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Abstract
In this paper, we propose a BERT-style self-
supervised learning model, VQ-MTM (Vector
Quantization Masked Time-Series Modeling), for
the EEG time series data analysis. At its core,
VQ-MTM comprises a theoretically grounded
random-projection quantization module and a
phase-aligning module guided by the Time-Phase-
Shift Equivariance of Fourier Transform, the
two modules can generate well-defined seman-
tic units (akin to words in natural language) for
the corrupted and periodic time series, thus of-
fering robust and consistent learning signals for
the EEG self-supervised learning. VQ-MTM
also owns low model complexity and can eas-
ily adapt to large-scale datasets. We conduct
experiments on five real-world datasets includ-
ing two large-scale datasets to verify the efficacy
of our proposed model, the experiment results
show that VQ-MTM is able to consistently surpass
the existing methods by large margins on both
seizure detection and classification tasks. Our
code is available at https://github.com/
HaokunGUI/VQ_MTM.

1. Introduction
Electroencephalogram (EEG) measures the dynamics of the
electrical activity of the brain in a non-invasive way. It
finds a wide spectrum of applications in diagnosing vari-
ous neurological and psychiatric disorders (Niedermeyer &
da Silva, 1998; Hämäläinen et al., 1993) in medical prac-
tice. In particular, it plays a central role in seizure—the
most common neurological disease affecting 50 million
people worldwide (WHO, 2023)—detection and classifica-
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tion (Zarei et al., 2023; Guharoy et al., 2023). Clinically,
EEG-based disorder diagnoses are mostly performed by
a well-trained clinician who visually examines a patient’s
EEG observation over long periods ranging from minutes to
hours (Tavares, 2020), which is extremely labor-intensive
and time-consuming. Hence, it is highly appealing to design
automated algorithms to accurately detect and classify the
underlying disorders from the EEG signals.

Motivated by its immense practical importance, many su-
pervised learning automated diagnosis models (Raghu et al.,
2020; Gupta et al., 2021) have been developed in the past
years. These methods have achieved promising results in
cases where a large amount of labeled data is available.
However, certain disorder types are rare in nature, which
poses a serious challenge for these supervised learning mod-
els. Moreover, with the advances in data acquisition tech-
nology, an increasing amount of EEG data is being accumu-
lated, and a large fraction of EEG data is generally normal
signals (Obeid & Picone, 2016), which are simply aban-
doned by these methods.

The pretrain-finetune paradigm has proven remarkably ef-
fective in natural language processing (Devlin et al., 2019;
Chiang et al., 2023) and computer vision (Bao et al., 2022;
He et al., 2022; Liu et al., 2021). To exploit these vast quan-
tities of unlabeled EEG data, the self-supervised learning ap-
proaches are also employed in EEG data analysis (Banville
et al., 2020; Mohsenvand et al., 2020; Tang et al., 2022)
and have been reported to be useful in enhancing model
performance. In addition, EEG data is a special sort of time
series data, and the advances in time series self-supervised
learning (Wu et al., 2023; Nie et al., 2023; Dong et al., 2023)
can also be applied to boost EEG data analysis.

Despite their performance gain, the present self-supervised
methods for EEG often fall short concerning one of these
desiderata. The successes of the self-supervised learning
schemes in NLP can largely be credited to their contextual
representation learning capability achieved by learning to
predict or infer unseen tokens (words) in a context. How-
ever, 1) there lack of well-defined semantic units (words) in
the EEG time series data. One feasible solution is to adopt
the same strategy of MAE (Masked AutoEncoder) (He et al.,
2022), i.e., partitioning the time series into patches and
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learning to reconstruct a fraction of patches by using the re-
maining ones. But 2) unlike the images, the EEG signals are
often noisy and even corrupted due to the variability during
data acquisition (Wagh et al., 2022). It is prone to yielding
an unstable model training process by treating corrupted
data as precise reconstruction targets; moreover, the noise
will also be encoded into the learned representations and is
likely to degrade the self-supervised learning quality. Lastly,
3) EEG serving as a physiological signal is inherently peri-
odic and it could be desirable to consider this periodicity for
a good model design, however, it is absent from the existing
self-supervised models.

To address these three issues, we introduce a BERT-style
self-supervised learning method dubbed Vector Quantiza-
tion Masked Time-Series Model (VQ-MTM) for the EEG
data analysis. Inspired by the random projection technique
in speech pretraining (Chiu et al., 2022), we design a theo-
retically grounded random-projection quantizer to identify
semantic units from the raw EEG data. The identified se-
mantic units not only can serve as consistent training signals
(labels) to guide contextual representation learning but also
are robust to various forms of data variation. In contrast
to speech signals, EEG signals are inherently periodic and
the random projection itself cannot guarantee to identify the
phase-shifted patterns commonly arising in periodic signals.
Hence, we further develop a phase-aligning module based
on the Time-Phase-Shift Equivariance of the Fourier Trans-
form to identify the variants of a pattern. The phase-aligning
module enables us to better recognize semantically close
words generated by phase change. We conduct experiments
on five real-world EEG/ECG datasets to assess the efficacy
of our proposed VQ-MTM against existing approaches. The
experiments show that our proposed VQ-MTM excels in
contextual representation learning and surpasses the base-
line methods by large margins in both seizure detection and
classification tasks.

2. Related Work
Semantic Units in Self-Supervised Learning. The BERT-
style pretrain-finetune self-supervised paradigm has proven
remarkably effective in natural language modeling (Devlin
et al., 2019). Its core idea is to learn the contextual repre-
sentations by predicting the masked tokens based on the un-
masked ones. Hence, the well-defined semantic tokens are
greatly important to the success of these pretraining models.
Due to the lack of such tokens, the previous works (Baevski
et al., 2020; Bao et al., 2022) on computer vision and speech
recognition circumvent this dilemma by partitioning contin-
uous signals into patches and learning the patches quantized
representations, whereas MAE (He et al., 2022) proposes
to directly reconstruct the patches. However, these meth-
ods tend to yield suboptimal solutions when applied to the

corrupted time series data. Instead of learning quantizer,
the works (Chiu et al., 2022; Zhang et al., 2023) propose to
first map the signals by random projection, and then identify
each projected vector with the index of a random vector that
is close to it in terms of ℓ2 norm. We adopt a similar strategy
in the paper, however, in contrast to the ℓ2 norm, inspired by
the stochastic theory we generalize the technique to work
with the cosine similarity, and consequently, the result is
well supported by the stochastic theory.

Time Series Self-Supervised Learning and Analysis. Mo-
tivated by the great progress made in natural language pro-
cessing and computer vision, there has been an increasing
trend in developing self-supervised learning methods for
time series analysis. Many of them concentrate on con-
trastive learning (Tonekaboni et al., 2021; Woo et al., 2022;
Yue et al., 2022; Dong et al., 2023) by formulating self-
supervised learning as an instance classification task. Be-
sides, various methods (Wu et al., 2023; Nie et al., 2023;
Liu et al., 2023; Wang et al., 2023; Jiang et al., 2024b; Luo
& Wang, 2024; Chen et al., 2024) have been proposed to
address the time series analysis tasks such as forecasting,
imputation, and classification in recent years. However,
none of them pays attention to the well-defined semantic
units problem.

