支配集、覆盖集、独立集、匹配与着色

李修成

计算机科学与技术学院

Outline

点覆盖集与点独立集

边覆盖集与边独立集

二分图中的匹配

点着色与边着色

作业

Notation

点覆盖集	vertex cover	点覆盖数	α_0
点独立集	vertex independent set	点独立数	β_0
支配集	dominating set	支配数	γ_0
边覆盖集	edge cover	边覆盖数	α_1
边独立集	edge independent set	边独立数	β_1
点着色	vertex coloring	点色数	χ
边着色	edge coloring	边色数	χ'

- 边独立集又称匹配,边独立数又称匹配数.
- $\alpha_0 + \beta_0 = n = \alpha_1 + \beta_1$.
- 一个图的点色数 vertex chromatic number 被称为其色数 chromatic number.

2

点覆盖集与点独立集

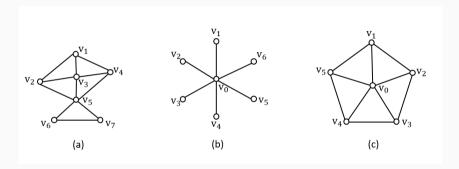
点覆盖集 vertex cover

定义 1.1 (点覆盖集 vertex cover). 设无向简单图 $G = \langle V, E \rangle$, $V^* \subseteq V$,

- 若 $\forall e \in E$, $\exists v \in V^*$ 使的 $v \vdash e$ 相关联,则称 V^* 为 G 的点覆盖集,并称v 覆盖 e.
- 点覆盖集简称点覆盖.
- 设 V^* 是 G 的点覆盖,若 V^* 的任何真子集都不是点覆盖,则称 V^* 为极小点覆盖.
- G 的顶点个数最少的点覆盖称为 G 的最小点覆盖.
- 最小点覆盖中的顶点个数称作 G 的点覆盖数,记作 $\alpha_0(G)$,简记为 α_0 .

实例

例子 1.1.



- (a) $\{v_2, v_3, v_4, v_6, v_7\}$, $\{v_1, v_3, v_5, v_7\}$ 为极小点覆盖, $\{v_1, v_3, v_5, v_7\}$ 是最小点覆盖, $\alpha_0 = 4$.
- (b) $\{v_0\}$, $\{v_1, v_2, \dots, v_6\}$ 为极小点覆盖, $\{v_0\}$ 是最小点覆盖, $\alpha_0 = 1$.
- (c) $\{v_0, v_1, v_3, v_4\}$, $\{v_0, v_1, v_3, v_5\}$ 为极小点覆盖,也都是最小的点覆盖, $\alpha_0 = 4$.

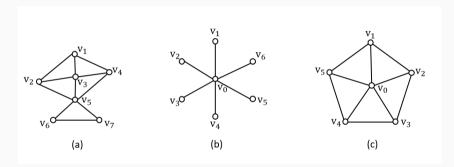
点独立集

定义 1.2 (点独立集 vertex independent set). 设无向简单图 $G = \langle V, E \rangle$, $V^* \subseteq V$,

- 若 V^* 中任何两个顶点均不相邻,则称 V^* 为 G 的点独立集,简称为独立集。
- 若 V* 再加入任何其他的顶点都不是独立集,则称 V* 为极大点独立集.
- G 的顶点数最多的点独立集称作 G 的最大点独立集.
- 最大独立集的顶点数称作 G 的点独立数,记作 $\beta_0(G)$,简记为 β_0 .
- 若 V^* 为独立集,则 $\overline{V^*}$ 中的顶点可以关联 G 中所有边,即 $I_G(\overline{V^*}) = E$.
- 假设边 $\{u,v\} \in E$ 无法被 $\overline{V^*}$ 中的顶点关联,则 $u,v \in V^*$,这与 V^* 为独立集矛盾.
- 考虑导出子图 $G[V^*]$, $E(G[V^*])$ 与 $I_G(\overline{V^*})$ 有何关联?

