Finding Dynamic Co-evolving Zones
in Spatial-Temporal Time Series Data

Yun Cheng®™), Xiucheng Li, and Yan Li

Air Scientific, Beijing, China
chengyun.hit@gmail.com, xiucheng90@gmail.com, yan.li@coilabs.com

Abstract. Co-evolving patterns exist in many Spatial-temporal time
series Data, which shows invaluable information about evolving pat-
terns of the data. However, due to the sensor readings’ spatial and
temporal heterogeneity, how to find the stable and dynamic co-evolving
zones remains an unsolved issue. In this paper, we proposed a novel
divide-and-conquer strategy to find the dynamic co-evolving zones that
systematically leverages the heterogeneity challenges. The precision of
spatial inference and temporal prediction improved by 7% and 8%
respectively by using the found patterns, which shows the effectiveness of
the found patterns. The system has also been deployed with the Haidian
Ministry of Environmental Protection, Beijing, China, providing accu-
rate spatial-temporal predictions and help the government make more
scientific strategies for environment treatment.
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1 Introduction

Spatio-temporal time series data has become ubiquitous thanks to affordable sen-
sors and storage. Those invaluable data shows a potential to extract and under-
stand complex spatio-temporal phenomena and their dynamics. Additionally,
the ubiquitous sensor stations continuously measure several geophysical fields
over large zones and long (potentially unbounded) periods of time, which high-
lights the importance of unsupervised methods in monitoring spatio-temporal
dynamics with little or no human supervision.

Time series clustering are rapidly becoming popular data mining techniques.
Lots of methods have been proposed to solve the problem [18]. Different dissim-
ilarity measures for time series have been tested for various purposes. Yet, the
ubiquitous sensor monitoring data is always spatio-temporal heterogenous, which
means that different clustering structure may exist during the whole period.
Furthermore, in the geo-sensory applications wherein a bundle of sensors are
deployed at different locations to cooperatively monitor the target condition,
groups of sensors are spatially correlated and co-evolve frequently in their read-
ings and how to find those spatial co-evolving patterns is of great importance
to various real-world applications [21]. When dealing with dense and continuous
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spatio-temporal data, the co-evolving sensors (zones) may change their sizes,
shape and statistical properties over time (see Fig.1). The goal is to find those
dynamic co-evolving zones and try to establish linkages between those found
zones and give reasonable explanations.

0
03-20 03-22 03-24 03-26 03-28 03-30 04-01 04-03 04-05 04-07 04-09 04-11 04-13 04-15 04-17  04-19

S1 -+ S2 S3 S4 ¥ S5 @ S6 S7 @ S8 & S9 s10

Fig. 1. The spatio-temporal air quality monitoring data (10 spatially adjacent sensor
readings during one month).

In this paper, we propose a novel dynamic co-evolving zones discovery para-
digm to identify co-evolving zones in continuous spatio-temporal field and estab-
lish linkages where the co-evolving zones may change their size, shape from
time to time. Our paradigm first detects the overall breakout and divides the
time series into uptrend and downtrend intervals. Then, we cluster the spatio-
temporal time series data in each interval by using the specific dissimilarity mea-
sures. A hierarchical clustering method is used to deal with the found dynamic
co-evolving zones in the previous step to give the final co-evolving structure.
We evaluate our paradigm on a real world application of monitoring air qual-
ity which uses ubiquitous sensor stations on a regional scale (see our previous
work [4] for details). The paradigm produced more stable and meaningful co-
evolving zones and automatically found the segmentation intervals which helped
better understand the evolving patterns of the pollution. We then use the found
patterns to make spatial-temporal predictions and find an obvious improvement
on the performance, which shows a potential usage area of the found dynamic
co-evolving zones. Overall, our contribution has three parts:

— We proposed a novel paradigm to find the dynamic co-evolving zones and
structures in the spatio-temporal time series data. The model uses three gen-
eral key steps to deal with the spatio and temporal heterogenous to find co-
evolving structures and patterns for future use.

— We use the patterns found in the co-evolving structures to increase the
accuracy of spatial-temporal predictions and find a significant improvement
compared with the original method.

