closer to y3, it is more acceptable for the decoder

to output y′3 rather than to output y1.

The intuition behind the proposed spatial proximity aware

loss function is that we assign a weight for each cell when we

try to decode a target cell yt from the decoder. The weight

of cell u ∈ V is inversely proportional to its spatial distance

to the target cell yt, so the closer the cell is to yt the larger

weight we will assign to it. The spatial proximity aware loss

is given as follows.

L2 = −
|y|∑
t=1

∑
u∈V

wuyt log
exp(W�

u ht)∑
v∈V exp(W�

v ht)
, (5)

where

wuyt =
exp (−||u− yt||2/θ)∑
v∈V exp(−||v − yt||2/θ)

is the spatial proximity weight for cell u when decoding target

yt, and ||u − yt||2 denotes the Euclidean distance between

the centroid coordinates of the cells. Here θ > 0 is a spatial

distance scale parameter. A small θ penalizes far away cells

heavily, and when θ → 0, the loss function will be reduced to

the NLL loss function in Equation 4. The exponential kernel

function is chosen as it decays fast at the tail, which would

encourage the model to learn to output cells near the target

cell yt.
Although the spatial proximity aware loss function in Equa-

tion 5 helps us learn consistent representations for trajectories

generated from the same routes, it requires us to sum over the

entire vocabulary twice every time we decode a target yt:

∑
u∈V wuyt

(
W�

u ht −
∑
v∈V

exp(W�
v ht)

)
︸ ︷︷ ︸

log probability

(6)

Thus, the cost of decoding a trajectory y is O(|y|×|V |). When

the vocabulary size |V | is large, it will be expensive to train

the model.

Approximate spatial proximity aware loss function. To

reduce the training cost, we design an approximate spatial

proximity aware loss function based on the following two

observations: i) most of wuyt
are very small except cells that

are close to target cell yt; ii) it is not necessary to calculate

the exact value of the log probability in Equation 6, as long

as we can encourage the decoder to assign the probability

to the cells that are close to the target cell. Based on the first

observation, we can use just the K nearest cells of yt, denoted

as NK(yt), instead of using the whole vocabulary in the first

sum in Equation 6. Based on the second observation, we

can use Noise Contrastive Estimation (NCE) [15] to compute

the log probability in Equation 6. NCE was developed by

Gutmann et al. [15] to differentiate data from noise by training

a logistic regression. We can use it to approximately maximize

the log probability of cells in NK(yt) by randomly sampling

a small set of cells from V −NK(yt) as noise data, denoted as

O(yt). In our experiments, we find that 500 randomly sampled

noise cells can give a very good approximation, and thus

the time complexity is reduced from O(|y| × |V |) to O(|y|).
In summary, our approximate spatial proximity aware loss is

given as follows.

L3 = −
|y|∑
t=1

∑
u∈NK(yt)

wuyt

(
W�

u ht −
∑

v∈NO
exp(W�

v ht)

)
,

(7)

where

wuyt =
exp (−||u− yt||2/θ)∑

v∈NK(yt)
exp(−||v − yt||2/θ)

NO = NK(yt) ∪ O(yt)

2) Pre-training cell representations: To further guarantee

that the trajectories generated by the same route have close

representations in the latent space, we propose a cell rep-

resentation learning algorithm to pre-train the cells in the

embedding layer of the model. The intuition is that the encoder

squeezes a sequence of cells covered by the trajectory to get

the trajectory representation v, and thus the representations of

two trajectories along the same route will be close in their

latent space if we can learn similar representations for cells

that are spatially close. For example, if each yi has a similar

cell representation as that of y′i in Figure 3, the trajectory

representations of Ta and T ′
a will be close in the latent space

since they are encoded by the same encoder.
Two straightforward representations exist for the cells, the

one-hot representation [32] and the centroid coordinates of

the cells (GPS coordinates). However, both representations

have limitations. The one-hot representation loses the spatial

distance relation of the cells as all the cells are treated

independently. As a result, the proposed model may take

more training time to discover spatial relations in the cell

embedding layer. It would help accelerate the training if

the input cell representations provide the prior knowledge

of spatial proximity. Next, the centroid coordinates of the

cells naturally encode the spatial proximity for the cells but

restrict the representations in a two-dimensional space, which

make it difficult for the loss function to further optimize the

representations in their parameter space.
Based on the above analysis, we propose to feed the

distributed cell representations, which capture the cell spatial

622

proximity relation, to the embedding layer of the model. We

achieve this by borrowing the key idea from skip-grams [19].