实例

例子 1.2.



- (a) $\{v_1, v_5\}$, $\{v_3, v_6\}$, $\{v_2, v_4, v_7\}$ 为极大点独立集, $\{v_2, v_4, v_7\}$ 为最大点独立集, $\beta_0 = 3$.
- (b) $\{v_0\}$, $\{v_1, v_2, \ldots, v_6\}$ 为极大点独立集, $\{v_1, v_2, \ldots, v_6\}$ 为最大点独立集, $\beta_0 = 6$.
- (c) $\{v_1, v_3\}$, $\{v_1, v_4\}$ 等均为极大点独立集,也都是最大点独立集, $\beta_0 = 2$.

点覆盖集与点独立集的关系

定理 1.1. 设无向简单图 $G = \langle V, E \rangle$, $V^* \subseteq V$, 则 V^* 为 G 的点覆盖当且仅当 $\overline{V^*} = V - V^*$ 为 G 的点独立集.

证明. (⇒) 若存在 $u, v \in \overline{V^*}$ 相邻,即 $\{u, v\} \in E$ 且 u, v 都不在 V^* 中,则 V^* 无法覆盖 $\{u, v\}$,与 V^* 为点覆盖矛盾. 故 $\overline{V^*}$ 中顶点互不相邻,即 $\overline{V^*}$ 为点独立集.

(⇐) 由于 $\overline{V^*} = V - V^*$ 是点独立集,因而任意一条边都与 V^* 中某个顶点关联,故 V^* 是 G 的点覆盖.

推论 1.1. 设 $G = \langle V, E \rangle$ 是 n 阶无向图, $V^* \subseteq V$,则 V^* 是 G 的极小(最小)点覆盖当且 仅当 $\overline{V^*} = V - V^*$ 是 G 的极大(最大)点独立集,从而有

$$\alpha_0 + \beta_0 = n.$$

点覆盖集与点独立集的关系

证明. 先证,若 V^* 是极小点覆盖,则 $\overline{V^*}$ 是极大独立集. 首先,若 V^* 是极小点覆盖,由定理 1.1 知 $\overline{V^*}$ 为独立集. 若 $\overline{V^*}$ 不是极大独立集,则可以从 V^* 选择一个顶点 v 使的 $\overline{V^*} \cup \{v\}$ 为独立集. 而 $\overline{V^*} \cup \{v\}$ 为独立集,则由定理 1.1 知 $V^* - \{v\} \subset V^*$ 依然为点覆盖,这与 V^* 是极小点覆盖矛盾.

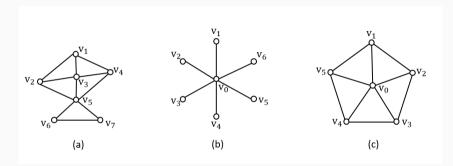
再证,若 \overline{V} 是极大独立集,则 V 是极小点覆盖.

支配集 dominating set

定义 1.3 (支配集 dominating set). 设无向简单图 $G = \langle V, E \rangle$, $V^* \subseteq V$,

- 若 $\forall v \in V V^*$, $\exists u \in V^*$ 使的 $\{u, v\} \in E$, 则称 V^* 为 G 的支配集,并称u 支配 v.
- 设 V^* 是 G 的支配集,且 V^* 的任何真子集都不是支配集,则称 V^* 为极小支配集.
- G 的顶点数最少的支配集称作 G 的最小支配集.
- 最小支配集中顶点的个数称作 G 的支配数,记作 $\gamma_0(G)$,简记为 γ_0 .

例子 1.3.