— We use the proposed approach and result in a real world application, which has
been used in the daily work of a environmental protection agency to help them
make accurate predictions, do pollution causal analysis and make decisions or
strategies.
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2 Related Work

2.1 Problem Formulation

The goal of this work is to autonomously extract dynamic co-evolving zones
from a continuous spatio-temporal field and give reasonable explanations. The
dense deployment air quality monitoring data is an example of continuous spatio-
temporal field, where each location has unique spatial coordinates and has
co-evolving patterns with other sensors, which is changing over time. In the
following subsection, we will first describe the existing approaches on the related
topics, then gives our challenges.

2.2 Existing Approaches

Generally, our work is related to the following topics.

Time series change point detection. Sliding window, top-down, and bottom-
up approaches [10] are popular methods to partition a time series into line seg-
ments. Wang et al. [17] proposed the pattern-based hidden Markov model that
can segment a time series as well as learn the relationships between segments.
Methods have also been proposed [9] to obtain piecewise polynomial approxima-
tions and/or perform on-line segmentation.

Change detection aims to find the time points where the statistical property
of the time series changes significantly. It is closely related to time series segmen-
tation as such points can be considered as the boundaries of different segments.
Yamanishi et al. [20] unified the problems of change detection and outlier detec-
tion based on the on-line learning of an autoregressive model. Sharifzadeh et al.
[15] used wavelet footprints to find the points where the polynomial curve fitting
coefficients show discontinuities. Kawahara et al. [8] judged whether a point is
a change by computing the probability density ratio of the reference and test
intervals.

Our work uses the bottom-up segmentation approach due to its simplicity and
practical effectiveness, it can be easily adapted to other segmentation algorithms.
It is also worth mentioning that, the segmentation of this work is performed on
short evolving intervals instead of the original long time series, which renders
the segmentation process really fast.

Time series clustering. A crucial question in time series cluster analysis is
establishing what we mean by similar data objects, i.e., determining a suitable
similarity /dissimilarity measure between two time series objects. There exist a
broad range of measures to compare time series and the choice of the proper
dissimilarity measure depends largely on the nature of the clustering, i.e., on
determining what the purpose of the grouping is. Current dissimilarity measures
are grouped into four categories: model-free measures, model-based measures,
complexity-based measures and prediction-based measures [13]. Considering the
unsupervised feature of the problem and temporal heterogenous properties, we
choose the model-free approaches.
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The Minkowski distance is typically used to measure the proximity of two
time series. This metric is very sensitive to signal transformations as shifting
or time scaling. Frechet distance was introduced by Frechet [7] to measure the
proximity between continuous curves, but it has been extensively used on the
discrete case (see [6]) and in the time series framework. The dynamic time warp-
ing (DTW) distance was studied in depth by [14] and proposed to find patterns
in time series by [2]. [5] introduce a dissimilarity measure addressed to cover
both conventional measures for the proximity on observations and temporal cor-
relation for the behavior proximity estimation, which includes both behavior and
values proximity estimation.

In our scenario, we need to cluster the time series with both behavior and
values similarity, we use an extension of the adaptive dissimilarity index covering
both proximity on values and on behavior.

Co-evolving Zones. [16] studied the problem of finding regions that show sim-
ilar deviations in population density using mobile phone data. They assume that
the condition has periodicity, i.e., the daily population densities in a region are
similar in different days. While this assumption is reasonable for population den-
sity, it does not hold in many geo-sensory applications like air quality monitoring.
Moreover, they extract vertical changes in population density by comparing the
same hour of different days. In contrast, we extract the horizontal changes, i.e.,
comparing the condition in current time interval with the previous time interval.
[21] studied problem of mining spatial co-evolving patterns from geo-sensory
data, due to the sparse data they used, the paper only mines the spatial coevolv-
ing patterns (SCPs), i.e., groups of sensors that are spatially correlated and co-
evolve frequently in their readings. In our situation, we first find the co-evolving
zones, then give the causal explanations of the phenomenon, which can be used
to further improve the accuracy of spatial inference and temporal prediction.