Seizure Detection and Classification. Automated seizure
detection and classification have been studied extensively
in literature (Covert et al., 2019; Raghu et al., 2020; Gupta
et al., 2021; Iesmantas & Alzbutas, 2020) due to their im-
mense practical value. To exploit the increasingly accu-
mulated unlabeled data, self-supervised approaches have
also been employed to analyze EEG data in recent years.
The works (Banville et al., 2020; Mohsenvand et al., 2020;
Kostas et al., 2021) learn the representations with contrastive
loss. Xu et al. (Xu et al., 2020) proposed a pseudo-label
self-supervised learning approach that assigns different la-
bels for varying scale ratios on the original data. Tang
et al. (Tang et al., 2022) propose a DCRNN-based self-
supervised learning model by learning to regress the read-
ings of future time windows. A concurrent work (Jiang
et al., 2024a) also adopts the idea of vector quantization to
develop a pretraining model LaBraM for EEG data based
on VQ-VAE (van den Oord et al., 2017). However, there
are two key distinctions. 1) The quantizer of VQ-MTM is a
parameter-free function whereas the quantizer of LaBraM
employs a learnable function that requires being trained
first, and thus VQ-MTM is more parameter-efficient and
computationally-efficient. 2) VQ-MTM is innovated with
a well-designed phase alignment module and can handle
more signal segment variants than LaBraM, i.e., the variants
caused by time shift. Because the quantizer of LaBraM is
trained by reconstructing the Fourier coefficients (ampli-
tudes and phases), which is a time-shift-sensitive loss.
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Figure 1. The fine-tuning pipeline of the model VQ-MTM. The pointwise convolution is used to fuse channel-wise representations and the
[CLS] token is used to extract sequence-level representation.

3. Methodology
Problem and Notation. Given a multivariate EEG time se-
ries data with M channels sampled uniformly at T time
steps, X = [x0,x1, . . . ,xT−1] where xt ∈ RM is the
observation at step t, we aim to learn representations for
X without the requirement of annotation such that the
learned representations (with finetuning) can generalize well
to the downstream disorder diagnosis such as seizure de-
tection and fine-grained type classification, etc. We use
F : RN 7→ CN to represent the Fourier Transform, whose
input is a signal v0, v1, . . . , vN−1 and yield the Fourier coef-
ficients v̂0, v̂1, . . . , v̂N−1 by following the notation conven-
tion in analysis (Folland, 2009); the function Fk : RN 7→ C
returns the k-th Fourier coefficient of a signal; let Lτ denote
the translation operator, i.e., given a function f : R 7→ R the
translation operator transforms it as Lτ (f(t)) = f(t+ τ).

3.1. Self-supervised Pretraining

3.1.1. PREPROCESSING AND PIPELINE

Figure 1 shows the architecture of our proposed VQ-MTM.
The core idea of our approach is to identify well-defined
semantic units (akin to words in natural language) from
potentially corrupted and periodic multivariate time series
data. To this end, we need to first partition the time se-
ries into patches along the time dimension, which shares
the analogous spirit as the works in computer vision (He
et al., 2022) and speech recognition (Baevski et al., 2020;
Chiu et al., 2022; Zhang et al., 2023). Unlike images and

speech, EEG signals are often noisy and corrupted due to
variability during data acquisition (Wagh et al., 2022), as
a consequence, there may exist various forms of variation
for a given pattern. Moreover, the physiological signals
are inherently periodic and a small shift in time may also
produce different variants of a fixed pattern. Hence, it is
critical to identify these variants by the same genesis pattern
to provide consistent learning signals for the model. That is,
to be well-defined semantic units, we mean that the variants
of a given pattern (in a patch) should be identified with the
same word in the vocabulary1. We address this by proposing
a random-projection quantizer and a phase-aligning module
based on the Johnson-Lindenstrauss lemma and Time-Phase-
Shift Equivariance of the Fourier Transform, respectively.

Patching and Channel Separation. Given the input X ∈
RM×T and patch size N . Suppose T modN = 0 (can be
achieved by padding or truncating X) with L = T/N , we
can partition X into L disjoint patches by reshaping it into
the tensor Xre ∈ RM×N×L. Note that Xre can be treated
as a multi-channel patch sequence with length L, whose ℓ-th
patch can be selected as Xre

:,:,ℓ (0 ≤ ℓ < L), and we can then

denote the patch sequence by
[
Xre

:,:,ℓ

]L−1

ℓ=0
. Since each Xre

:,:,ℓ

contains M -channel observation, such a processing manner
implies we directly fuse the raw features from different
channels into one latent space. However, these M channels
often measure M heterogeneous physiological quantities

1Mathematically, this can be expressed as partitioning a col-
lection of variants into equivalence classes and identifying each
equivalence class with a canonical element.
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that may have quite different magnitudes, dynamics, and
physiological interpretations. Simply fusing them up in
the raw feature space can mess up the subsequent learning
process, e.g., it is hard to normalize features coming from
heterogeneous sources with different magnitudes.

For this reason, we adopt a channel separation strategy
in this paper, namely, we treat each channel observation
Zm ≜ Xre

m,:,: ∈ RN×L independently and encode them
separately. The benefits are two-fold: 1) each channel obser-
vation has its unique physiological dynamics and magnitude
(easier to do normalization) and can be embedded into a
suitable representation space; 2) the channel dimension and
temporal dimension are separated, which enables the model
to focus on learning temporal transition that is invariant
across dimensions, and thus enhancing the parameter effi-
ciency. We will fuse the learned contextual representations
to capture channel-wise information with pointwise con-
volution as presented in Section 3.2 and the left part of
Figure 1. Therefore, in the remainder of paper we will focus
on a particular channel m and drop the subscript Zm as
Z = [z0, . . . , zL−1] to keep the notation uncluttered.

VQ-MTM Pipeline. Now given a patch sequence
z0, . . . , zL−1 ∈ RN , as Figure 1 shows, we will feed them
into two branches in the pretraining stage. One branch
fencoder encodes them to produce the contextual represen-
tations zc0, . . . , z

c
L−1 ∈ RDc whereas the other one flabel

creates them pseudo-labels y0, . . . , yL−1 serving as the self-
supervised learning signals. The fencoder is defined as fol-
lows:

z0i = LayerNorm(Wzi) ∈ RD0 (1)

[zci ]
L−1
i=0 = Transformer(

[
z0i
]L−1

i=0
) ∈ RDc×L, (2)

where W ∈ RD0×N is the parameter of linear map,
whereas flabel is composed of the phase-aligning module
and random-projection quantizer, that is,

yi = Quantizer(PhaseAlignment(zi)). (3)

Next, we detail the design of the two modules. We first
present the random-projection quantizer and then discuss
why only it cannot guarantee to identify the variants of
phase-shifted patterns frequently arising in EEG data, hence,
we introduce the phase aligning module.

3.1.2. RANDOM-PROJECTION QUANTIZER

As aforementioned, the critical part of the pretraining lies
in identifying the variants of the same genesis pattern from
the noisy and corrupted time series so as to provide con-
sistent and robust learning signals for the model. Now
given a patch z ∈ RN−1 obtained from the raw EEG data,
how do we identify its variants effectively? To answer this
question, we draw inspiration from the stochastic process

theory (Shiryaev, 2016), for two real discrete-time processes
{Xt}, {Yt}, their correlation E [XtYt] can serve as a good
similarity measure under noise and corruption, which is
defined as

E [XtYt] ≜ lim
n→∞

1

n

N∑
t=1

XtYt. (4)

Therefore, two patches can be considered variants of the
same genesis pattern if they are close in terms of correla-
tion. Inspired by this and the random-projection technique
in speech pretraining (Chiu et al., 2022), we propose a
random-projection quantizer as follows. Let C ∈ RD×K be
a randomly initialized codebook with size K, ck ∈ RD be
its k-th column, and A ∈ RD×N be a randomly initialized
projection matrix, we identify z by the index of the column
ck that is closest to it in terms of the correlation defined in
Eq. 4, that is,

y = argmax
k

〈
ck

∥ck∥2
,

Az

∥Az∥2

〉
. (5)

The projection matrix A first maps z to RD, then the ℓ2-
normalization operation projects both ck and Az into the
sphere SD−1 and then estimates E [XtYt] on the sphere by
inner product. The codebook C and projection matrix A
will not be updated once after the initialization.

Since the correlation E [XtYt] can measure similarity under
noise, all z′ have a high chance of being assigned to the
same pseudo-label y of z in RD space as long as they are
close to z in terms of correlation in RN . We now give a
qualitative analysis based on Theorem 3.1.

Theorem 3.1. Given n points u1,u2, . . . ,un ∈ Rd and
0 < ϵ < 1, there exists a random matrix A ∈ Rm×d

which randomly sampled from N (0, 1
n ) when m ∈ Z+ and

m > 24 ln(n)
ϵ2 , such that

Pr [|⟨vi,vj⟩ − ⟨ui,uj⟩| ≤ ϵ] ≥ 1− 2

n
, (6)

where vi = Aui.