- (a) $\{v_1, v_5\}$, $\{v_3, v_5\}$, $\{v_3, v_6\}$, $\{v_2, v_4, v_7\}$ 为极小支配集, $\{v_1, v_5\}$, $\{v_3, v_5\}$, $\{v_3, v_6\}$ 是最小支配集, $\gamma_0 = 2$.
- (b) 7 阶星形图, $\{v_0\}$, $\{v_1, v_2, \dots, v_6\}$ 为极小支配集, $\{v_0\}$ 是最小支配集, $\gamma_0 = 1$.
- (c) 轮图 W_6 , $\{v_0\}$, $\{v_1, v_3\}$, $\{v_1, v_4\}$ 等都是极小支配集, $\{v_0\}$ 是最小支配集, $\gamma_0 = 1$.

极大点独立集和极小支配集的关系

定理 1.2. 无向简单图的极大点独立集都是极小支配集.

证明. 设无向简单图 $G = \langle V, E \rangle$, V^* 为 G 的极大独立集,则 $\forall v \in V - V^*, \exists v' \in V^*$ s.t. $\{v, v'\} \in E$, 否则 $\exists v_0 \in V - V^*$ 不与 V^* 中任何顶点相邻,因而 $V^* \cup \{v_0\}$ 仍为独立集,这与 V^* 是极大独立集矛盾.所以, V^* 是 G 的支配集.

又由于 V^* 是点独立集,因而对任何 $V_1 \subset V^*$, $V^* - V_1$ 中的顶点都不受 V_1 中顶点支配,即 V_1 不是支配集,所以 V^* 是极小支配集.

定理1.2的逆命题不成立,极小支配集中的点未必独立.

边覆盖集与边独立集

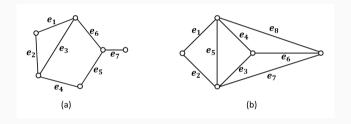
边覆盖集 edge cover

定义 2.1 (边覆盖集 edge cover). 设无向简单图 $G = \langle V, E \rangle$ 没有孤立点, $E^* \subseteq E$,

- 若 $\forall v \in V$, $\exists e \in E^*$, 使得 $v \vdash e$ 相关联,则称 E^* 为边覆盖集,并称e 覆盖 v.
- 边覆盖集简称边覆盖.
- 设 E* 为边覆盖, 若 E* 的任何真子集都不是边覆盖, 则称 E* 为极小边覆盖.
- *G* 的边数最少的边覆盖称为 *G* 的最小边覆盖.
- 最小边覆盖中的边数称作 G 的<mark>边覆盖数</mark>,记作 $\alpha_1(G)$,或简记为 α_1 .

实例

例子 2.1.



- (a) $\{e_1, e_4, e_7\}$, $\{e_2, e_5, e_6, e_7\}$ 为极小边覆盖, $\{e_1, e_4, e_7\}$ 是最小边覆盖, $\alpha_1 = 3$.
- (b) $\{e_1, e_3, e_6\}$, $\{e_2, e_4, e_8\}$ 为极小边覆盖,也都是最小边覆盖, $\alpha_1 = 3$.

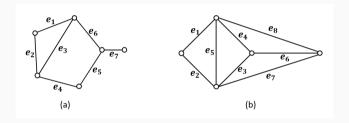
匹配

定义 2.2 (边独立集 edge independent set). 设无向简单图 $G = \langle V, E \rangle$, $E^* \subseteq E$,

- E^* 中任何两条边均不相邻,则称 E^* 为 G 的<mark>边独立集</mark>,也称作 G 的匹配.
- 若在 E^* 中再加任意一条边后,所得集合都不是匹配,则称 E^* 为极大匹配.
- *G* 的边数最多的匹配称作最大匹配.
- 最大匹配中的边数称作<mark>边独立数或匹配数</mark>,记作 $\beta_1(G)$ 或简记为 β_1 .

实例

例子 2.2.



- (a) $\{e_2, e_6\}$, $\{e_3, e_5\}$, $\{e_1, e_4, e_7\}$ 为极大匹配, $\{e_1, e_4, e_7\}$ 是最大匹配, $\beta_1 = 3$.
- (b) $\{e_1, e_3\}$, $\{e_2, e_4\}$, $\{e_4, e_7\}$ 为极大匹配,同时也都是最大匹配, $\beta_1 = 2$.