2.3 Challenges

In addition to the technical limitations, finding the co-evolving zones faces sig-
nificant challenges in many real world applications. One significant challenge is
the heterogeneity in space and time (see Fig.1). Space heterogeneity refers to
the case where data belonging to different clusters may have the same feature
values. While heterogeneity in time refers to the instance where the sensor clus-
ter membership may change over time, which all lead to one much debated
question [12]: How long should the time series be? If too short, the clusters
found can be spurious; if too long, dynamics can be smoothed out. Those het-
erogeneity challenges caused us to propose a novel paradigm to eliminate the
limitations.

Another challenge is how to find the physical meaning of the found co-
evolving zones, i.e., how to give the causal explanation, and find associate rela-
tionship between those zones to improve the performance of other application
domains, e.g., space inference and temporal prediction.
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3 Overview

To address the above-mentioned challenges, we propose a novel dynamic co-
evolving zones data mining paradigm that systematically leverages the very
challenges. Our paradigm consists of two main steps: finding the co-evolving
zones under the spatial and temporal heterogeneity constraint; mining the asso-
ciation between the found co-evolving zones and give reasonable explanations.
Figure 2-A outlines three key steps. The first step is to do the changepoint detec-
tion, which acts on the average value of the monitoring region and gets the
uptrend or downtrend change intervals for the use of next step. The second
step is to cluster the time series data in every change interval, the key here is
to choose an appropriate dissimilarity measure under the space constraint. The
final step is to mine the relationship between the previous found zones, which in
the best case will give us the inner relationship between those co-evolving zones
and causal explanations of the phenomenon, which also gives us the appropriate
time series segementation length for clustering analysis.
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Fig.2. A: dynamic co-evolving structure mining paradigm. B: web user interface of
the deployed system.

The first step is essential. If we cluster the time series using the whole period,
we will get bad and meaningless result for the space and temporal heterogeneity,
which will be illustrated in the following experiment section. We cluster the
segmented time series using an extension version of the adaptive dissimilarity
index covering both proximity on values and on behavior in the second step. In
the final step, we define a dynamic co-evolving zones’ dissimilarity measure index
and use the hierarchical clustering method to get the final co-evolving structure
and give the dynamic segementation length used in clustering analysis.

Figure 2-B shows the real deployed web user interface in Haidian Ministry
of Environmental Protection, where we can see the real time monitoring station
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readings and accurate spatial-temporal prediction results. The above proposed
paradigm helps us improve the prediction precision significantly and makes the
scientific environment treatment possible.

4 Proposed Model

The proposed model takes an divide-and-conquer strategy to find the dynamic
co-evolving structures and give final causal explanations. It first breaks down
the problem into multiple sub-problems of the same (or related) type (divide),
until these become simple enough (uptrend/downtrend intervals) to be solved
directly (conquer). The solutions to the sub-problems are then combined to give
a solution or explanation to the original problem. The approach eliminates the
effect of space and temporal heterogeneity on the original problem and help
produce more reliable and reasonable result for future use in related domains.

In this section, we will first describe our change point detection algorithm,
which is simple and efficient, then follows the co-evolving time series clustering
algorithm under the space constraint. Lastly, the co-evolving structure learning
framework is proposed to build the relationship between the found co-evolving
zones. The above steps belong to the divide-and-conquer approach, which divide
the whole time series clustering problem into sub-problems and then cluster
segmented co-evolving zones respectively to produce more stable and meaningful
co-evolving zones.

4.1 Change Point Detection

Definition 1. Uptrend/Downtrend Interval. Given a sensor reading s, an
uptrend (downtrend) interval is a consecutive subsequence of measurement T =

<S[ti], S[tprl], ey S[ti+m,1]> and VJ € {Z,l +1,...,i+m— 2}, S[tj+1} — S[t]] >
0(< 0, for downtrend interval), where m denotes the length of the subsequence
and t;,tix1, ..., tirm—1 are the timestamps of every measurement in Z.
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Fig. 3. The figure is the mean value of one monitoring region with almost 200 sensors;
Blue lines is the segemented uptrend/downtrend intervals. (Color figure online)
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Since the geo-sensory data is typically overwhelmed by various trivial fluc-
tuations, we apply the wavelet transform to capture the multi-resolution evolv-
ing intervals by following the previous work [21]. Recall that we aim to dis-
cover the co-evolving sensor reading patterns, especially during the pollutant
propagation period, which correspond to the uptrend or downtrend intervals
of the geo-sensory data. Consequently, we adopt their method as well as the
break and segment strategy [10] to extract the uptrend and downtrend intervals.
Note that the uptrend and downtrend intervals we extract do not exactly follow
Definition 1. Instead, we allow small fluctuations. Figure 3 shows the extracted
uptrend and downtrend intervals in blue lines.