Theorem 3.1 is a generalization of the Johnson-
Lindenstrauss lemma from Euclidean distance to inner prod-
uct, and its proof is presented in Appendix A.2. In our
case, the linear mapping is implemented as the normalized
random projection z 7→ Az/∥Az∥2 and it does satisfy the
requirement of the theorem. Thus, we can guarantee the
inequality holds with a high probability by setting D (corre-
sponding to m in Theorem 3.1) to appropriate values.

3.1.3. PHASE ALIGNMENT

Quantizer Limitation. The random-projection quantizer
is effective in handling the random noise occurring in EEG
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Figure 2. Top: A signal patch and its time-delayed counterpart
generated by a minor time lay. Bottom Left: The pseudo-labels of
the two patches produced by the Quantizer. Bottom Right: The
pseudo-labels of the two patches produced by the Quantizer after
being aligned.

during data acquisition. However, as EEG data measures the
physiological signals that are often periodic, minor time lags
or shifts can generate multiple different variants that may
have noticeable discrepancies with their origins in terms of
Eq. 4, and thus they are very likely to be treated as distinct
tokens by the quantizer. Figure 2 shows an example, in
which a minor time-delayed variant and its origin signal are
recognized as two tokens with different semantic meanings.

To address this limitation, we introduce a phase-aligning
module based on the Fourier Transform and one of its key
properties, namely, the Time-Phase-Shift Equivariance. The
Fourier Transform transforms a time signal z0, z1, . . . , zN−1

into its frequency representation ẑ0, ẑ1, . . . , ẑN−1 through
the change of basis (Fourier basis),

ẑk =
1√
N

N∑
n=1

zne
−2πi n

N k, k = 0, 1, . . . , N − 1 (7)

where ẑk ∈ C represents the k-th coefficient of the time
series under the Fourier basis. The corresponding modulus
and phase argument of ẑk is denoted by |ẑk| and arg(ẑk)
(whose definitions are presented in Appendix A.1), respec-
tively. As z and ẑ are two equivalent representations of the
same vector with different bases, given its Fourier represen-
tation ẑ we can obtain z by the inverse Fourier Transform,

zn =
1√
N

N∑
k=1

ẑke
2πi k

N n, n = 0, 1, . . . , N − 1. (8)

One of the appealing properties of the Fourier Transform is
its Time-Phase-Shift Equivariance, which offers us a solu-
tion to address the time-shift issue of periodic signals.

Theorem 3.2. (Time-Phase-Shift Equivariance) If a time
signal x0, x1, . . . , xN−1 is shifted by τ in the time domain,

Time Series 
Patch

Freq Info

Amp Phase

Aligned Patch

Reconstruct 
Freq Info

Phase AmpAlign

Keep

DFT IDFT

Existing Temporal Lag Aligning In Temporal Domain

Figure 3. The structure of the phase aligning module.

then its Fourier representation ẑk (k = 0, 1, . . . , N −1) are
shifted by 2πkτ/N in the phase space. More precisely, let
argFk be the function composition arg ◦Fk, then

argFk(Lτ (x)) = arg(ẑk) + 2πkτ/N

= L2πkτ/N (argFk(x)).
(9)

The proof of the theorem can be found in Appendix A.2. In-
tuitively. the theorem states that shifting in the time domain
is equivalent to shifting in the phase space of the Fourier rep-
resentation (in the sense of equivariance). Inspired by this
equivariance property, we propose to align different variants
of a signal in the phase space (since it offers a natural choice
for the unit shift 2πτ/N in Eq. 9) and then reconstruct the
aligned ones by the inverse Fourier Transform as follows.

ẑ = DFT(z),

ẑaligned = PhaseAlign(ẑ),

zaligned = IDFT(ẑaligned).

(10)

We first compute the Fourier representation ẑ of a signal
z and then align ẑ in the phase space, the aligned Fourier
representation will be used to generate zaligned with the
inverse Fourier Transform. The PhaseAlign is defined as
follows. According to Eq. 9, we should align each ẑk by
preserving the modulus |ẑk| and subtracting a shifted term
2πkτ/N = k · arg(ẑ1) from the phase arg(ẑk). More
formally,

θk = arg(ẑk)− k · arg(ẑ1),

ẑaligned =
[
|ẑk|eiθk

]N−1

k=0
.

(11)

It is also illustrated in Figure 3 where two shifted variants
in time are aligned to produce an identical genesis pattern
ẑaligned, and we will verify its efficacy in Section 4.3.

3.1.4. SELF-SUPERVISED TRAINING LOSS

As shown in Figure 1, given the patch sequence of a particu-
lar channel Z = [z0, . . . , zL−1], we create its pseudo-label
sequence y0, . . . , yL−1 with flabel and generate the con-
textual representation sequence Zc = [zc0, . . . , z

c
L−1] by

feeding Z0 = [z00, . . . , z
0
L−1] (calculated in Eq. 1) into the

Transformer. To compute the self-supervised learning loss,
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we adopt the BERT-style masked strategy, namely, randomly
masking a fraction of tokens with index set M, and replac-
ing the masked tokens in z00, . . . , z

0
L−1 with one learnable

vector zmasked. The model is trained by maximizing the
probability of predicting the pseudo-labels of masked tokens
as

maximize

M∑
m=1

∑
i∈M

log p(ym,i|zcm,i) (12)

where the probability p(ym,i|zcm,i) is parameterized with
the K-dimension (vocabulary size) softmax function. The
learnable parameters Θ include W in Eq. 1 and the param-
eters of Transformer in Eq. 2, whereas the codebook C and
random projection matrix A in Eq. 5 are fixed and will not
be updated once after initialization. Hence, our proposed
self-supervised approach incurs no more complexity than a
vanilla Transformer.

3.2. Fine-tuning on Downstream Tasks

As shown in the left of Figure 1, the pre-trained VQ-MTM
(i.e., fencoder) will be fine-tuned to perform the downstream
tasks, and we add a [CLS] token to extract the sequence-
level representation for the series-level tasks such as time-
series classification. Specifically, we concatenate the pre-
trained fencoder with a 1×1 convolution to fuse the channel-
wise representations, and then a one-hidden-layer feedfor-
ward function maps the fused representation to predict the
targets, that is,

zcm,cls = takeFirst(fencoder([zm,i]
L−1
i=0 )),

ypred = FFN(Conv1×1(
[
zcm,cls

]M−1

m=0
)),

(13)

where the operator takeFirst takes the first element from a
sequence, namely, the contextual representation of [CLS].
The prediction ypred will be used to fine-tune the model
parameters (including fencoder) with the ground-truth la-
bels. One salient feature of our proposed approach is that it
can adapt to variable-length sequences on the downstream
tasks since we use the contextual representation of [CLS] to
represent the sequence.

Remark. Since the model complexity of our proposed VQ-
MTM is almost identical to the vanilla Transformer, it is
very scalable and can easily adapt to large-scale datasets
as we will show in Section 4, and its computational cost
and model complexity against the existing methods are also
studied in Appendix I. We also would like to highlight that
VQ-MTM is not limited to the EEG data and can also benefit
other corrupted and periodic time series data. Hence, we
further validate its general representation learning ability by
conducting more experiments on ECG data in Appendix H.

4. Experiments
We start this section by presenting the experiment settings,
and then we evaluate the efficacy of VQ-MTM on two large
real-world EEG datasets with the tasks of seizure detection
and seizure classification. Next, we design experiments
to verify the function of the channel separation strategy
adopted in our self-supervised learning architecture. In the
end, we examine the effectiveness of the proposed phase-
aligning module by ablation study. Besides, we conduct
further experiments to validate the performance and appli-
cability of our proposed methods on more EEG and ECG
data in Appendix H.