The intuition behind skip-grams is that words with similar

meanings tend to appear together in the same contexts, and if

we use the representation of a word to predict its surrounding

words then we can embed the words into a Euclidean space in

a way that captures the semantic distances between the words.

Towards this end, we create the context for a given cell u ∈ V
by randomly sampling its neighbor u′ ∈ NK(u) (we also only

consider its K-nearest neighbors) according to the following

cell sampling distribution:

P(u′) =
exp(−||u′ − u||2/θ)∑

v∈NK(u) exp(−||v − u||2/θ) (8)

The cell sampling distribution is similar to the spatial proxim-

ity weight in Equation 5. Note that their θ values do not have to

be equal. For each cell u ∈ V , the cell sampling distribution

tends to sample the cells that are spatially close to it as its

context. In this fashion, we are able to create the context for

each cell and to learn the cell representation efficiently with

the negative sampling algorithm [34] by maximizing the log

probability of observing the neighboring cells in its context,

C(u), given cell u:

maximize
∑
u∈V

logP(C(u)|g(u)) (9)

Here, g(u) denotes the representation of cell u. The learned

cell representations will be used to initialize the embedding

layer in the model, but we do not fix their values. Thus

they can still be further optimized by the loss function in

Equation 7. The learning algorithm is shown in Algorithm 1.

Algorithm 1: CellLearning (CL)

Input: The dimension of the learned representations d, context window
size l

Output: The learned cell representations g(u)
1 for u ∈ V do
2 C(u) ← ∅ ;
3 while |C(u)| < l do
4 u′ ∼ P(u′) according to Equation 8;
5 C(u) ← C(u) ∪ u′;

6 Optimizing the loss function in Equation 9;
7 return g(u) for u ∈ V ;

D. Complexity of similarity computation

Our model can be trained completely unsupervised with the

SGD (Stochastic Gradient Descent) algorithm. Given a trained

model, it only requires O(n) time (as shown in Equation 1,

where f(·, ·) indicates the encoder-RNN and h0 is a zero

vector) to embed a trajectory into a vector which is fast and

can be done using GPUs. Then we can use the Euclidean

distance of the two vectors to measure the similarity of two

trajectories, with a time complexity of O(|v|). Therefore the

time complexity of measuring the similarity between two

trajectories is O(n+ |v|).

TABLE II: Dataset statistics.

Dataset #Points #Trips Mean length
Porto 74,269,739 1,233,766 60

Harbin 184,809,109 1,527,348 121

V. EXPERIMENTS

We study the effectiveness and scalability of our proposed

method on two real-world taxi datasets. The experimental

setup and parameter settings are presented in Sections V-A

and V-B respectively. Then we evaluate the accuracy of differ-

ent methods using most similar search, cross-similarity, and k-

nn queries in Sections V-C1 to V-C3, respectively. Scalability

is covered in Section V-D. The proposed loss functions and

cell learning approach are evaluated in Section V-E. We end by

evaluating the impact of the cell size, the hidden state size of

the encoder, and the training data size on the learned trajectory

representations in Sections V-F and V-G.

A. Experimental setup

Dataset. The experiments are conducted on two real-world

taxi datasets. The first dataset2 is collected in the city of Porto,

Portugal over 19 months and contains 1.7 million trajectories.

Each taxi reports its location at 15 second intervals. We remove

trajectories with length less than 30, which yields 1.2 million

trajectories. The second dataset contains trajectories collected

from 13,000 taxis over 8 months in Harbin, China. We select

trajectories with length at least 30 and time gaps between con-

secutive sample points being less than 20 second. This yields

1.5 million trajectories. We partition both sets into training

data and testing data based on the starting timestamp of the

trajectories. For both sets, the first 0.8 million trajectories are

used for training, and the remaining trajectories are used for

testing. Statistics of the two sets are shown in Table II.

To create the training trajectory pairs as described in Sec-

tion IV-A, we perform two kinds of transformations, down-

sampling and distortion. For each trajectory Tb we first down-

sample it with a dropping rate r1 varied in [0, 0.2, 0.4, 0.6]
to create its 4 sub-trajectories Ta. And we further distort each

down-sampled Ta based on a distorting rate r2 (as described in

Equation 3) varied in [0, 0.2, 0.4, 0.6]. As a result, 16 training

pairs (Ta, Tb) are created for each original trajectory Tb.