4.2 Time Series Clustering

From the previous step, we can get mounts of time series uptrend/downtrend
intervals. For each uptrend (downtrend) interval, we adopt the selected time
series clustering method to get the co-evolving zones. We will first describe the
dissimilarity measures used for time series clustering, then follows the description
of the clustering method.

Dissimilarity Measures. The key in the dissimilarity measures, namely, how
to define the similarity of two time series object. In our scenario, the spatial
constraint also need to be considered to define the spatio-temporal distance
function. Two time series objects are similar if they are spatially adjacent and
have similar temporal characteristic. It is a function as below.

di(z,y) if x and y are spatial neighbors (1)

det(2y) = {O otherwise

where, d¢(z,y), is a time-series distance function.

The choice of time series distance function is related to the application. Com-
monly used time-series distance functions include proximity on value, proximity
on behavior or both in the view of what the purpose of the grouping is. The con-
ventional measures ignore the interdependence relationship between measure-
ments, characterizing the time series behavior. The proximity is only based on
the closeness of the values, while the proximity on behavior measure the growth
behavior of the time series without considering the closeness of the values.

Previous work [5] introduced an adaptive dissimilarity index covering both
proximity on values and on behavior, which is able to cover both conventional
measures for the proximity on observations and temporal correlation for the
behavior proximity estimation. These characteristics make it an ideal dissimilar-
ity measures in our scenario.

First of all, temporal correlation for the behavior proximity estimation has
been given. The proximity between the dynamic behaviors of the series is eval-
uated by means of the first order temporal correlation coefficient, which is
defined by
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(X1~ X)) (Yi1 —Y3)

\/Zt 711 Xt+1_Xt \/Zt 1 Yt+1_Y;5)

In the above equation, CORT (Xr,Y7) belongs to the interval [—1, 1], The
value CORT(X7,Yr) = 1 means that both series show a similar dynamic
behavior, i.e., their growths (positive or negative) at any instant of time are
similar in direction and rate, while CORT(Xp,Yr) = —1 implies a sim-
ilar growth in rate but opposite in direction (opposite behavior). Finally,
CORT(Xr1,Y7) = 0 expresses that there is no monotonicity between X1 and
YT, and the growth rates are stochastically linearly independent (different behav-
iors). In all, CORT (X, Yr) gives the similarity measures of time series.

The dissimilarity index proposed by [5] modulates the proximity between the
raw-values of two time-series Xr and Y7 using the coefficient CORT (Xr, Yr).
Specifically, it is defined as follows.

dcorr (X1, Y1) = ¢ [CORT (X7, Y7)] - d(X7,Y7T) (3)

where ¢ (-) is an adaptive tuning function to automatically modulate a con-
ventional raw-data distance d(Xr,Yr) according to the temporal correlation.
The modulating function should work increasing (decreasing) the weight of the
dissimilarity between observations as the temporal correlation decrease from 0
to —1 (increase from 0 to +1). In addition, docorr (X7, Y1) should approach
the raw-data discrepancy as the temporal correlation is zero. In our scenario, we
choose an exponential adaptive function given by

¢k(u):1++p(ku)vk>0 (4)

The above exponential tuning function will cover both proximity on values
and behavior, which is an appropriate choice in our situation.

CORT (X7, Y7)= (2)

Hierarchical Clustering Groups. Partitioning clustering methods meet the
basic clustering requirement of organizing a set of objects into a number of
exclusive groups [19], while in our situations we want to partition our data into
groups at different levels such as in a hierarchy, which works by grouping data
objects into a hierarchy or tree of clusters.

We use the agglomerative hierarchical clustering method based on the
bottom-up strategy. It typically starts by letting each object form its own clus-
ter and iteratively merges clusters into larger and larger clusters, until all the
objects are in a single cluster or certain termination conditions are satisfied. The
single cluster becomes the hierarchys root. For the merging step, it finds the two
clusters that are closest to each other (according to some similarity measure),
and combines the two to form one cluster. Because two clusters are merged
per iteration, where each cluster contains at least one object, an agglomerative
method requires at most n iterations.