4.1. Experimental Setup

Datasets. TUH EEG Seizure Corpus (TUSZ). The Tem-
ple University Hospital EEG Seizure Corpus (TUSZ)
v2.0.0 (Shah et al., 2018) dataset is the largest publicly
available EEG dataset with a size of 79.4 GB. The dataset
contains labels for both seizure detection and seizure classi-
fication.

TUH EEG Abnormal Corpus (TUAB). TUH EEG Abnormal
Corpus (TUAB) is the Temple University Hospital Abnor-
mal Corpus (TUAB) v3.0.0 (Obeid & Picone, 2016) with a
size of 58.6 GB focusing on the annotation of seizure detec-
tion. The details of the datasets can be found in Appendix B.

Preprocessing. Following the previous studies (Tang et al.,
2022), we use all 19 EEG channels, and each time series
(corresponding to a patient) is partitioned into 12-second
and 60-second clips without overlap. The patch size N is
set to 250, which results in 12 and 60 tokens for the 12-
second and 60-second clips, respectively. To evaluate the
generalizability of the model to unseen patients, there is no
common patient in the training and testing datasets. More
details on data preprocessing are available in Appendix D.

Evaluation Tasks. We assess the quality of the self-
supervised learning on EEG data with two tasks, namely,
seizure detection and seizure classification. The seizure de-
tection performs a binary classification to recognize whether
a given clip of EEG data contains seizure patterns, while
the seizure classification steps further to classify the specific
type of seizure. Since TUSZ contains labels for both seizure
detection and seizure classification(4 classes), we perform
both two tasks on it, whereas we only study the seizure
detection task on TUAB.

Evaluation Metrics. The datasets collected from real-world
medical practice often exhibit long-tailed distributions, and
this is also true for the TUSZ and TUAB datasets, in which
the label imbalance issue is particularly severe (because
the large fraction of a time series is non-seizure). Hence,
we adopt the AUROC (Area Under the Receiver Operat-
ing Characteristic curve) and Weighted F1 Score as the
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Table 1. The seizure detection (AUROC) and classification (weighted F1-score) performance of different methods on the TUSZ dataset.
The best results are highlighted in bold, and the second best results are indicated in underline.

MODEL
SEIZURE DETECTION SEIZURE CLASSIFICATION

AUROC WEIGHTED F1-SCORE
12-S 60-S 12-S 60-S

DCRNN 0.836 0.753 0.603 0.478
TIMESNET 0.845 0.713 0.504 0.475
MAE 0.799 0.747 0.592 0.585
PATCHTST 0.866 0.834 0.607 0.554
SIMMTM 0.653 0.637 0.491 0.455

VQ-MTM 0.887 0.904 0.620 0.615

IMPROVEMENT(%) 2.42 8.39 2.14 5.13

criteria to evaluate model performance for seizure classifica-
tion and detection, respectively, by following the previous
study (Asif et al., 2020).

Baseline Methods. We evaluate our proposed VQ-MTM
against the state-of-the-art time series self-supervised
learning and classification approaches including, 1)
DCRNN (Tang et al., 2022), 2) TimesNet (Wu et al., 2023),
3) PatchTST (Nie et al., 2023), 4) SimMTM (Dong et al.,
2023), 5) MAE (He et al., 2022), 6) BIOT (Yang et al.,
2023). The description of the baseline methods is presented
in Appendix E.

Training Setup. For the pretraining, our proposed model is
trained using the AdamW optimizer (Loshchilov & Hutter,
2017b) with a peak learning rate of 2× 10−3, total training
epochs of 150, and a batch size of 512. We adopt the warm-
up strategy followed by the cosine annealing (Loshchilov
& Hutter, 2017a) with an initial learning rate 1 × 10−4 to
schedule the learning rate. The Xavier initialization (Glorot
& Bengio, 2010) is used for the projection matrix A, and the
codebook C is initialized with the standard Normal distribu-
tion, the two matrices remain fixed once after initialization.
The codebook size K is set to 1024 and the dimension D
is 256. The Transformer in Eq. 2 consists of 2 layers of
encoders with model dimension 256 and a feed-forward net-
work dimension of 1024. For the methods VQ-MTM, MAE,
and SimMTM, the randomly masked tokens are sampled
from the Normal distribution N (0, 0.01). More parameter
settings can be found in Appendix K.

For the finetuning, we use the cosine annealing strategy with
an initial learning rate of 1 × 10−3, and a small learning
rate 1× 10−4 is used to finetune the pre-trained parts. The
total number of training epochs for fine-tuning is set to 60
for both the TUSZ and TUAB datasets.

For the baseline methods, we use the officially released code
and adopt the suggested training strategies and hyperparam-
eter settings in their original papers. All experiments are
conducted on the NVIDIA RTX 4090 GPUs.

Table 2. The seizure detection (AUROC) performance of different
methods on the TUAB dataset.

MODEL
SEIZURE DETECTION AUROC
12-S 60-S

DCRNN 0.806 0.772
TIMESNET 0.863 0.853
MAE 0.852 0.841
PATCHTST 0.858 0.847
SIMMTM 0.724 0.697
BIOT 0.849 0.865

VQ-MTM 0.868 0.871

IMPROVEMENT(%) 0.58 0.69

4.2. Experimental Results

The seizure detection and classification performance of dif-
ferent methods on the TUSZ data is presented in Table 1,
whereas Table 2 shows the seizure detection results on the
TUAB dataset.

Analysis of Seizure Detection. It can be observed from
Table 1 and 2 our proposed VQ-MTM consistently achieves
the best seizure detection performance for different lengths
of clips in terms of AUROC on both datasets. Notably, it
surpasses the second best baseline by a large margin (0.904
vs 0.834) for the 60-second clips on the TUSZ dataset.

Among all baseline methods, PatchTST and TimesNet
show the best performance. It is noted that the detection
performance drops for all baseline methods when raising the
clip lengths from 12s to 60s. This can be explained by that a
larger clip length is more likely to include the false positive
patterns (i.e., non-seizure segments) into the clip and thus
mislead the models. In contrast, the AUROC of VQ-MTM
grows from 0.887 to 0.904 when the clip length increases
from 12s to 60s on the TUSZ dataset, which can be credited
to its superior contextual representation learning ability for
long sequence under corrupted and periodic time series

7
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Table 3. Ablation study of the channel separation strategy. VQ-
MTM (MIX) is a variant of VQ-MTM that fuses the channel fea-
tures first before feeding to the pretraining model.

MODEL
DETECTION CLASSIFICATION

AUROC WEIGHTED F1-SCORE
12-S 60-S 12-S 60-S

VQ-MTM(MIX) 0.838 0.856 0.507 0.594
VQ-MTM 0.887 0.904 0.620 0.615

IMPROVEMENT(%) 5.85 5.61 22.29 3.53

signals. In addition, the performance gap between VQ-
MTM and MAE also verifies our hypothesis that learning to
reconstruct the corrupted time series directly can degrade
the quality of the learned contextual representations.

Analysis of Seizure Classification. As shown in Table 1,
VQ-MTM also gives rise to the best weighted F1-score on
the seizure classification tasks on the TUSZ dataset. It im-
proves the weighted F1-score over the best baseline method
by 5.13% for the 60s clips. The results show that our pro-
posed VQ-MTM is not only helpful for seizure detection but
also beneficial to fine-grained seizure classification, which
further validates its general contextual representation learn-
ing capability.

On both tasks and datasets, SimMTM yields the least desir-
able results. We hypothesize that the poor performance of
SimMTM is due to its scalability issue. Its generation of
various copies of positive pairs incurs significant memory
burdens, and thus it cannot well fit to large datasets such
as TUSZ and TUAB. To verify this hypothesis, we further
conduct experiments on several relatively small datasets in
Appendix H.