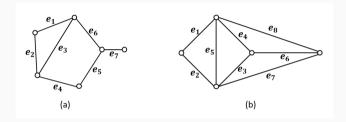
匹配

定义 2.3. 设 M 为图 $G = \langle V, E \rangle$ 的一个匹配,

- π M 中的边为匹配边,不在 M 中的边为非匹配边.
- 与匹配边相关联的顶点为饱和点,不与匹配边相关联的顶点为非饱和点.
- G 中由匹配边和非匹配边交替构成的路径(圈)称作交错路径(交错圈).
- 起点和终点都是非饱和点的交错路径称作可增广的交错路径.
- 饱和点 saturated vertex 又称匹配点 matched vertex.
- $M \supset G$ 的完美匹配当且仅当 G 中的每个顶点都是饱和点.
- 给定匹配 M, G 中饱和点数为 2|M|, 非饱和点数为 n-2|M|.
- 可增广交错路径的起始边均为非匹配边,非匹配边的数量比匹配边的数量多 1.

实例

例子 2.3.



- (a) $M = \{e_1, e_4, e_7\}$ 为完美匹配, 也是最小边覆盖.
- (b) $M = \{e_2, e_4\}$ 是最大匹配,但不是完美匹配,最右边的顶点是非饱和点,添加一条覆盖这个顶点的边, $M \cup \{e_i\}, i = 6, 7, 8$ 都是图的最小边覆盖.

定理

定理 2.1. 设 n 阶图 G 中无孤立点,

- 1. 设 M 为 G 的一个最大匹配,对 G 中每个 M-非饱和点均取一条与其关联的边,组成边 集 N,则 $W=M\cup N$ 为 G 的最小边覆盖.
- 2. 设 W_1 为 G 的一个最小边覆盖,若 W_1 中存在相邻的边就移去其中的一条,该移去的 边集为 N_1 ,则 $M_1 = W_1 N_1$ 为 G 的最大匹配.
- 3. G 的边覆盖数 α_1 与匹配数 β_1 满足: $\alpha_1 + \beta_1 = n$.

匹配

证明. 因为 M 为最大匹配, $|M| = \beta_1$,所以 G 有 $n - 2\beta_1$ 个 M-非饱和点. 根据加边过程,每个非饱和点均对应 N 中一条边,同时 N 中每条边均对应唯一一个非饱和点(为什么?),即 $|N| = n - 2\beta_1$.又 $W = M \cup N$,故

$$|W| = |M| + |N| = \beta_1 + n - 2\beta_1 = n - \beta_1.$$
(1)

由构造过程可知 M_1 是 G 的一个匹配,因此所得图中共有 $n-2|M_1|$ 个非饱和点. 由 W_1 是最小边覆盖可知,对 W_1 中任意相邻两边 $\{u,v_1\},\{u,v_2\}$,其三个顶点 u,v_1,v_2 在 $G[W_1]$ 中一定呈 V 字型(u 同时关联两边, v_1,v_2 为悬挂点),因而每移去相邻两条边中的一条时,会产生并仅产生一个 M_1 -非饱和点,因此所去除边数 $|N_1|$ 等于所得非饱和点数 $n-2|M_1|$. 又 $N_1=W_1-M_1$,故

$$|W_1| - |M_1| = |N_1| = n - 2|M_1| \Longrightarrow n - |M_1| = |W_1| = \alpha_1.$$
 (2)

又因为 M_1 是匹配, W 是边覆盖,有 $|M_1| \le \beta_1, |W| \ge \alpha_1$. 于是

$$\alpha_1 \stackrel{\mathsf{Eq. 2}}{=} n - |M_1| \ge n - \beta_1 \stackrel{\mathsf{Eq. 1}}{=} |W| \ge \alpha_1.$$

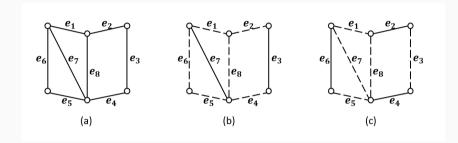
因而上述各项均相等,故有 $|M_1| = \beta_1$, $|W| = \alpha_1$, $\alpha_1 + \beta_1 = n$.