In our scenario, using the method in [11], we can divide the sensor readings,
which have similar proximity on values and behavior, in each change interval
into k different co-evolving groups.
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4.3 Co-evolving Structures

From the previous step, we get k co-evolving zones in each evolving interval, as
shown in the left of Fig.4. Our problem is to find the relationship between the
found co-evolving zones and build the tree structure to show the inner causal
associations among the co-evolving zones of different time period. In our situ-
ation, we also use hierarchical clustering method to build the co-evolving tree,
which is illustrated in the right of Fig. 4.
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Fig. 4. The left figure is the co-evolving zones found in each co-evolving intervals, while
the right figure shows how we restruct the relationship between those zones.

Single Linkage

The key here is to define the similarity measures of the co-evolving zones in
different time period. Suppose A = {A4,..., Ay} and B = {By, ..., By} are two
co-evolving zones at two time interval of k clusters, the similarity measures of
the two co-evolving zones is defined as follows:

Definition 2. Cluster Similarity Measures. The Cluster Similarity Measures
Sim(A, B) of two co-evolving zones, A = {41, ..., Ax} and B = {By, ..., By}, is
defined by:

Sim(A, B) =3 Z Iiljai( Sim(A;, Bj) (5)

where A0 B
Sim(A;, Bj) = ————2 6
B = AT+ 1B 0

in which |-| denoting the cardinality of the elements in the set.

In the merging step of the Hierarchical Clustering, we use the above similarity
measure as the closeness index of two clusters (in our situation, we use single
similarity linkage of two clusters) to combine the two to form one cluster.

The Hierarchical Clustering method works by grouping data objects (in our
case, the co-evolving zones of different time intervals) into a hierarchy or tree
of clusters, which reflects the relationship and inner association between those
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co-evolving zones. The groups at different levels of the hierarchy can give us
more valuable information about the co-evolving zones, such as the relationship,
causal association etc. This would help us have a better understanding of the
evolving of the co-evolving patterns and casual association, which can help us
make better spatial inference and temporal predictions.

5 Experiment

In this section, we will give the experiment and evaluation of our proposed
approach. At first, we give the data and features used in the evaluation Sect. 5.1,
which contains all the feature description, then follows the evaluation using real
world data Sect. 5.2, we compare the found co-evolving zones with the clustering
result using the whole data to test and verify the effectiveness of our method.
The found co-evolving structure provides a clear picture of the pollution evolving
patterns and has the potential to improve the accuracy of spatial inference and
temporal prediction result, even give the recommendation of new air quality
stations’ locations, which is illustrated in Sect.5.3.

5.1 Data and Features

We utilize real air quality monitoring datasets collected from Haidian district of
Beijing, China. The datasets consist of three parts, as elaborated in the following.

— Air Quality Records. The data contains the real-valued AQI of two kinds of
pollutions, PMs 5 and PM;o, measured by almost 200 air quality monitoring
stations every 30 min. This dataset is collected over 11 months (from March 1,
2015 to February 1, 2016).

— Meteorological Data. Previous study has shown that the concentration
of air pollutants is influenced by meteorology. Especially, wind speed, wind
power, humidity and barometer pressure all have a big influence on the con-
centration of the air quality. We choose the four aspects and the weather
condition as the five features to evaluate the co-evolving structure result. The
fine-grained meteorological data is collected hourly from a public website [1].

— Point-Of-Interests (POISs). In the urban area, the land use and the function
of the region is well reflected by the category and density of POIs in the area,
which is valuable in making accurate spatial inference. In our setting, we
extract 8 POI features by using a POI database of Baidu Maps of Beijing (see
Table1).