Benchmarking Methods: We compare t2vec with three

other methods for measuring the trajectory similarity, namely

EDR [9], LCSS [7], and EDwP [11]. LCSS and EDR are

two of the most widely adopted trajectory similarity measures

in spatiotemporal data analyses. EDwP is the state-of-the-art

method for measuring similarity of non-uniform and low sam-

pling rate trajectories. We do not include DTW as it has been

demonstrated to be consistently inferior to EDR in trajectory

similarity computation [11]. Moreover, we compare with the

vanilla RNN (vRNN) [35] and the common set representation

(CMS). The vanilla RNN serves as an embedding baseline

method, and the common set representation is used to measure

2http://www.geolink.pt/ecmlpkdd2015-challenge

623

the similarity of two trajectories based on their common set

after they have been mapped to cells. We discuss the reasons

for comparing with the two baselines in Section V-C1.

Evaluation Platform: Our method3 is implemented in Ju-

lia [36] and PyTorch, and trained using a Tesla K40 GPU.

The baseline methods are written in Java4. The platform runs

the Ubuntu 14.04 operating system with an Intel Xeon E5-

1620 CPU.

B. Parameter settings and training details

Cell size: The default cell size in the experiments is 100

meters. After removing the cells hit by less than 50 points

(i.e., δ = 50), we get 18,866 hot cells for the Porto dataset

and 22,171 hot cells for the Harbin dataset.

RNN units: In our model, GRU [35] with 3 layers is chosen

as the computational unit because it has been shown to be as

good as LSTM [37] in sequence modeling tasks, while it is

much more efficient to compute [35].

Gradient clipping: Although RNNs tend not suffer from

gradient vanishing problem, they may have exploding gra-

dients [38]. Hence, we clip the gradients by enforcing a

maximum gradient norm constraint [30], which is set to 5

in our experiments.

Terminating condition: We randomly select 10,000 trajecto-

ries as a validation dataset from the test dataset (the selected

trajectories are removed from the test dataset). The training

is terminated if the loss in the validation dataset does not

decrease in 20,000 successive iterations.

In addition, both the hidden layer size in GRU and the

dimension of the learned cell representation d are set to 256,

the context window size l in the cell learning algorithm is set

to 10. For simplicity, θ in Equations 5 and 8 is fixed at 100

(meters). Parameter K and the size of O(yt) in Section IV-C

are set to 20 and 500, respectively. We adopt Adam stochastic

gradient descent [39] with an initial learning rate of 0.001 to

train the model. We evaluate the training time in Sections V-E

and V-F.

To set the parameter ε of the baseline methods EDR and

LCSS, we adopt the strategies described in the studies [7], [9]

proposing the two methods; the parameters of vRNN are set

to be the same as our encoder-RNN except that it is trained by

predicting the next cell based on the cells that it has already

seen.

C. Performance evaluation

The lack of ground-truth dataset makes it a challenging

problem to evaluate the accuracy of trajectory similarity. Two

recent studies [11], [13] propose to evaluate the accuracy of

methods for computing trajectory similarity using the self-

similarity and cross-similarity comparisons and assessments

of the precision of finding the k-nearest neighbors. Currently,

this is the best evaluation methodology, and we adopt this

methodology in the experiments. In addition, we also design

a new experiment, called most similar search (which can be

3https://github.com/boathit/research-papers/tree/master/t2vec
4The authors of EDwP give us access to their compiled jar file.

TABLE III: Mean rank versus the database size using the Porto

and Harbin datasets.

Porto
DB size 20k 40k 60k 80k 100k

EDR 25.73 50.70 76.07 104.01 130.98
LCSS 31.95 59.20 95.85 130.40 150.67
CMS 62.18 112.84 173.34 231.55 291.26
vRNN 32.73 61.24 100.20 135.22 163.10
EDwP 6.78 11.48 16.08 23.02 28.90
t2vec 2.30 3.45 4.73 6.35 7.67

Harbin
DB size 20k 40k 60k 80k 100k

EDR 30.37 57.90 85.72 118.02 149.01
LCSS 35.49 63.20 105.46 137.20 160.67
CMS 97.41 141.04 209.37 271.45 316.81
vRNN 34.30 65.24 103.05 140.25 162.10
EDwP 12.80 20.64 29.10 35.20 45.30
t2vec 5.10 7.50 9.62 12.51 15.70

considered as a sort of self-similarity measure) to evaluate the

effectiveness of different methods, in Section V-C1.