4.3. Ablation Study

Channel Separation. As mentioned in Section 3.1.1 we
adopt the channel separation strategy in our self-supervised
learning architecture, that is, we first pass each channel in-
dependently through the pretraining model to compute the
contextual representation and then fuse the channel con-
textual representations with a pointwise convolution when
fine-tuning. To verify the efficacy of this strategy, we de-
sign a variant of VQ-MTM that fuses the channel features
first before feeding to the pretraining model, referred to
as VQ-MTM (MIX). The results on the TUSZ dataset are
presented in Table 3. As the table shows, VQ-MTM consis-
tently achieves much better results on both seizure detec-
tion and classification tasks. This suggests that the channel
separation strategy is very effective for time series with
multiple channels coming from heterogeneous sources in
the self-supervised learning, this is in accordance with the
observation in time series forecasting (Nie et al., 2023).

Phase Alignment. To verify the effectiveness of our pro-

Table 4. Ablation study of the phase aligning module on the TUSZ
dataset.

MODEL
DETECTION CLASSIFICATION

AUROC WEIGHTED F1-SCORE
12-S 60-S 12-S 60-S

VQ-MTM W/O 0.870 0.880 0.550 0.507PHASE ALIGNING MODULE
VQ-MTM W 0.887 0.904 0.620 0.615PHASE ALIGNING MODULE

IMPROVEMENT(%) 1.95 2.73 12.73 21.30

posed phase-aligning module, we design experiments on
the TUSZ dataset by removing it from our proposed model,
and the results are shown in Table 4. Both results on the
seizure detection and classification tasks demonstrate the
efficacy of the proposed module. The performance gains
are more evident for the seizure classification task (up to
21.30%). The experiments show that the random-projection
quantization itself is not sufficient to ensure well-defined
semantic units for periodic time series data, in which multi-
ple variants caused by small time shifts frequently emerge.
It is essential to take seasonality into consideration when
developing self-supervised learning models for the periodic
signals.

5. Conclusion
In this paper, we present a BERT-style self-supervised model
VQ-MTM for the EEG data with the consideration of its
inherent characteristics. Our proposed VQ-MTM is able to
generate well-defined semantic units for corrupted and peri-
odic time series, which can serve as robust and consistent
learning signals for the pretraining. To this end, we de-
sign a random-projection quantization module based on the
Johnson-Lindenstrauss lemma and a phase-aligning module
guided by the Time-Phase-Shift Equivariance of the Fourier
Transform, the resulting model is also very scalable. The
experiments on two large real-world EEG data demonstrate
the efficacy of the proposed modules as well as the consis-
tent superiority of VQ-MTM over the baseline methods on
both seizure detection and classification. It is worthwhile
pointing out that our proposed method is not limited to EEG
data and can benefit more general time series data with cor-
ruption and periodicity, hence, we also design experiments
on three more datasets including two ECG datasets to verify
the generalizability of our proposed model. In the future,
we would like to generalize VQ-MTM to more general time
series data. In addition, since the random-projection and
codebook matrix are fixed during model training, we would
also like to design more effective initialization strategies for
them in the case of more general time series self-supervised
learning.

8



Vector Quantization Pretraining for EEG Time Series with Random Projection and Phase Alignment

Acknowledgements
This work is supported by the National Natural Science
Foundation of China under Grant No. 62206074 and
No. 62306085, Shenzhen College Stability Support Plan
under Grant No. GXWD20220811173233001 and No.
GXWD20231130151329002.

Impact Statements
We study the self-supervised learning method for EEG time
series by designing inductive bias to consider its inherent
characteristics. The core idea is to generate well-defined
semantic units for corrupted and periodic time series. Our
method is guided by the random projection technique and
Fourier analysis theory. We mainly focus on scientific re-
search and there is no obvious negative impact on the com-
munity.

References
Asif, U., Roy, S., Tang, J., and Harrer, S. Seizurenet: Multi-

spectral deep feature learning for seizure type classifica-
tion. In The Medical Image Computing and Computer
Assisted Interverntion Society (MICCAI), 2020.

Baevski, A., Zhou, Y., Mohamed, A., and Auli, M. wav2vec
2.0: A framework for self-supervised learning of speech
representations. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2020.

Bagnall, A. J., Dau, H. A., Lines, J., Flynn, M., Large,
J., Bostrom, A., Southam, P., and Keogh, E. J. The
UEA multivariate time series classification archive, 2018.
CoRR, 2018.

Banville, H. J., Chehab, O., Hyvärinen, A., Engemann, D.,
and Gramfort, A. Uncovering the structure of clinical
EEG signals with self-supervised learning. CoRR, 2020.

Bao, H., Dong, L., Piao, S., and Wei, F. Beit: BERT pre-
training of image transformers. In International Confer-
ence on Learning Representations (ICLR), 2022.

Chen, X., Li, X., Liu, B., and Li, Z. Biased temporal
convolution graph network for time series forecasting
with missing values. In International Conference on
Learning Representations (ICLR), 2024.

Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang,
H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J. E.,
Stoica, I., and Xing, E. P. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality, March 2023.

Chiu, C., Qin, J., Zhang, Y., Yu, J., and Wu, Y. Self-
supervised learning with random-projection quantizer
for speech recognition. In International Conference on
Machine Learning (ICML), 2022.

Covert, I. C., Krishnan, B., Najm, I., Zhan, J., Shore, M.,
Hixson, J., and Po, M. J. Temporal graph convolutional
networks for automatic seizure detection. In Machine
Learning for Healthcare Conference (MLHC), 2019.

Dau, H. A., Bagnall, A. J., Kamgar, K., Yeh, C. M., Zhu,
Y., Gharghabi, S., Ratanamahatana, C. A., and Keogh,
E. J. The UCR time series archive. IEEE CAA J. Autom.
Sinica, 2019.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. BERT:
pre-training of deep bidirectional transformers for lan-
guage understanding. In the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT), 2019.

Dong, J., Wu, H., Zhang, H., Zhang, L., Wang, J., and
Long, M. SimMTM: A simple pre-training framework
for masked time-series modeling. Advances in Neural
Information Processing Systems (NeurIPS), 2023.

Folland, G. B. Fourier analysis and its applications, vol-
ume 4. American Mathematical Soc., 2009.

Glorot, X. and Bengio, Y. Understanding the difficulty of
training deep feedforward neural networks. In Artificial
Intelligence and Statistics (AISTATS), 2010.

Guharoy, R., Jana, N. D., Biswas, S., and Garg, L. Em-
pirical analysis of different dimensionality reduction and
classification techniques for epileptic seizure detection,
2023.

Gupta, S., Meena, J., and Gupta, O. P. Neural network based
epileptic EEG detection and classification. CoRR, 2021.
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A. Background and Theorem Proof
A.1. Background on Complex Numbers

Given a complex number ẑ ∈ C, its modulus and phase argument is defined as follows,

|ẑ| =
√
Re(ẑ)2 + Im(ẑ)2,

arg(ẑ) = arctan (Re(ẑ)/ Im(ẑ))
(14)

where Re(·) and Im(·) indicate the operations of taking real and imaginary parts of a complex variable, respectively.

A.2. Thorem Proof

Lemma A.1. Let u ∈ Rm be a vector whose entries are independently and identically distributed according to the standard
normal distribution N (0, 1). For any given ϵ ∈ (0, 1), it holds that

Pr[
∣∣∥u∥2 − 1

∣∣ ≥ ϵ] ≤ 2 exp

(
−ϵ2m

8

)
. (15)

Proof. We employ the Chernoff bound and Markov’s inequality to establish the tail bounds for ∥u∥2. Start by noting that
for any x ≥ a and any λ > 0, it holds that eλx ≥ eλa, which suggests

Pr[x ≥ a] ≤ min
λ>0

e−λaE[eλx], (16)

according to Markov’s inequality.

Applying this to ∥u∥2 − 1 ≥ ϵ, we find

Pr[∥u∥2 − 1 ≥ ϵ] ≤ min
λ>0

e−λϵE[eλ(∥u∥
2−1)]. (17)

Since the components of u are independent,

E[eλ∥u∥
2

] =

n∏
i=1

E[eλu
2
i ], (18)

where

E[eλu
2
i ] =

∫ ∞

−∞

1√
2π

e−u2
i /2eλu

2
i /mdui =

√
m

m− 2λ
, (19)

assuming λ < m
2 .