5.2 Evaluation Using Real World Data

To illustrate the effectiveness of the proposed approprach, we use almost 11
months PMs, 5 sensor data to evaluate the algoritm. Figure 5 shows the result of
almost 2 months data. Figure 5-A shows the mean value of the time series data,
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Table 1. Category of POIs

C1: Culture & education | C5: Shopping malls and Supermarkets
C2: Parks C6: Entertainment

C3: Sports C7: Decoration and furniture markets
C4: Hotels C8: Vehicle Services (gas station, repair)

the blue line is the segment result of the uptrend /downtrend detection algorithm,
the algorithm get 89 intervals in total. For each change interval, we use the dis-
similarity measures defined above to cluster all the sensor readings and divide
them into 10 different classes. Then, using the Cluster Similarity Measures, we
get the final co-evolving structures, as shown in Fig. 5-B. The co-evolving struc-
ture has four obvious sub-clusters: 1, 2, 3, 4. When mapping the sub-clusters
into the time dimension, we found a clear temporal correlation, which can be
seen in Fig. 5-A. This result shows the heterogeneity of the dynamic co-evolving
zones and may provide a novel way to get the appropriate segementation length
for future clustering analysis.

Using the above found co-evolving structure and the new segment interval:
1, 2, 3, 4. We get the co-evolving zones for each of the time interval, which
is shown in Fig.5-D, E, F, G. Compared with the clustering result using the
whole two months data, as shown in Fig.5-C, Fig.5-D, E, F, G show more
meaningful and stable results. In this scenario, two month data is too long for
the clustering algorithm and the dynamics is smoothed out. While in Fig. 5-D,
E, F, G, we can see clear co-evolving zones (the sensors in the same zone show
similar patterns in both behavior and value) and the zones are dynamic between
two different time intervals, which shows the necessity and effectiveness of the
proposed paradigm. In the following section, we will use the found patterns to
help improve the accuracy of spatial inference and temporal prediction result
and show the effectiveness of the found patterns.

In our experiment settings, we set significant_delta, significant_length in
change point algorithm is 35 and 3, and get 508 uptrend/downtrend time inter-
vals. For each time interval, the distance between x,y is below 2km if they are
spatial neighbours, and k is set to 10, which means that there are 10 different
sub-clusters for each co-evolving time interval. Using the co-evolving structure
clustering algorithm, we get 28 different co-evolving intervals, which all shows
an obvious co-evolving zones structure, in the following section, we will use the
above found results to evaluate the effect on spatial-temporal prediction result.

5.3 Effect on Prediction and Inference

Spatial Inference. In the previous work [3], we compared the spatial infer-
ence accuracy using linear, cubic spline and gaussian process regression method,
which shows the effectiveness of Gaussian Process regression in spatial P Ms 5 con-
centration inference. However, one big disadvantage of the GP method is the
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Fig. 5. Evaluation using the real world data (2 months). A: mean value of almost 200
sensors and segementation result; B: final co-evolving structure; C: co-evolving zones
clustering result using whole data; D, E, F, G: co-evolving zones clustering result using
segmentation intervals 1, 2, 3, 4. (Color figure online)

time complexity. Since an exact inference in Gaussian Process involves computing
K~1, the computation cost is O(n?) (n is the number of the training cases), when
the deployment is large (in our situation, almost 200 devices), the compution cost
is a big challenge in real time online systems. In this section, we try to decrease the
number of devices (n) used for Gaussian Process algorithm with the help of the
found co-evolving zones (C-zones).

In experiment, the real deployment dataset of more than 11 month was used
to evaluate the performances of the algorithm. There are totally 200 monitor
stations deployed in an area with the size of 30km x 30km and each sta-
tion reports its measurements every 30min, the deployment map is shown in
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Fig. 6. (A) The deployment map of the monitor stations; (B) The distribution of the
deviation between station S; and Ss over one month

Fig.6-(A). We deliberately remove one station as ground truth and infer its
value using the remaining stations’ reading at each timestamp. The Fig. 6-(B)
also shows the distribution of deviation between our two monitor stations, .S;
and Sa. The geospatial distance of the two stations is about 6 km shown in Fig. 6-
(A), over 21 % cases have a deviation greater than 100, which also shows the
need for an efficient and accurate spatial inference algorithm.