One of the most important tasks in trajectory analysis is

similar trajectory search. To overcome the lack of ground-

truth, we design three experiments to evaluate the performance

using different methods for this task.

We randomly choose 10,000 trajectories from the test

dataset, denoted as Q, and then we choose another m (a

parameter to be evaluated) trajectories, denoted by P . For

each trajectory Tb ∈ Q, we create two sub-trajectories from

it by alternately taking points from it, denoted as Ta and Ta′

(see Figure 4), and we use them to construct two datasets

DQ = {Ta} and D′
Q = {Ta′}. We perform the same

transformation for the trajectories in P to get DP and D′
P .

Then for each query Ta ∈ DQ, we retrieve its top-k most

similar trajectories from database D′
Q ∪D′

P and calculate the

rank of Ta′ . Ideally Ta′ is ranked at the top since it is generated

from the same original trajectory as Ta. The reason for using

D′
Q ∪D′

P as the database instead of D′
Q ∪P is that the query

trajectory will have similar mean length as the trajectories in

the database5. Moreover, to evaluate whether RNN encodes

two sequences of cells into two similar vectors simply because

the two sequences have the same starting or ending cells, or

just because they have sufficient numbers of common cells,

we include another two baselines, vRNN and CMS. If the

aforementioned reason is true, vRNN and CMS should also

give good performance in the task.

Fig. 4: Creating two sub-trajectories Ta and Ta′ from trajectory

Tb by alternately taking points from it.

1) Most similar trajectory search: Experiment 1 We first

study the performance of the different methods when we

increase m, the size of P , from 20,000 to 100,000. Table III

5Similar results were found using database D′
Q ∪ P .

624

TABLE IV: Mean rank versus the down-sampling rate r1 using

the Porto and Harbin datasets.

Porto
r1 0.2 0.3 0.4 0.5 0.6

EDR 160.03 208.01 235.60 285.10 340.68
LCSS 168.02 173.45 187.60 188.40 192.20
CMS 296.56 317.70 430.00 387.90 446.50
vRNN 173.45 179.58 190.24 200.13 210.20
EDwP 29.10 30.50 31.64 39.67 61.72
t2vec 7.88 8.00 9.48 12.70 15.99

Harbin
r1 0.2 0.3 0.4 0.5 0.6

EDR 183.02 231.01 265.50 316.30 380.86
LCSS 178.80 193.50 195.30 208.40 210.30
CMS 330.70 376.20 450.04 460.90 476.50
vRNN 176.45 184.83 191.42 203.13 250.20
EDwP 47.32 49.80 51.39 57.91 81.81
t2vec 15.92 17.21 19.87 21.74 30.95

TABLE V: Mean rank versus the distorting rate r2 using the

Porto and Harbin datasets.

Porto
r2 0.2 0.3 0.4 0.5 0.6

EDR 132.40 133.10 135.60 134.90 139.10
LCSS 210.30 215.70 214.60 215.05 228.03
CMS 296.16 317.27 337.31 327.90 346.05
vRNN 212.16 220 217.30 220.61 235.70
EDwP 30.10 30.16 32.63 31.23 33.53
t2vec 9.10 9.20 9.52 9.49 10.80

Harbin
r2 0.2 0.3 0.4 0.5 0.6

EDR 142.44 143.69 145.67 146.90 152.11
LCSS 230.32 235.93 244.65 245.15 251.60
CMS 306.62 327.87 329.31 339.34 349.51
vRNN 222.41 227.20 236.37 250.62 245.75
EDwP 46.41 47.97 49.32 50.68 51.10
t2vec 16.43 17.28 17.52 18.51 21.08

shows the mean rank of the 10,000 queries in DQ using

different methods when using the Porto and Harbin datasets.

As the size of P grows, the performance of all methods

degrades. CMS performs the worst, as it ignores the sequential

information in the trajectories. vRNN and LCSS demonstrate

similar performance, and this is reasonable because both

methods can be considered as enhanced version of CMS that

preserve the order of the points in the sequence. EDwP per-

forms the best among all baseline methods. t2vec outperforms

the other methods significantly, and even when the size of

database P reaches 100,000, it gives a low mean rank for the

queries.

Experiment 2 Next, we study the impact of down-sampling on

the methods with a fixed database size |D′
Q∪D′

P | = 100, 000.