匹配

推论 2.1. 设图 G 无孤立点,M 是 G 的一个匹配,W 是 G 的一个边覆盖,则 $|M| \le |W|$,且当等号成立时,M 是 G 的完美匹配,W 是 G 的最小边覆盖.

证明. 由定理 2.1-(1) 知最大匹配为最小边覆盖的子集,故 $\beta_1 \leq \alpha_1$. 又由匹配与边覆盖的定义知 $|M| \leq \beta_1 \leq \alpha_1 \leq |W|$. 若等号成立,则($|M| = \beta_1$)M 是最大匹配,($|W| = \alpha_1$)W 是最小边覆盖,再由定理 2.1-(3) 及 $\alpha_1 = \beta_1$ 有 $n = \alpha_1 + \beta_1 = 2\beta_1$,从而 G 中 M-非饱和点数 $n - 2\beta_1 = 0$,故 M 是完美匹配.

例子 2.4.



- 图 (b) 中 $M_1 = \{e_3, e_7\}$ 是图 (a) 的一个匹配,但不是最大匹配.
- $P = e_2 e_3 e_4 e_7 e_6$ 是关于 M_1 的可增广的交错路径.
- 将 P 中的匹配边变成非匹配边,非匹配边变成匹配边,得到匹配 $M_2 = \{e_2, e_4, e_6\}$.

定理 2.2. 设 M 是图 G 的一个匹配,则 M 为 G 的最大匹配当且仅当 G 中不含关于 M 的可增广的交错路径.

证明. (\Rightarrow) 设 M 为 G 中最大匹配,若 G 中存在关于 M 的可增广的交错路径 P,在 P 中匹配边比非匹配边少 1,将 P 中的非匹配边变成匹配边,匹配边变成非匹配边得到 M'. 则 M' 是比 M 多一条边的匹配,这与 M 是最大匹配相矛盾,所以 M 不含可增广的交错路径.

(\Leftarrow) 设 G 中不含关于 M 的可增广交错路径, M_1 是 G 的最大匹配.若 $M=M_1$,则证毕;否则,考虑 M_1 和 M 对称差的导出子图 $H \triangleq G[M_1 \oplus M]$.由于 M_1 和 M 都是匹配,所以 H 各连通分支的构成分以下两种情况:① 要么是由 M 和 M_1 组成的交错圈 C,且在 C 上 M 和 M_1 中的边数相等;② 要么为由 M 和 M_1 中的边组成的交错路径 P,而 G 中均不含关于 M (已知条件) 和 M_1 (最大匹配)的可增广交错路径,故在 P 上 M 和 M_1 的边数相同(不然,P 必为二者之一的可增广交错路径).综上两种情况,M 与 M_1 的边数都相同.

二分图中的匹配

最大匹配

定义 3.1. 设 $G = \langle V_1, V_2, E \rangle$ 为二分图且 $|V_1| \le |V_2|$, M 是 G 的一个匹配且 $|M| = |V_1|$, 则称 M 是 V_1 到 V_2 的完备匹配.

- $|V_2| = |V_1|$ 时,二分图的完备匹配是完美匹配.
- M 为二分图的完备匹配当且仅当 V_1 或 V_2 中的每个顶点都是饱和点.
- 二分图的完备匹配为最大匹配,但最大匹配不一定是完备匹配.

Hall 定理

定理 3.1 (Hall 定理). 设二分图 $G = \langle V_1, V_2, E \rangle, |V_1| \le |V_2|$, 则 G 中存在从 V_1 到 V_2 的 完备匹配 $\iff V_1$ 中任意 k ($1 \le k \le |V_1|$) 个顶点至少与 V_2 中的 k 个顶点相邻(相异性条件).