Table 2. Inference errors

Measure
et lalle | Zlalh |l | RMSE | el
Gaussian Process 593429.56 25.12 4322.19 26.74 161.23
Gaussian Process + C-zones| 569328.64 17.44 4011.73 20.14 145.08

Table 2 lists the inference errors of the two methods measured via different
rules (assume that « is the absolute error vector). Gaussian Process uses all of the
devices for training, while Gaussian Process + C-zones only uses the devices in
the same co-evolving zones for training process, which only use almost 38 devices
in average. From the comparison result, we can see that the inference accuracy
has a significant increase by using the co-evolving zones, specially the Chebyshev
norm ||| achieved by Gaussian Process is 161.23 while the Gaussian Process +
C-zones obtains a smaller value 145.08, which proves that the Gaussian Process
+ C-zones is more stable in the inference of PMs 5 concentrations. The result
also shows the efficiency of the found dynamic co-evolving zones.

Temporal Prediction. Over the past decades, some statistic models, like
linear regression, regression tree and neural networks, have been employed in
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atmospheric science to do a real-time prediction of air quality. However, these
methods simply feed a variety of features about a location into a single model to
predict the future air quality of the location [22]. In work [22], they use a Tem-
poral Predictor to predict the air quality of a station in terms of the data about
the station. Instead, the Spatial Predictor considers spatial neighbor data, such
as the AQIs and the wind speed at other stations, to predict a station’s future
air quality, The two predictors generate their own predictions independently for
a station, which are combined by the Prediction Aggregator dynamically accord-
ing to the current weather conditions of the station. In this way, they improve
the prediction accuracy significantly. However, the meteorological data is almost
same for devices in dense deployment scenario, using the spatial partition method
in work [22] equals to feed all the data from a station’s neighbors into a machine
learning model. In this way, there are too many inputs for an ANN, leading to
too many parameters in the model. Consequently, we cannot learn a set of accu-
rate parameters for the ANN based on the limited training data, which may lead
to some problems and can not be used directly in practice (see details in [22]).

In this experiment, we use the devices in the same co-evolving zones as the
selected “spatial partition devices” to evaluate the accuracy of the algorithm.
Long period prediction may need more data in large scale, so we only evaluate
the next 6h PM> 5 concentrations in this experiment, which can be extend to
next 48 h prediction in the similar method.

For the next 1-6h, we measure the prediction of each hour y; against its
ground truth y;, calculating the accuracy according to Eq.7, We also calculate
the absolute error of each time interval according to Eq. 8, where n is the number
of instances measured for a time interval. We random select 30 devices for this
evaluation for almost 5 months.

_ Zl |@ - yi‘
p=1-==—— (7)
Zi Yi

o — Zl U1 — vl ®)
n

Table 3 shows the prediction result using different methods, LR and ANN
only use the local monitor station readings as the data source and make predic-
tions. In general, LR has a similar performance in predicting normal instances
but less effective than ANN in dealing with sudden drops. Also, the results
presented in Table 3 justify the advantages of the ANN + C-zones which use
local and devices in same co-evolving zones for prediction which acquires a big
improvement in the performance of overall accuracy, especially in the sudden
drops scenario.

6 Conclusion

In this paper, we propose a novel divide-and-conquer strategy to find the
dynamic co-evolving zones that systematically leverages the sensor readings’
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Table 3. Prediction Result of different methods.

Methods All instances | Sudden drops
p € p €

LR (Linear Regression) 0.684 |27.5 |0.298 |103.2

ANN (Artifical Neural Network) | 0.646 |29.9 |0.221 | 73.7

ANN + C-zones 0.725|20.1 |0.302 | 51.4

spatial and temporal heterogeneity challenges. The paradigm produced more sta-
ble and meaningful co-evolving zones and automatically found the segmentation
intervals which shows the inner pollution change paterns. We use the found result
to evaluate the performance on spatial-temporal prediction result and found a
significant improvement, which proves the effectiveness of the found patterns.
What’s more, the found zones and dynamic patterns may provide recommenda-
tion for new planned public monitoring stations and future city planning. The
system has also been deployed with the Haidian Ministry of Environmental Pro-
tection (in Haidian district of Beijing, China) to make accurate spatial-temporal
predictions and help the government better understand the pollution evolving
patterns to make more scientific strategies for environment treatment. The cur-
rent implementation still needs manual parameter tuning and has some limita-
tions, for future work, we plan to eliminate those disadvantageous and make the
algorithm more scaleable to use in the real production environment.
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