Assembling the above results,

Pr[∥u∥2 − 1 ≥ ϵ] ≤ min
λ>0

e−λ(ϵ+1)

(
m

m− 2λ

)m/2

. (20)

Minimizing over λ gives λ = mϵ
2(ϵ+1) , leading to

Pr[∥u∥2 − 1 ≥ ϵ] ≤ exp

(
−mϵ2

8

)
. (21)

Similarly,

Pr[1− ∥u∥2 ≥ ϵ] ≤ exp

(
−mϵ2

8

)
. (22)

Finally, by the union bound,

Pr[
∣∣∥u∥2 − 1

∣∣ ≥ ϵ] ≤ 2 exp

(
−mϵ2

8

)
. (23)
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Lemma A.2. (Johnson–Lindenstrauss lemma) Given n points u1,u2, . . . ,un ∈ Rd and 0 < ϵ < 1, there exists a random
matrix A ∈ Rm×d which randomly sampled from N (0, 1

n ) when m ∈ Z+ and m > 24 ln(n)
ϵ2 , such that

Pr

[
∃(i, j) :

∣∣∣∣∣
∥∥∥∥vi − vj

ui − uj

∥∥∥∥2 − 1

∣∣∣∣∣ ≥ ϵ

]
≤ 1

n
(24)

where vi = Aui.

Proof. If u is a unit vector, and A is randomly sampled from N (0, 1
n ), then each component of Au satisfies N (0, 1

n ).

Now assume u =
ui−uj

∥ui−uj∥ , by using lemma A.1, we can get

Pr

[∣∣∣∣∣
∥∥∥∥A(ui − uj)

∥uj − uj∥

∥∥∥∥2 − 1

∣∣∣∣∣ ≥ ϵ

]
≤ 2 exp

(
−ϵ2m

8

)
(25)

when i ̸= j.

Thus

Pr

[
∃(i, j) :

∣∣∣∣∣
∥∥∥∥A(ui − uj)

∥ui − uj∥

∥∥∥∥2 − 1

∣∣∣∣∣ ≥ ϵ

]
≤ 2

(
n

2

)
exp

(
−ϵ2m

8

)
(26)

Considering m > 24 ln(n)
ϵ2 ,

2

(
n

2

)
exp

(
−ϵ2m

8

)
<

1

n
(27)

Thus,

Pr

[
∃(i, j) :

∣∣∣∣∣
∥∥∥∥vi − vj

ui − uj

∥∥∥∥2 − 1

∣∣∣∣∣ ≥ ϵ

]
≤ 1

n
(28)

Theorem A.3. Given n points u1,u2, . . . ,un ∈ Rd and 0 < ϵ < 1, there exists a random matrix A ∈ Rm×d which
randomly sampled from N (0, 1

n ) when m ∈ Z+ and m > 24 ln(n)
ϵ2 , such that

Pr [|⟨vi,vj⟩ − ⟨ui,uj⟩| ≤ ϵ] ≥ 1− 2

n
, (29)

where vi = Aui.

Proof. As the Johnson–Lindenstrauss lemma demonstrates,

Pr

[
∃(i, j) :

∣∣∣∣∣
∥∥∥∥vi − vj

ui − uj

∥∥∥∥2 − 1

∣∣∣∣∣ ≥ ϵ

]
≤ 1

n
. (30)

Considering the two events

Pr

[
∃(i, j) :

∣∣∣∣∣
∥∥∥∥vi − vj

ui − uj

∥∥∥∥2 − 1

∣∣∣∣∣ ≥ ϵ

]
≤ 1

n
, (31)

Pr

[
∃(i, j) :

∣∣∣∣∣
∥∥∥∥vi + vj

ui + uj

∥∥∥∥2 − 1

∣∣∣∣∣ ≥ ϵ

]
≤ 1

n
. (32)

The second inequality holds due to −uj ∈ Rd and −vj = A(−ui). Thus, the probability of the event that at least one of
them occurs (the union of the two events) should be less than 2

n . Consequently, we obtain the following inequalities

(1− ϵ)||ui − uj ||2 ≤ ||vi − vj ||2 ≤ (1 + ϵ)||ui − uj ||2

(1− ϵ)||ui + uj ||2 ≤ ||vi + vj ||2 ≤ (1 + ϵ)||ui + uj ||2.
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By multiplying -1 to the first inequality and adding it to the second one, we obtain

4 ⟨ui,uj⟩ − 2ϵ(||ui||2 + ||uj ||2) ≤ 4 ⟨vi,vj⟩ ≤ 4 ⟨ui,uj⟩+ 2ϵ(||ui||2 + ||uj ||2) (33)

As ui is the normalized vector, we derive the result

Pr [|⟨vi,vj⟩ − ⟨ui,uj⟩| ≤ ϵ] ≥ 1− 2

n
. (34)

Theorem A.4. If a time signal x0, x1, . . . , xN−1 is shifted by τ in the time domain, then its Fourier representation ẑk
(k = 0, 1, . . . , N − 1) are shifted by 2πkτ/N in the phase space. More precisely, let argFk be the function composition
arg ◦Fk, then

argFk(Lτ (x)) = arg(ẑk) + 2πkτ/N

= L2πkτ/N (argFk(x)).
(35)

Proof. For ease of argument, we prove the theorem for the continuous signal x : R 7→ R and the conclusion generalizes to
the discrete signals. Recall that the Fourier Transform of a real-valued function x(t) on R can be described as

x̂(ω) =

∫ ∞

−∞
x(t)e−iωtdt. (36)

Hence, we have

L̂τ (x)(ω) =

∫ ∞

−∞
Lτ (x(t))e

−iωtdt (37)

=

∫ ∞

−∞
x(t+ τ)e−iωtdt (38)

=

∫ ∞

−∞
x(t+ τ)e−iωtdt (39)

=

∫ ∞

−∞
x(t)e−iω(t−τ)dt (t ≜ t− ω) (40)

= eiωτ

∫ ∞

−∞
x(t)e−iωtdt (41)

= eiωτ x̂(ω). (42)

where in the fourth line we use the change of variable. Thus, arg(L̂τ (x)(ω)) = ωτ + arg(x̂(ω)) = Lωτ (arg(x̂(ω))).

For a discrete signal of length N , the frequence ω becomes 2πk/N for k = 0, 1, . . . , N −1, and the proof is completed.

B. Dataset Details
Temple University EEG Seizure Corpus2. TUSZ is a subset of the TUH EEG Corpus and contains sessions that are
known to contain seizure events. It comprises 7,337 files, with a cumulative recording length exceeding 5,312,996 seconds,
spanning approximately 79.4 GB. Annotations are available in event-based, term-based, and bi-class formats. The channel
configurations within the dataset vary from 10 to 40 channels. Detailed information is presented in Table 5.

Temple University EEG Abnormal Corpus3. TUAB is a subset of the TUH EEG Corpus, containing EEG records
classified as either clinically normal or abnormal. The dataset comprises 1,385 normal subjects and 998 abnormal subjects,
with a total size of 58.6 GB. Detailed information is presented in Table 6.

UCR & UEA4. To further illustrate the performance of the VQ-MTM on smaller-scale datasets, three bioelectricity-related
datasets are selected from the UCR & UEA datasets, namely Epilepsy, ECG200, and ECG5000. Detailed information is
provided in Table 7.

2https://isip.piconepress.com/projects/tuh eeg/downloads/tuh eeg seizure
3https://isip.piconepress.com/projects/tuh eeg/downloads/tuh eeg abnormal
4https://www.timeseriesclassification.com/dataset.php
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Table 5. Summary of data in dataset of TUSZ v2.0.0.

EEG FILES(% SEIZURE) PATIENTS(% SEIZURE) TOTAL DURATION(%SEIZURE)

TRAIN SET 4,664(18.70%) 579(35.92%) 54,620.48 MIN(5.34%)
DEV SET 1,832(17.69%) 53(84.91%) 26,132.87 MIN(5.09%)
EVAL SET 881(22.13%) 43(79.10%) 7,796.58 MIN(5.82%)

Table 6. Summary of data in dataset of TUAB v3.0.0.