证明. (\Leftarrow) 设 M 为 G 的最大匹配,若 M 不是完备匹配,则存在非饱和点 $v_x \in V_1$. 于是根据相异性条件,存在 $e \in E - M$ 与 v_x 关联. 又 M 是最大匹配,故 V_2 中与 v_x 相邻的顶点都是饱和点.考虑从 v_x 出发的尽可能长的所有交错路径集合 \mathcal{P} ,这些交错路径都不可增广. 因此每条交错路径,一定始于非匹配边,终于匹配边,故除 v_x 外,路径上的顶点都与一条匹配边关联,即均为饱和点.令

$$S = \{ v \mid v \in V_1 \land (\exists P \in \mathcal{P} \text{ s.t. } v \text{ is on } P) \},$$

$$T = \{ v \mid v \in V_2 \land (\exists P \in \mathcal{P} \text{ s.t. } v \text{ is on } P) \}.$$

除 v_x 外,S 和 T 中的顶点都是饱和点,且 S 中每个顶点与 T 中每个顶点通过一条匹配边一一对应,因而 |S|=|T|+1. 故 V_1 中有 |T|+1 个顶点只与 V_2 中的 |T| 个顶点相邻,与相异性条件矛盾.

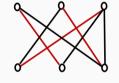
t 条件

定理 3.2. 设二分图 $G = \langle V_1, V_2, E \rangle$,如果存在 t 使得 V_1 中每个顶点至少关联 t 条边,而 V_2 中每个顶点至多关联 t 条边,则 G 中存在从 V_1 到 V_2 的完备匹配.

证明. V_1 中任意 k ($1 \le k \le |V_1|$) 个顶点至少关联 kt 条边, 而 V_2 中每个顶点至多关联 t 条边, 这 kt 条边至少关联 V_2 中 k 个顶点. G 满足相异性条件.

■ 定理中的条件被称为*t* 条件.

例子 3.1.

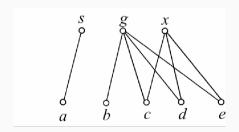


- 前两个图满足相异性条件,第3个不满足.
- 第 2 个图不满足 *t* 条件, 但有完备匹配.

例子

例子 3.2. 某课题组要从 a, b, c, d, e 5 人中派 3 人分别到上海、广州、香港去开会. 已知 a 只想去上海,b 只想去广州,c, d, e 都表示想去广州或香港. 该课题组在满足个人要求的条件下三个城市均需有人到访,如何进行派遣?

令 $G = \langle V_1, V_2, E \rangle$, $V_1 = \{s, g, x\}$, 其元素分别表示上海、广州和香港. $V_2 = \{a, b, c, d, e\}$, $E = \{\{u, v\} | u \in V_1, v \in V_2, v$ 想去 $u\}$. 每个 V_1 到 V_2 的完备匹配给出一个派遣方案. 如 a 到上海,b 到广州,c 到香港.

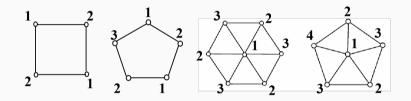


点着色与边着色

定义 4.1. 设无向图 G 无环,

- 对 G 的每个顶点涂一种颜色,使相邻的顶点涂不同的颜色,称为图 G 的一种<mark>点着色</mark>,简称<mark>着色</mark>.
- 若能用 k 种颜色给 G 的顶点着色,则称 G 是k-可着色的.
- 若 G 是 k-可着色的,但不是 k-1-可着色的,则称 G 的色数 chromatic number 为 k.
- G 的色数记作 $\chi(G)$, 简记为 χ .

例子 4.1. 求如下各图色数.



- 偶圈用 2 种颜色, 奇圈用 3 种. 奇阶轮图用 3 种, 偶阶轮图用 4 种.
- G 是 2-可着色的当且仅当 G 是二分图.