We vary the dropping rate r1 from 0.2 to 0.6 and down-

sample the trajectories in both DQ and D′
Q∪D′

P based on the

dropping rate. Table IV depicts the mean rank for the queries in

DQ of the different methods using Porto and Harbin datasets.

EDR degrades quickly when we increase the dropping rate r1,

while LCSS and vRNN are not very sensitive to variations

in r1. EDwP shows relatively consistent performance when

TABLE VI: Mean cross-distance deviation for varying drop-

ping rate r1 and distorting rate r2.

r1 0.1 0.2 0.4 0.6
t2vec 0.057 0.010 0.016 0.025
EDwP 0.059 0.010 0.024 0.039
EDR 0.130 0.190 0.380 0.580

r2 0.1 0.2 0.4 0.6
t2vec 0.010 0.013 0.018 0.021
EDwP 0.010 0.018 0.031 0.038
EDR 0.012 0.019 0.033 0.039

the down-sampling rate r1 varies between 0.2 and 0.5, but

when raising r1 to 0.6, its mean rank increases markedly. This

implies that the linear interpolation may not be able to handle a

low sampling rate effectively if the dropping rate is large. The

reason is that the assumption made by the linear interpolation

that the object would move along a straight line between two

consecutive sample points is no longer true. t2vec consistently

outperforms the other methods by a large margin.

Experiment 3 Finally, we evaluate the effect of noise on re-

sults. We still fix |D′
Q∪D′

P | = 100, 000 and distort the points

of trajectories in both query DQ and database D′
Q ∪D′

P with

distorting rate r2, as described in Equation 3. The results are

shown in Table V using the Porto and Harbin datasets. Unlike

with down-sampling, we observe that all methods are not very

sensitive to point distortion. Even if the distorting rate is set to

0.6, no method shows obvious performance degradation. We

observe that t2vec achieves the best performance.

In subsequent experiments, we observes similar results on

the two datasets, and we only report the results when using

the Porto dataset due to the space limitation.

2) Cross-similarity comparison: A good similarity measure

should be able to not only recognize the trajectory variants

of the same underlying route (self-similarity), but should

also preserve the distance between two different trajectories,

regardless of the sampling strategy. We adopt an evaluation

criterion from the literature [13], [18], namely cross distance

deviation, which is calculated as follows:

|d(Ta(r), Ta′(r))− d(Tb, Tb′)|
d(Tb, Tb′)

,

where Tb and Tb′ represent two distinct original rate tra-

jectories, and Ta(r) and Ta′(r) are their variants obtained

by randomly dropping (or distorting) sample points with the

dropping (or distorting) rate r. We randomly select 10,000

trajectory pairs (Tb, Tb′) from the test dataset to calculate

their mean cross distance deviation. A small cross distance

deviation indicates that the evaluated distance is much close

to the ground truth. The mean cross distance deviation of the

different methods is described in Table VI, where we vary

the dropping rate r1 and the distorting rate r2. We notice that

t2vec outperforms the other two methods in terms of cross

distance deviation for different dropping and distorting rates.

3) k-nn queries: The similarity measure is a fundamental

operation that can be used in many applications, e.g., similar-

ity search, clustering, and classification. In this experiment,

625

(a) (b) (c)

(d) (e) (f)

Fig. 5: (a)-(c) k-nn results when varying the dropping rate for k = 20, 30, 40. (d)-(f) k-nn results when varying the distorting

rate for k = 20, 30, 40.

we evaluate the performance of different similarity search

methods. To contend with the lack of ground-truth, we fol-

low the methodology used in previous work [11], [13]. We

first randomly choose 1000 trajectories as query and 10,000

trajectories as the target database from the test dataset. We

apply each method to find the k-nearest-neighbors (k-nn) of

each query trajectory from the target database as its ground-

truth. Next, we transform queries and database trajectories

by randomly dropping (resp. distorting) certain sample points

according to the dropping (resp. distorting) rate r1 (resp. r2).

Finally, for each transformed query, we find its k-nn from the

target database using each method and then compare the result

with the corresponding ground-truth. The rationale behind

this methodology is that a robust distance measure should

adapt to non-uniform and relatively low sampling rates (resp.

distortion) and yield results close to those for relatively high

sampling rate (resp. non-distorted) counterparts.

Figure 5 shows the precision (the proportion of true k-

nn trajectories) of the different similarity methods when the

dropping rate (as shown in Figure 5a-5c) and the distorting

rate (as shown in Figure 5d-5f) is varied for k = 20, 30, 40.