EEG FILES SESSIONS SUBJECTS

ABNORMAL 1,472(49.18%) 1,472(49.18%) 998(41.88%)
NORMAL 1,521(50.82%) 1,521(50.82%) 1,385(58.12%)
TOTAL 2,993(100%) 2,993(100%) 2,383(100%)

C. Dataset Visualization
To better illustrate the differences between seizure clips and non-seizure clips in the TUH EEG Corpus, we randomly
select one patient to showcase the characteristics of seizure events. As depicted in the top section of Figure 4, the seizure
part (annotated in red) exhibits a larger standard variance compared to normal segments. When aligning the seizure and
non-seizure clips along the timeline, as depicted at the bottom of Figure 4, we can have a more intuitive impression on it.

D. Data Preprocessing
Temple University EEG Seizure Corpus. As the data derived from the Temple University EEG Seizure Corpus (TUSZ)
uses a variety of channel configurations, we adopt a channel selection approach consistent with the prior EEG preprocessing
methodology as detailed in Tang’s work (Tang et al., 2022). We employ a total of 19 channels, and systematically exclude the
recorded EEG signals that do not encompass the entirety of these 19 channels. This culling process results in the exclusion
of a total of 265 files during the preprocessing. Additionally, we implement the subsequent configurations to derive sampled
EEG clips along with their corresponding labels.

In contrast to previous approaches (Tang et al., 2022) that primarily focus on the frequency information of EEG signals,
our work only focuses on the temporal domain. Specifically, in the context of self-supervised learning, we extract relevant
EEG clips using 12-second (60-second) segments as input. Moreover, considering the self-supervised learning objective
of DCRNN, which involves predicting future signals, we designate the 12-second clips contiguous to the input as the
pretraining target. Throughout this process, clips that do not cover the full length of the combined input and target clips are
excluded.

Regarding the seizure detection task, the pertinent EEG clips are acquired through the utilization of non-overlapping
12-second (60-second) sliding windows applied to the EEG signals. Clips not satisfying the length of 12 seconds (60
seconds) are excluded from datasets. The labeling schema assigns a value of 1 for the seizure type and 0 for the non-seizure
type. The detailed informaton of the preprocessed dataset for the seizure detection task are elucidated in Table 8.

In the context of seizure classification tasks, we also conduct the experiments on 12-second (60-second) clips. The 12-second
(60-second) clip is acquired preceding the annotated seizure time of 2 seconds. This configuration aligns with prior research
by Tang et al. (Tang et al., 2022), wherein the 2-second offset serves as a tolerance for annotation. Additionally, to avoid the
occurrence of two seizure types within a single clip, the clips are truncated before the second seizure type manifests. After
applying the Z-Score Normalization, the truncated clips are then padded with zeros to ensure the same clip length across all
instances.

Moreover, aligning with the data preprocessing methodology in DCRNN (Tang et al., 2022), we amalgamate simple
partial (SP) seizures, focal non-specific (FN) seizures, and complex partial (CP) seizures into a newly defined class termed
combined focal (CF) seizures. In addition, tonic-clonic seizures are merged with tonic seizures, forming a class labeled
combined tonic (CT) seizures. As a result, seizures are categorized into four distinct types: CF, GN, AB, and CT. Each
clip is consequently assigned a label y ∈ 0, 1, 2, 3, representing combined focal (CF) seizures, absence (AB) seizures,
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Figure 4. Top: One of the EEG channels of a patient experiencing a seizure, where the clip annotated in red is labeled as the seizure.
Bottom: Comparison between the seizure clip and the non-seizure clip. The clip in blue represents the non-seizure clip, while the clip in
red represents the seizure clip.

Table 7. Additional dataset descriptions. The datasets’ size is organized in (Train, Test).

DATASET DIM DATASET SIZE LENGTH CLASSES
EPILEPSY 3 (137, 138) 206 4
ECG200 1 (100, 100) 96 2

ECG5000 1 (500, 4500) 140 2

generalized non-specific (GN) seizures, and combined tonic (CT) seizures. A detailed analysis of the preprocessed dataset
for the seizure classification task is outlined in Table 9.

Temple University EEG Abnormal Corpus. Regarding the data collected in the Temple University EEG Abnormal Corpus,
we follow the same preprocessing procedures as outlined for the TUSZ dataset. Specifically, we utilize 60-second clips for
self-supervised training, and any clips with a duration of less than 60 seconds are excluded to mitigate the introduction of
extraneous noise. We conduct experiments exclusively on both 12-second and 60-second clips. Detailed information can be
found in Table 10.

E. Details of Baseline Models
The brief introduction of the baseline models is summarized as follows. Considering that Informer, Autoformer, and
iTransformer are only used in the Additional Experiments in Appendix H, due to scalability issues, they are not able to
effectively complete the downstream tasks on TUH EEG Corpus. Additionally, DCRNN is only set as a baseline on TUH
EEG Corpus. Since the additional datasets are mostly univariate, it’s not beneficial to utilize the GNN-based model on them;
thus, we abandon the DCRNN in additional experiments.

• DCRNN5. A GNN-based model incorporates a self-supervised pretraining strategy, which is used to capture non-
Euclidean features across EEG signal channels.

• TimesNet6. A CNN-based model, by transforming the 1-D time series into folds, aims to capture the periodic
information inherent in the original time series.

5https://github.com/mlberkeley/eeg-ssl
6https://github.com/thuml/TimesNet
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Table 8. Detailed information of the TUSZ dataset on seizure detection task.

DATASET SEIZURE CLIPS NON-SEIZURE CLIPS

TRAIN SET(12S) 16,383(6.25%) 245,537(93.75%)
TRAIN SET(60S) 4,282(8.31%) 47,277(91.69%)
DEV SET(12S) 4,852(6.61%) 68,535(93.39%)
DEV SET(60S) 1,397(9.67%) 13,048(90.33%)
EVAL SET(12S) 2,709(6.98%) 36,088(93.02%)
EVAL SET(60S) 805(10.56%) 6,815(89.44%)

Table 9. Detailed information of the TUSZ dataset on seizure classification task.

DATASET COMBINED FOCAL(CF) GENERALIZED NON-SPECIFIC(GN) ABSENCE(AB) COMBINED TONIC(CT)

TRAIN SET(12S) 11,279(71.06%) 4,289(27.02%) 72(0.45%) 232(1.46%)
TRAIN SET(60S) 3,138(72.91%) 1,052(24.44%) 50(1.16%) 64(1.49%)
DEV SET(12S) 1,761(37.72%) 2,858(61.23%) 18(0.39%) 31(0.66%)
DEV SET(60S) 504(37.95%) 802(60.39%) 15(1.13%) 7(0.53%)
EVAL SET(12S) 1,624(63.17%) 838(32.59%) 49(1.91%) 60(2.33%)
EVAL SET(60S) 451(59.34%) 243(31.97%) 49(6.45%) 17(2.24%)

• PatchTST7. A Transformer-based model, wherein the local semantic information serves as tokens to facilitate attention
across an extended historical context.

• MAE. A pretraining paradigm employing the method of Masked Autoencoders. The implementation of the MAE is
adapted from the codebase8. The model employs a 1-D Convolution layer to extract local temporal features and utilizes
non-overlapping temporal data as tokens on timestamps.

• SimMTM9. A Self-supervised framework trained by assembling the neighbor outside the manifold to generate promising
representation. As it needs to generate the positive pairs for further aggregation, it will result in several times extra
GPU memory usage, which will degrade the model’s performance when facing large-scale dataset.

• BIOT10. A model comprising two stages, pre-training and fine-tuning, employs a biosignal tokenization module to
generate a meticulously crafted representation of EEG signals.

• Informer11. A Transformer-based model that utilizes the ProbSparse Attention Module to reduce time complexity and
memory usage.

• Autoformer12. A Transformer-based model utilizing frequency-enhanced decomposed Transformer together with
seasonal-trend decomposition to better grasp global properties of time series.

• iTransformer13. A Transformer-based model regards independent time series as tokens to capture multivariate
correlations by Transformer blocks.