定理 4.1. 对于任意的无环图 G,均有

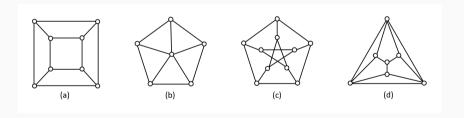
$$\chi(G) \le \Delta(G) + 1.$$

证明. 对 G 的阶数 n 作归纳证明. 当 n=1 时, 结论显然为真.

设 n=k $(k\geq 1)$ 时结论成立. 现考虑 n=k+1 的情况. 在图 G 中取 G 的一个顶点 v_0 ,令 $G'=G-v_0$,G' 的阶数为 k. 由归纳假设,可用 $\Delta(G')+1\leq \Delta(G)+1$ 种颜色给 G' 的顶点着色. 而 v_0 至多与 n 的 $\Delta(G)$ 个顶点相邻,在 G' 的点着色中,这些顶点至多用 $\Delta(G)$ 种颜色. 因此在这 $\Delta(G)+1$ 种颜色中至少存在一种颜色可以给 v_0 着色,使 v_0 与相邻顶点不同颜色. 得证当 n=k+1 时结论也成立.

定理 4.2 (Brooks 定理). 设无环图 G 不是完全图 K_n $(n \ge 3)$,也不是奇圈,则 $\chi(G) \le \Delta(G).$

例子 4.2. 计算如下各图的色数.



地图着色

定义 4.2 (地图着色).

- 连通无桥平面图的平面嵌入称作地图.
- 若两个国家有公共的边界,则称这两个国家是相邻的.
- 对地图的每个国家涂上一种颜色,使相邻的国家涂不同的颜色,称作对地图的面着色.
- 若能用 k 种颜色给 G 的面着色,则称 G 为k-可面着色的.
- E G = k n Table 1. The second of E G = k n
- G 的面色数记作 $\chi^*(G)$, 简记为 χ^* .

定理 4.3. 地图 $G \in \mathbb{R}$ 小可面着色的 \iff 它的对偶图 $G^* \in \mathbb{R}$ 小可面着色的.

定理 4.4 (四色定理). 任何平面图都是 4-可着色的.

边着色

定义 4.3. 对图 G 的每条边着一种颜色,使相邻的边着不同的颜色,称作对图 G 的边着色. 若能用 k 种颜色给 G 的边着色,则称 G 为 k 可边着色的。若 G 为 k 可边着色的,但不是 (k-1)-可边着色的,则称 G 的边色数 edge chromatic number 为 k. G 的边色数记作 $\chi'(G)$,简记作 χ' .

定理 4.5 (Vizing 定理). 简单图的边色数只可能取两个值: Δ 或者 $\Delta+1$.

定理 4.6. 二分图的边色数等于 Δ .

边着色

例子 4.3. 长度大于等于 2 的偶圈的边色数等于 2, 长度大于等于 3 的奇圈的边色数等于 3.

例子 4.4. 证明 $\chi'(W_n) = n - 1$, 其中 $n \ge 4$.

证明. 对 n=4,5 容易找到边着色方案使的 $\chi'(W_n)=n-1$.

当 $n\geq 6$ 时,中间节点关联的 n-1 条边可以用 n-1 种颜色着色;外圈上的每条边都与 4 条边相邻,而可用颜色数 $n-1\geq 5$,故可以为其分配颜色使的相邻边颜色不同. 故 $\chi'(W_n)\leq n-1$,而 Vizing 定理意味着 $\chi'(W_n)\geq \Delta=n-1$. 故, $\chi'(W_n)=n-1$.

边着色

例子 4.5. 证明

$$\chi'(K_n) = \begin{cases} n, & n \text{ 为大于 1 的奇数.} \\ n-1, & n \text{ 为偶数.} \end{cases}$$

作业

作业

习题 18:

- , 10, 11, 17, 18.
- , 22, 25.
- , 34, 35.