The precision of all methods decreases when the dropping

rate or distorting rate increases. EDR and LCSS show similar

performance, but the precision of EDR drops rapidly when

the dropping rate reaches 0.6. EDwP surpasses them by a fair

magnitude, and t2vec consistently performs the best.

D. Scalability

The time complexity of LCSS and EDR for determining

the similarity of two trajectories Ta, Tb is O(|Ta| × |Tb|).
EDwP has complexity O((|Ta|+ |Tb|)2). These methods rely

on intricate pruning techniques [9], [11] to answer k-nn queries

(a) (b)

Fig. 6: (a) k-nn query efficiency versus database size using the

Porto dataset. (b) k-nn query efficiency versus database size

using the Harbin dataset.

on large datasets. As discussed in Section IV-D, once our

model has been trained offline, it takes linear time to encode

a trajectory into a vector v, and the encoding process can also

be done offline. As an example, we can encode the 1.7 million

trajectories in the Porto dataset into vectors within 30 minutes

using one Tesla K40 GPU. After encoding the trajectories into

vectors offline, its online complexity is O(|v|). The linear

complexity makes t2vec scale well on large datasets. Note

that model training is done offline; we will study the training

time in Section V-E.

Although it is obvious that our method is much more

efficient in terms of the complexity analysis, we conduct an

experiment to compare the efficiency of t2vec with those of

EDR and EDwP empirically. Figures 6a and 6b show that

the query time grows with the size of the target database

for the k-nn query (k = 50) using the Porto and Harbin

dataset, respectively. Although both EDR and EDwP employ

626

TABLE VII: Mean rank and training time (hours) for the

model equipped with loss functions L1, L2, L3, L3+CL using

the Porto dataset.

Loss L1 L2 L3 L3 + CL

MR@r1 = 0.4 46.56 21.34 9.70 9.48
MR@r1 = 0.5 55.72 27.30 13.50 12.70
MR@r1 = 0.6 68.49 32.01 16.52 15.99

Time 26 120 22 14

TABLE VIII: The impact of the cell size on the model using

the Porto dataset.

Cell size 25 50 100 150
#Cells 60,004 35,335 18,866 12,425

MR@r1 = 0.5 216.23 15.21 12.70 12.70
MR@r1 = 0.6 234.18 19.21 15.99 16.03
MR@r2 = 0.5 291.57 9.49 9.49 9.51
MR@r2 = 0.6 302.91 10.87 10.80 11.03

Time 37 25 14 8

carefully designed pruning and indexing techniques, t2vec is

at least one order of magnitude faster than both methods.

t2vec offers near-instantaneous response times that support

interactive use and analysis on big trajectory data, such as

trajectory clustering, while the competition cannot. A response

in less that 200 ms is perceived as instantaneous.

E. Evaluation on the loss function

In this experiment we evaluate the effectiveness of the

proposed loss function and the cell representation learning (CL

in Algorithm 1) approach on most similar trajectory search by

using the same setting in Section V-C1. The database size is

fixed at |D′
Q∪D′

P | = 100, 000. Table VII shows the mean rank

(MR) w.r.t dropping rates r1 = 0.4, 0.5, 0.6 and the training

time of different loss functions using the Porto dataset. The L2

loss, is very expensive to compute, and since the model does

not converge even after training for over 5 days (120 hours),

we terminate the training process before it converges. L3 loss

is capable of improving the mean rank significantly when

compared to L1. The cell representation learning approach

further improves the mean rank and reduces the training time

by 1/3.

F. Effect of the cell size and the hidden layer size

Intuitively, a small cell size provides a higher resolution of

the underlying space, but it also generates more cells (tokens),

which leads to higher training complexity since the model

complexity is linear in the number of tokens [40]. We evaluate

the influence of the cell granularity on the method performance

in answering most similar search with r1 = 0.5, r2 = 0.5. As

TABLE IX: The impact of the hidden layer size on the model

using the Porto dataset.

|v| 64 128 256 484 512
MR@r1 = 0.5 400.01 50.21 12.70 10.24 11.26
MR@r1 = 0.6 431.11 63.71 15.99 16.70 17.42
MR@r2 = 0.5 390.27 48.36 9.49 8.01 9.09
MR@r2 = 0.6 397.22 50.26 10.80 9.27 10.05

Fig. 7: The impact of training dataset size on the model using

the Porto dataset.

shown in Table VIII, a cell size of 100 gives the best mean

rank. The smallest cell size (25) performs the worst, which

is probably because it has the highest model complexity and

thus is much more difficult to train.