F. Effectiveness of the Pretraining
To assess the effectiveness of pretraining on the TUSZ dataset, we compare the performance of VQ-MTM with and
without self-supervised pretraining for both seizure detection and seizure classification. As depicted in Table 11, VQ-MTM
with pretraining exhibits significantly better performance than its counterpart without pretraining. This suggests that

7https://github.com/PatchTST/PatchTST
8https://github.com/facebookresearch/mae
9https://github.com/thuml/SimMTM

10https://github.com/ycq091044/BIOT
11https://github.com/zhouhaoyi/Informer2020
12https://github.com/MAZiqing/FEDformer
13https://github.com/thuml/iTransformer
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Table 10. Detailed information of the TUAB dataset on seizure detection task.

DATASET SEIZURE CLIPS NON-SEIZURE CLIPS

TRAIN SET(12S) 139,914(50.51%) 137,072(49.49%)
TRAIN SET(60S) 27,957(50.29%) 27,637(49.71%)
DEV SET(12S) 19,555(55.83%) 15,470(44.17%)
DEV SET(60S) 3,278(52.95%) 2,913(47.05%)
EVAL SET(12S) 15,475(45.12%) 18,821(54.88%)
EVAL SET(60S) 2,799(46.10%) 3,272(53.90%)

Table 11. Effectiveness of the pretraining. The proposed VQ-MTM’s results are highlighted in bold.

MODEL
SEIZURE DETECTION SEIZURE CLASSIFICATION

AUROC WEIGHTED F1-SCORE
12-S 60-S 12-S 60-S

VQ-MTM W/O PRETRAINING 0.866 0.834 0.607 0.554
VQ-MTM W PRETRAINING 0.887 0.904 0.620 0.615

IMPROVEMENT(%) 2.42 8.39 2.14 11.01

the pre-trained model can provide a more promising representation than the randomly initialized one, aligning with our
expectations.

G. Linear Probes on TUSZ Corpus
We conduct an evaluation of linear probes on self-supervised models for downstream tasks on the TUSZ Corpus, including
the seizure detection and the seizure classification. We compare VQ-MTM’s effectiveness with the models MAE, DCRNN,
and SimMTM, as previously discussed. For the implementation of VQ-MTM, a trainable convolution layer is employed to
aggregate features from different channels. All training is performed using the AdamW Optimizer with a learning rate of
1× 10−3, weight decay of 1× 10−4, global batch size of 512, and the execution of linear probes for 60 epochs using the
cosine annealing strategy.

As illustrated in Table 12, we conduct a linear probe evaluation on the TUSZ dataset to assess the representations learned by
the self-supervised models. Overall, VQ-MTM outperforms other self-supervised models in linear probing, indicating that
VQ-MTM excels at extracting well-defined features for subsequent downstream tasks.

H. Additional Experimental Results
Considering the large scale of the previous datasets, namely TUSZ and TUAB, which may pose challenges for training the
majority of proposed models in time series analysis (Wu et al., 2021; Zhou et al., 2022; 2021; Liu et al., 2024; Vaswani
et al., 2017). In order to assess the performance of the VQ-MTM relative to these methods, we conduct supplementary
experiments on subsets of the UEA datasets (Bagnall et al., 2018) and UCR datasets (Dau et al., 2019) (Epilepsy, ECG200,

Table 12. Linear Probes on the TUSZ dataset. The best results are highlighted in bold.

MODEL
DETECTION CLASSIFICATION

AUROC WEIGHTED F1-SCORE
12-S 60-S 12-S 60-S

VQ-MTM 0.832 0.767 0.593 0.459
MAE 0.642 0.640 0.513 0.479
DCRNN 0.830 0.752 0.530 0.459
SIMMTM 0.627 0.617 0.489 0.441

IMPROVEMENT(%) 0.24 1.99 11.89 /
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Table 13. Additional experimental results for comparison with the previous models. The best results are highlighted in bold, and the
second best results are indicated in underline.

Informer Autoformer FEDformer iTransformer PatchTST TimesNet MAE SimMTM VQ-MTM

Epilepsy Acc 0.862 0.746 0.833 0.710 0.768 0.826 0.819 0.936 0.964
F1 0.863 0.742 0.831 0.692 0.770 0.819 0.790 0.889 0.963

ECG200 Acc 0.850 0.840 0.930 0.840 0.850 0.850 0.830 0.830 0.860
F1 0.847 0.836 0.930 0.840 0.848 0.850 0.830 0.817 0.857

ECG5000 Acc 0.938 0.933 0.939 0.941 0.942 0.939 0.927 0.936 0.942
F1 0.928 0.924 0.931 0.932 0.935 0.933 0.897 0.479 0.938

and ECG5000 datasets, with detailed information listed in Table 7). However, due to the univariate nature of some datasets,
the DCRNN baseline is omitted from the additional experiments.

The datasets we choose focusing on EEG/ECG signal classification. The outcomes of these experiments reveal that VQ-MTM
demonstrates promising performance across both large and small datasets. Moreover, these experiments are conducted
within the framework of the Time-Series-Library (Wu et al., 2023), while SimMTM is implemented using its original
codebase (Dong et al., 2023). Futhermore, as the majority of the selected datasets involve multiclass classification, we
exclusively report the pertinent Weighted F1 Score and the corresponding Accuracy metrics. The reported results can be
found in Table 13.

I. Analysis on Model’s Computational Costs
To more effectively demonstrate the efficiency of our model during the pre-training and supervised learning stages, we
conducted a comparison of computational costs with self-supervised baseline models, as delineated in Table 14 and Table 15.
Despite possessing fewer parameters, our model surpasses most models that have a larger number of parameters in terms of
performance.

Table 14. The computational cost of pre-training.

MODEL SIMMTM BIOT MAE VQ-MTM

FLOPS 1.78G 7.84G 0.15G 0.12G
PARAMS 0.53M 1.74M 2.50M 0.20M

Table 15. The computational cost of supervised learning.

MODEL SIMMTM BIOT MAE TIMESNET VQ-MTM

FLOPS 0.313G 0.883G 0.014G 1.980G 0.014G
PARAM 0.457M 1.604M 1.217M 0.269M 0.065M

J. Analysis of the Distribution of the Codebooks
To more effectively depict the word frequency of raw EEG signals, the logarithmic frequency of the word frequency is
presented in Appendix H. It is readily apparent that the majority of the words in the codebooks are utilized.

K. Hyperparameters Settings
For a more comprehensive understanding of the hyperparameter settings employed during the pretraining phase, the intricate
configurations are delineated in Table 16 and Table 17.
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Figure 5. Left: The distribution of words in EEG signals (unsorted). Right: The distribution of words in EEG signals (sorted).

Table 16. Hyperparameters for pretraining on TUSZ dataset.

HYPERPARAMETERS TUSZ

LAYERS 2
HIDDEN SIZE 256
ATTENTION HEADS 8
PATCH SIZE 250
ACTIVATION GELU

TRAINING EPOCH 150
BATCH SIZE 512
WEIGHT DECAY 1× 10−4

PEAK LEARNING RATE 2× 10−3

INITIAL LEARNING RATE 1× 10−3

LEARNING RATE SCHEDULE COSINE
WARMUP EPOCHES 20

MASK RATIO 0.3
DROPOUT 0.3

CODEBOOK SIZE 1024
CODEBOOK DIM 256

Table 17. Hyperparameters for pretraining on TUAB dataset.

HYPERPARAMETERS TUAB

LAYERS 2
HIDDEN SIZE 256
ATTENTION HEADS 8
PATCH SIZE 250
ACTIVATION GELU

TRAINING EPOCH 100
BATCH SIZE 512
WEIGHT DECAY 1× 10−4

PEAK LEARNING RATE 2× 10−3

INITIAL LEARNING RATE 1× 10−3

LEARNING RATE SCHEDULE COSINE
WARMUP EPOCHES 20

MASK RATIO 0.3
DROPOUT 0.3

CODEBOOK SIZE 1024
CODEBOOK DIM 256
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