Another important parameter that determines the quality of

the learned representation v is the dimension of the hidden

layer in the encoder. A high dimension of the hidden layer

is typically much more expressive, but requires more training

data to avoid overfitting. Table IX summarizes the impact of

the hidden layer size on the most similar trajectory search with

the same settings as in the above experiment. It is obvious

that increasing |v| from 64 to 256 significantly enhances the

quality of the learned representations, while the performance

drops when we increase it further.

G. Effect of the training data size

In this experiment, we evaluate the effect of training data

size on the accuracy of the trajectory similarity search. The

setting is similar to the one in Section V-E, with exception

that we vary the training data size and fix the dropping rate

r1 at 0.6.

Figure 7 shows the effect of the training data size on the

most similar search on the Porto dataset. The mean rank drops

rapidly as we increase the training data size from 200,000 to

600,000, and the decrease slows down when we continue to

enlarge the training data size. When we increase the training

data size from 200,000 to 600,000, more transition patterns

can be learned for representing the trajectories, and thus the

model quality is enhanced significantly. However, when we

further increase the training data size, the marginal benefit of

using larger training data is less pronounced.

VI. CONCLUSIONS AND FUTURE WORK

To the best of our knowledge, we present the first solution

for using learning for creating representations of trajectories

that are well suited for use in trajectory similarity computation.

Most existing methods for trajectory similarity computation

measure similarity by means of pairwise point-matching,

which may not capture the underlying route information of

the trajectories, thus being sensitive to non-uniform and low

sampling rates, and noise sample points. Moreover, all of

them have a quadratic time complexity. Motivated by these

627

observations, we propose a seq2seq-based method to learn

representations for trajectories that enable accurate and effi-

cient trajectory similarity search that is robust to sampling rate

variations and noisy sample points. The method is evaluated

empirically with favorable results in terms of both accu-

racy and efficiency. It consistently outperforms the baseline

methods by a large margin in the most similarity tasks. The

method is at least one order of magnitude faster than the

other methods, thus it can support big trajectory analysis and

interactive use while the competition cannot.

This work sheds light on several new research directions:

1) Employing the learned representations to explore more

downstream tasks, e.g., trajectory clustering and popular-

routes search. 2) Extending the proposed method to more

general time series data beyond trajectories. 3) Developing

indexing techniques like Locality-Sensitive Hashing [41] to

further speed up the proposed method.

Acknowledgments. This work is supported in part by the

Rapid-Rich Object Search (ROSE) Lab at Nanyang Techno-

logical University. The ROSE Lab is supported by the National

Research Foundation, Prime Minister’s Office, Singapore, un-

der its IDM Futures Funding Initiative, administered by the

Interactive and Digital Media Programme Office. This work

was also supported by the MOE Tier-2 grant MOE2016-T2-

1-137, MOE Tier-1 grant RG31/17, NSFC under the grant

61772537, and a grant from Microsoft. C. S. Jensen was

supported by the DiCyPS project and by a grant from the Obel

Family Foundation. W. Wei was supported by NSFC under the

grant 61602197, NSF under the grant 2016CFB192.

REFERENCES

[1] Z. Li, J. Han, M. Ji, L. A. Tang, Y. Yu, B. Ding, J. Lee, and
R. Kays, “Movemine: Mining moving object data for discovery of
animal movement patterns,” ACM TIST, vol. 2, no. 4, pp. 37:1–37:32,
2011.

[2] Z. Chen, H. T. Shen, and X. Zhou, “Discovering popular routes from
trajectories,” in ICDE, 2011, pp. 900–911.

[3] C.-C. Hung, W.-C. Peng, and W.-C. Lee, “Clustering and aggregating
clues of trajectories for mining trajectory patterns and routes,” VLDBJ,
vol. 24, no. 2, pp. 169–192, 2015.

[4] H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen, “Discovery
of convoys in trajectory databases,” PVLDB, vol. 1, no. 1, pp. 1068–
1080, 2008.

[5] X. Li, V. Ceikute, C. S. Jensen, and K.-L. Tan, “Effective online group
discovery in trajectory databases,” IEEE TKDE, vol. 25, no. 12, pp.
2752–2766, 2013.

[6] B.-K. Yi, H. Jagadish, and C. Faloutsos, “Efficient retrieval of similar
time sequences under time warping,” in ICDE, 1998, pp. 201–208.

[7] M. Vlachos, G. Kollios, and D. Gunopulos, “Discovering similar mul-
tidimensional trajectories,” in ICDE, 2002, pp. 673–684.

[8] L. Chen and R. Ng, “On the marriage of lp-norms and edit distance,”
in PVLDB, 2004, pp. 792–803.

[9] L. Chen, M. T. Özsu, and V. Oria, “Robust and fast similarity search
for moving object trajectories,” in SIGMOD, 2005, pp. 491–502.

[10] K. Zheng, Y. Zheng, X. Xie, and X. Zhou, “Reducing uncertainty of
low-sampling-rate trajectories,” in ICDE, 2012, pp. 1144–1155.

[11] S. Ranu, P. Deepak, A. D. Telang, P. Deshpande, and S. Raghavan,
“Indexing and matching trajectories under inconsistent sampling rates,”
in ICDE, 2015, pp. 999–1010.

[12] P. Banerjee, S. Ranu, and S. Raghavan, “Inferring uncertain trajectories
from partial observations,” in ICDM, 2014, pp. 30–39.

[13] H. Su, K. Zheng, H. Wang, J. Huang, and X. Zhou, “Calibrating
trajectory data for similarity-based analysis,” in SIGMOD, 2013, pp.
833–844.

[14] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connection-
ist temporal classification: labelling unsegmented sequence data with
recurrent neural networks,” in ICML, 2006, pp. 369–376.

[15] M. Gutmann and A. Hyvärinen, “Noise-contrastive estimation: A new
estimation principle for unnormalized statistical models,” in AISTATS,
2010, pp. 297–304.

[16] E. Frentzos, K. Gratsias, and Y. Theodoridis, “Index-based most similar
trajectory search,” in ICDE, 2007, pp. 816–825.

[17] S. Sankararaman, P. K. Agarwal, T. Mølhave, J. Pan, and A. P.
Boedihardjo, “Model-driven matching and segmentation of trajectories,”
in SIGSPATIAL, 2013, pp. 234–243.

[18] H. Wang, H. Su, K. Zheng, S. Sadiq, and X. Zhou, “An effectiveness
study on trajectory similarity measures,” in Australian Database Con-
ference, 2013, pp. 13–22.

[19] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[20] Q. V. Le and T. Mikolov, “Distributed representations of sentences and
documents.” in ICML, 2014, pp. 1188–1196.

[21] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” in SIGKDD, 2014, pp. 701–710.

[22] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-
scale information network embedding,” in WWW, 2015, pp. 1067–1077.

[23] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[24] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in NIPS, 2014, pp. 3104–3112.

[25] O. Vinyals, Ł. Kaiser, T. Koo, S. Petrov, I. Sutskever, and G. Hinton,
“Grammar as a foreign language,” in NIPS, 2015, pp. 2773–2781.

[26] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Tor-
ralba, and S. Fidler, “Skip-thought vectors,” in NIPS, 2015, pp. 3294–
3302.

[27] D. Williams and G. Hinton, “Learning representations by back-
propagating errors,” Nature, vol. 323, no. 6088, pp. 533–538, 1986.

[28] P. J. Werbos, “Backpropagation through time: what it does and how to
do it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[29] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural proba-
bilistic language model,” JMLR, vol. 3, pp. 1137–1155, 2003.

[30] A. Graves, “Generating sequences with recurrent neural networks,” arXiv
preprint arXiv:1308.0850, 2013.

[31] R. H. Güting and M. Schneider, “Realm-based spatial data types: the
rose algebra,” VLDBJ, vol. 4, no. 2, pp. 243–286, 1995.

[32] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” TPAMI, vol. 35, no. 8, pp. 1798–1828,
2013.

[33] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[34] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in NIPS, 2013, pp. 3111–3119.

[35] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

[36] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh
approach to numerical computing,” SIAM review, vol. 59, no. 1, pp.
65–98, 2017.

[37] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[38] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in ICML (3), 2013, pp. 1310–1318.

[39] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[40] S. Jean, K. Cho, R. Memisevic, and Y. Bengio, “On using very
large target vocabulary for neural machine translation,” arXiv preprint
arXiv:1412.2007, 2014.

[41] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approxi-
mate nearest neighbor in high dimensions,” in FOCS, 2006, pp. 459–468.

628

